JPS60107841A - Formation of silicon nitride film - Google Patents

Formation of silicon nitride film

Info

Publication number
JPS60107841A
JPS60107841A JP58213972A JP21397283A JPS60107841A JP S60107841 A JPS60107841 A JP S60107841A JP 58213972 A JP58213972 A JP 58213972A JP 21397283 A JP21397283 A JP 21397283A JP S60107841 A JPS60107841 A JP S60107841A
Authority
JP
Japan
Prior art keywords
film
gas
silicon nitride
nitride film
plasma cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58213972A
Other languages
Japanese (ja)
Inventor
Akira Haruta
亮 春田
Atsushi Hiraiwa
篤 平岩
Yuzuru Oji
譲 大路
Shinichi Taji
新一 田地
Kiichiro Mukai
向 喜一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58213972A priority Critical patent/JPS60107841A/en
Publication of JPS60107841A publication Critical patent/JPS60107841A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz

Abstract

PURPOSE:To obtain an Si3N4 surface protective film, the content of H2 therein is little and which has excellent damp-proofness and mechanical strength, by using SiH4, SiF4 and N2 as main reaction gases when an Si3N4 film is formed on the surface of an Si substrate through a plasma CVD method. CONSTITUTION:An upper electrode 2 and a lower electrode 3, the back thereof has a heater 10, are arranged oppositely in a vacuum vessel 1, and the electrodes 2 and 3 are connected to a RF power supply 6 mounted outside the vessel 1. The inside of the vessel 1 is brought to a vacuum state by using a booster pump 4 and a rotary pump 5 cascade-connected, and a mixed gas of SiF4, SiH4 and N2 from bombs 8 is fed into the vessel 1 through a mass flowmeter 7 while glow discharge is generated among a plurality of substrates 9 placed on the electrode 3 and the electrode 2. The gas flow-rate ratio of SiH4 to SiF4 is regulated to 0.05-0.80 at that time, and N2 is not regulated particularly. Or a mixed gas of SiF4 and NH3 may be used as main gases.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はプラズマを用いた気相成長法(プラズマCVD
法)による窒化シリコン膜の形成方法に係り、特に膜中
の水素含有量の少ない窒化シリコ7膜の形成方法に関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a vapor phase growth method using plasma (plasma CVD).
The present invention relates to a method of forming a silicon nitride film using a method (method), and particularly relates to a method of forming a silicon nitride film having a low hydrogen content in the film.

〔発明の背景〕[Background of the invention]

半導体集積回路に訃いては、水分による腐食やNaやC
1等の不純物による汚染から素子を守るため、表面に保
護膜が形成さnる。プラスチック封止の半導体集積回路
に2いては、更に封止するときの熱ひずみに耐えられる
ように、機械的強要に優nた保護膜が必要となる。また
、この保護膜はAt配線上に形成されるため、該At配
線の変買を避けるために400C以下の咽部で形成する
必要がある。そのため、保護膜としては一般に、プラズ
マCVD法により形成した窒化シリコン膜が1史われて
いる。
Semiconductor integrated circuits are damaged by moisture corrosion, Na and C
In order to protect the element from contamination by impurities such as 1, a protective film is formed on the surface. Semiconductor integrated circuits encapsulated in plastic require a protective film that is resistant to mechanical stress in order to withstand thermal strain during encapsulation. Further, since this protective film is formed on the At wiring, it is necessary to form it at a temperature of 400 C or less in order to avoid changing purchases of the At wiring. Therefore, a silicon nitride film formed by a plasma CVD method has generally been used as a protective film.

便来、プラズマCVD法による窒化シリコン膜の形成に
おいては、モノシラ7ガス(8iL) とアノモニアガ
ス(NH3)又は上記ガスと窒素ガス(N2)やアルゴ
ンガスIAr) との混合ガスが用いられてきた。その
ため、形成さnた窒化シリコン膜中には原子数比で約2
0%の水素が含まれている( Paduschek他著
r Quantitative dete−rmina
t+on of hydrogen in 5ilic
on−nitridefilnus using pr
oton−proton 5catter+ngJAp
plied physics Letter誌第36巻
62負〜63頁198θ年発行〕。しかし、これらの窒
化シリコ/膜中の水素が下地の素子特性を劣化させると
いう現象が、近年間らかになった(Fair他者「TI
+reshold Voltage In5tabil
ity 1nAIIUSFE’l”、 Due to 
Channel Hot−HoleEmission 
J IEEE ’ll’ransactions on
 Ele−ctron Dev+ces誌第28巻83
負〜94頁1981年発行ン。こnは、MUS型トラ7
シスタを動作させていると、時間とともにそのしきい値
電圧VTRが変動し、相互コンダクタメスgmが劣化(
g少)するというものである。そのメカニズムとしては
、プラズマCVD窒化クリコン膜中に存在する水素原子
がゲート酸化膜中に拡散し、該ゲート酸化膜中に注入さ
れたホットキャリア(電子又は正孔)と結合してトラッ
プ準位をつくることが考えられる。
Conventionally, in forming a silicon nitride film by plasma CVD, a mixed gas of monosilica 7 gas (8 iL) and ammonia gas (NH3) or the above gases and nitrogen gas (N2) or argon gas (IAr) has been used. Therefore, in the formed silicon nitride film, the atomic ratio is approximately 2.
Contains 0% hydrogen (Paduschek et al., Quantitative Dete-rmina
t+on of hydrogen in 5ilic
on-nitride filnus using pr
oton-proton 5catter+ngJAp
Plied Physics Letter, Vol. 36, pp. 62-63, published in 198θ]. However, in recent years it has become clear that hydrogen in these silicon nitride/films deteriorates the underlying device characteristics (Fair et al.
+reshold Voltage In5tabil
ity 1nAIIUSFE'l", Due to
Channel Hot-HoleEmission
J IEEE 'll' transactions on
Ele-ctron Dev+ces Magazine Volume 28 83
Negative ~ 94 pages Published in 1981. This is MUS type tiger 7
When the sister is operating, its threshold voltage VTR fluctuates over time, causing the mutual conductor female gm to deteriorate (
g). The mechanism is that hydrogen atoms present in the plasma CVD nitride film diffuse into the gate oxide film, combine with hot carriers (electrons or holes) injected into the gate oxide film, and create a trap level. It is possible to create one.

上記現象を防止するためには、水素を台筐ない表面保論
膜を形成することが有効である。水素を含まない保護膜
としてはり/ガラス膜、プラズマCVD法による酸化珪
素膜があるが、プラズマCVD窒化シリコン膜に比べて
、耐湿性、機械的強度に劣る。そのため、これらの膜を
表面保駿膜として形成し、プラスチック封止した半導体
装置の耐湿性、耐熱性は低い。
In order to prevent the above phenomenon, it is effective to form a surface film that does not contain hydrogen. As protective films that do not contain hydrogen, there are beam/glass films and silicon oxide films produced by plasma CVD, but these films are inferior in moisture resistance and mechanical strength compared to plasma CVD silicon nitride films. Therefore, a semiconductor device formed using these films as a surface retention film and sealed in plastic has low moisture resistance and heat resistance.

〔発明の目的〕[Purpose of the invention]

したがって、本発明の目的は、水素の含准童が少なくか
つ耐湿性、憔械的強観に優れた表面保護膜の形成方法を
提供することにぬる。
Therefore, it is an object of the present invention to provide a method for forming a surface protective film with less hydrogen content and excellent moisture resistance and mechanical strength.

〔発明の概太〕[Summary of the invention]

本発明においては、上記目的を達成するために、モノシ
ランガス(SiH4)と四弗化珪素ガス(SiF4)及
び窒素ガス(N2)t’含んだガスを反応ガスとしてプ
ラズマCVD法により窒化シリコン膜を形成することを
第1の特徴としている。
In the present invention, in order to achieve the above object, a silicon nitride film is formed by a plasma CVD method using a gas containing monosilane gas (SiH4), silicon tetrafluoride gas (SiF4), and nitrogen gas (N2) t' as a reaction gas. The first feature is that

プラズマCVD法により形成した窒化シリコ/膜に含ま
れる水素は、その反応ガスであるSjH。
Hydrogen contained in the silicon nitride/film formed by the plasma CVD method is SjH, which is the reaction gas.

NH3の分解により生ずる。そ、こで本発明堝゛らは水
素を含まない反応ガス全使用すること全考え、S + 
、)’4とN2を用いて窒化シリコン膜を形成すること
を試みた。しかし、窒化シリコン膜を形成するには到ら
なかった。その原因について、以下のように考えた。S
iF、はプラズマ中で解離反応を起こし、8遍原子、弗
素(F )原子および5iFxlX=1〜3)分子等を
発生する。その中にあって81原子は窒素(N)原子と
結合して窒化シリコン膜を形成するが、一方、IHJ時
に解離発生した多量のF原子は形成されている窒化シリ
コン膜のエッチ/タケ行う。恢って、この反応系では膜
形成とエツチングが競合していることになる。このよう
な競合過程においては、強い結合音生せしめる反応が進
む。ちなみに、5i−F結合と5i−N結合の結付エネ
ルギーを比べると、5i−F結合の結合エネルギーは1
30 kcal /mo1.5i−N結合の結合エネル
ギーは105 kcal/molと5i−F結合の方が
大きい(Kerr他著「Strengtbsof Ch
emical Bonds J Weast他m Ha
nd bookof Chemistry and P
hysics 47版F−130貞〜F−132負’l
’he Chemical Rubber社1966年
発行)。そのため、SII+′4とN2を用いた場合に
は、安定な8 i −F M合への反応がより進み、F
原子に裏るSi原子のエツチングが支配的となることが
わかった。便って、SiF4とN2では膜形成には到ら
なかった。
Produced by decomposition of NH3. Therefore, the present invention is based on the idea of using all reaction gases that do not contain hydrogen.
, )'4 and N2 were used to form a silicon nitride film. However, it was not possible to form a silicon nitride film. I thought about the cause as follows. S
iF causes a dissociation reaction in plasma and generates octagonal atoms, fluorine (F) atoms, 5iFxlX=1 to 3) molecules, and the like. Among them, 81 atoms combine with nitrogen (N) atoms to form a silicon nitride film, while a large amount of F atoms dissociated during IHJ etch/blow the formed silicon nitride film. Consequently, film formation and etching compete with each other in this reaction system. In such a competitive process, reactions that produce strong combined sounds proceed. By the way, when we compare the bond energy of 5i-F bond and 5i-N bond, the bond energy of 5i-F bond is 1
The binding energy of the 5i-N bond is 105 kcal/mol, which is 30 kcal/mol, which is larger for the 5i-F bond (Kerr et al., “Strength of Ch.
emotional Bonds J West et al. Ha
nd book of Chemistry and P
hysics 47th Edition F-130 Sada ~ F-132 Negative'l
Published by 'he Chemical Rubber Company, 1966). Therefore, when SII+'4 and N2 are used, the reaction to a stable 8 i -F M combination progresses, and F
It was found that the etching of the Si atoms underlying the atoms was dominant. Unfortunately, SiF4 and N2 did not lead to film formation.

そこで本発明省らは、解離したF原子を除去し、エツチ
ング現象を抑制する方法ケケ討した。このためには、上
記考察からS i −k’ボ古台より安定なFとの化合
物ケ生成するようVCすればよいと考え独々の弗化物全
検討したところ、弗化水素(IJF)と三弗化ホウ素(
BF3)がより安定でおることがわかった。例えば、H
−F結合エネルギーは153kcal/mol 、B 
−F結合の結合エネルギーは、186 kcal/mo
l である。特に、H’Fに関しては H十F −+ HF ・・・(1) の反応速度が極めて速いことが知られており、F原子の
除去にH原子の存在が鳴動であることが分った。そこで
、H原子の供給源としてSiH4を用い、S i F4
80Crn3/ m 、N2300cm”/―の反応ガ
スに、S iH410cm” /WiR加えて膜形成を
行ったところ、安定な窒化シリコン膜全形成することが
出来だ。
Therefore, the Ministry of the Invention and others investigated a method for removing the dissociated F atoms and suppressing the etching phenomenon. For this purpose, from the above considerations, we thought that VC should be used to generate a compound with F that is more stable than S i -k', and when we independently investigated all fluorides, we found that hydrogen fluoride (IJF) and Boron trifluoride (
BF3) was found to be more stable. For example, H
-F bond energy is 153 kcal/mol, B
The binding energy of -F bond is 186 kcal/mo
It is l. In particular, with regard to H'F, it is known that the reaction rate of H0F - + HF... (1) is extremely fast, and it has been found that the presence of H atoms is responsible for the removal of F atoms. . Therefore, using SiH4 as a source of H atoms, SiF4
When film formation was carried out by adding SiH410cm''/WiR to a reaction gas of 80Crn3/m and N2300cm''/-, a stable silicon nitride film could be completely formed.

一方、BP3i扱うと、膜形成が可能ではあったが、表
面rC望化ホウ素(BN)も堆積することが判明した。
On the other hand, when BP3i was treated, it was found that although film formation was possible, surface rC-deposited boron (BN) was also deposited.

これは、HN#i合が、SiN結合よりも安定なことに
よる。したがって、上記8iH4寺の珪素水素化物の添
加が、安定なSiN形J戎に1効であると判明した。
This is because the HN#i bond is more stable than the SiN bond. Therefore, it has been found that the addition of the above-mentioned 8iH4 silicon hydride has an effect on stable SiN type J.

太陽電池等で使われているアモルファス・シリコン膜(
a Si膜)の形成においても、SiF。
Amorphous silicon film used in solar cells, etc.
Also in the formation of a Si film), SiF.

を原料としてプラズマCVD法により膜形成が試みられ
ているが、100%8iFnでは膜形成が起こらず、H
2あるいはSiH4に混入させて膜形成を行っている(
大意他者「グロー放電法によるa8i:F:H薄膜の作
製とプラズマ分析」真空第26巻319負〜325貞1
983年発行)。これも同じ理由にエリガス選択してい
ることが、上記考察から明らかである。
Attempts have been made to form a film using the plasma CVD method using 8iFn as a raw material, but film formation does not occur with 100% 8iFn, and H
2 or SiH4 to form a film (
Daiichi Others “Preparation and plasma analysis of a8i:F:H thin film by glow discharge method” Vacuum Vol. 26, 319-325 Tei 1
(published in 1983). It is clear from the above discussion that Eligas was selected for the same reason.

さらに、反応ガスの81に’4と8 s H4の流量比
ケ! 変えて窒化シリコン膜を作成し、その形成速度、水素含
有量ケ調べた。第1図にその結果を示す。
Furthermore, the flow rate ratio of '4 and 8s H4 to 81 of the reaction gas! A silicon nitride film was created using different methods, and its formation rate and hydrogen content were investigated. Figure 1 shows the results.

j換の形成速匿と流量比との関係より、ガス流量比がS
凰H4/[SiH4+5iF4) > 0.05であれ
ば膜が形成することが分った。一方、水素含有量はSi
H4の割合が大きくなるに従い、請訓する。
From the relationship between the formation speed of J exchange and the flow rate ratio, the gas flow rate ratio is S
It was found that a film was formed when 凰H4/[SiH4+5iF4)>0.05. On the other hand, the hydrogen content is Si
As the proportion of H4 increases, we will issue a warning.

S iH4/ (S iHa +S i F4ンが0.
8以上の場合、水素含有量は約14at、%f原子数比
)となり、SiH4とN2 で形成した場合と比べて、
はっきりとした有意差は見られなかった。すなわち、ガ
ス流量比SiH4/ (SiH4+5iF4) の値が
0,05〜0.80の範囲にあれば、従来に比べて、水
素含有量の少ない窒化シリコン膜を形成することが可能
であると判明した。
S iH4/ (S iHa +S i F4 is 0.
In the case of 8 or more, the hydrogen content is approximately 14at (%f atomic ratio), compared to the case formed with SiH4 and N2.
No clear significant difference was observed. In other words, it was found that if the value of the gas flow rate ratio SiH4/(SiH4+5iF4) was in the range of 0.05 to 0.80, it was possible to form a silicon nitride film with a lower hydrogen content than in the past. .

捷た本発明に2いては、前記目的を達成するために、四
弗化珪素ガス(SIF4) とアンモニアガス+NHs
)と窒素ガス(N2)’に含んだガス、またはSiF4
とN1−tsk含んだガスのいずれかを反応ガスとして
プラズマCVD法により窒化7リコン膜を形成すること
を第2の特徴としている。
In the second invention, in order to achieve the above object, silicon tetrafluoride gas (SIF4) and ammonia gas + NHs
) and nitrogen gas (N2)', or SiF4
The second feature is that the 7-licon nitride film is formed by the plasma CVD method using either of the gases containing N1-tsk and N1-tsk as a reaction gas.

前述の如く、S i p 4と5i)44とN2を用い
た場合、11原子の供和がF j!子を消費し、F原子
に因る窒化シリコン膜のエツチノグを抑制し、窒化シリ
コ/膜の形成が可能となる。そこで、H原子の供給Wと
して、811H4の代わりにNH,に用いること(f−
試みた。その結果、安定な窒化シリコノ膜?形成するこ
とが出来た。
As mentioned above, when S i p 4 and 5i) 44 and N2 are used, the addition of 11 atoms becomes F j! This suppresses etch nog in the silicon nitride film caused by F atoms, making it possible to form a silicon nitride film. Therefore, as the supply W of H atoms, NH, is used instead of 811H4 (f-
I tried. As a result, a stable silicon nitride film? was able to form.

更に、NHsはプラズマ状態ではガスの解離が赳こりN
原子が生成し、N原子供給源となることから、反応ガス
としてN2が含まれていなくても窒化シリコン膜は形成
できると考え、S 1)J4とNH,のみで7”ラズマ
CVD法ケ試みたところ、窒化シリコン膜の形成が可能
であることがわかった。
Furthermore, in the plasma state of NHs, gas dissociation is difficult and N
Since atoms are generated and serve as a supply source for N atoms, we believe that a silicon nitride film can be formed even if N2 is not included as a reaction gas. As a result, it was found that it was possible to form a silicon nitride film.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例を用いて説明する。1す、第1の
発明の笑Mf!Iを説明する。
The present invention will be explained below using examples. 1st invention lol Mf! Explain I.

実施例1 本実施例で用いたプラズマCVD装置の概略構成図を第
2図に示す。真空容器l内には、上部電極2、下部電悴
3からなる対向1L極が設けられ、RP’を諒6より交
流電圧が印加さnる。真空容器lは、ブースターポンプ
4、ロータリーポンプ5で排気される。窒化シリコン膜
形成のためのツースカスハ谷々ボ/べ8.J:りマスフ
ローコントローラ7で流量調整さfした後混合されて、
真空容器lに供給される。膜形成を行う試料(84基&
)9は下部′電極3の上に置く構成になっており、下部
電&3の下方には試料加熱のためのヒーターlOが設け
られている。クロー放電ケ起こすための父流電圧は対向
電極のどちらにでも印加出来る構造になっており、本発
明内容はどちらの場合においても効果が確認されたが、
ここでは下部1kL極3に父流電圧ケ印加した場合につ
いて説明する。
Example 1 FIG. 2 shows a schematic configuration diagram of the plasma CVD apparatus used in this example. Inside the vacuum vessel 1, opposing 1L poles consisting of an upper electrode 2 and a lower electrode 3 are provided, and an alternating current voltage is applied from a terminal 6 to RP'. The vacuum container l is evacuated by a booster pump 4 and a rotary pump 5. 8. Tuskaska Valley Bo/Be for silicon nitride film formation. J: After adjusting the flow rate with the mass flow controller 7, the mixture is mixed.
is supplied to the vacuum vessel l. Samples for film formation (84 groups &
) 9 is placed on the lower electrode 3, and a heater 10 for heating the sample is provided below the lower electrode &3. The structure is such that the father current voltage to cause claw discharge can be applied to either of the opposing electrodes, and the content of the present invention was confirmed to be effective in either case.
Here, a case will be described in which a father current voltage is applied to the lower 1 kL pole 3.

窒化シリコン膜の形成は以下の手順で行う。ます、ヒー
ター10により下部電極3を予備加熱し、所駕の温度(
例えば300r)に設定する。次に、膜形成を行う試料
(Sl基+!i)9を下部電極3の上に置き、貢空谷器
1?ロータリーボ/グ5、ブースターポンプ4ケ用いて
無空に引く。IPa以下に圧力が下がったら、ボンベ8
を開け、マス70−コントローラ7で流量側nを行い、
所定の流用でソースガスを其空谷器1内に流入する。反
応ガス圧力は、ブースターポンプ4の回転数ヲ震化させ
ることにエリ排気4の変え制御する。反応ガス圧力がデ
ボしたら、RF亀源6より下部′成極3Ic 13.5
6 Ml−1z (D交流電圧を印加し、クロー放血に
より膜形成ケ行う。この時、上部sr、惟2及び真空容
器lは電気的に接地されている。F9r足の時間(膜形
成時間)の後、焚流電圧金止めて放電を終了し、ソース
ガスヶ止めて真空容器l内を一度真空に引いた後、ポン
プを止め、試料を取り出す。
The silicon nitride film is formed by the following procedure. First, the lower electrode 3 is preheated by the heater 10 to a desired temperature (
For example, set it to 300r). Next, a sample (Sl group+!i) 9 on which a film is to be formed is placed on the lower electrode 3, and the sample 9 is placed on the lower electrode 3. Pull it empty using 5 rotary robots and 4 booster pumps. When the pressure drops below IPa, cylinder 8
, open the mass 70-controller 7 to perform the flow rate side n,
The source gas flows into the trough 1 in a predetermined manner. The reaction gas pressure is controlled by varying the rotational speed of the booster pump 4 and by changing the exhaust gas 4. When the reaction gas pressure is depleted, the lower part' polarization 3Ic 13.5 from the RF source 6
6 Ml-1z (D AC voltage is applied and film formation is performed by claw blood exsanguination. At this time, the upper SR, 2 and vacuum container 1 are electrically grounded. F9r time (film formation time) After that, the firing voltage is stopped to end the discharge, the source gas is stopped and the inside of the vacuum vessel is once evacuated, the pump is stopped, and the sample is taken out.

ガス流量をSiH410crr?/馴+ SiF490
m3/IRiR+ N 2600 crn” /―とじ
、反応カス圧力葡30Pa放11時の入力電力全8(1
0%、対向′電極の間隔k 6 cmとして60分間グ
ロー放電させたところ、約35 g nmの承化シリコ
ン膜が形成できた。この膜の屈折率をエリプリメトリー
で測定したところ、約1.8でめった。また、Lanf
ordうの実験(LBnford他著rThe byd
rogen conte−nt of plasma−
deposited s+Jicon n1tride
JJournal of Applied Phys+
es誌第49巻2473負〜2477頁1978年発行
ン 全参考に、この膜の赤外吸収スペクトル全測定し、
その51−H結付吸収帯及びN−H結合吸収帯から膜中
の水素含有量を永めると、約3211%であった。更に
、この膜の硬度をピンカース硬菱言1により測定したと
ころ1800kg/lan”で6#7、従来のプラズマ
CVD輩化シリコン膜の2000 kg/’trvn2
に比べてわずかに小さいものの、プラズマCV DH隼
ンリコ/)yA(約12’00kg/鴫2)やり/ガラ
ス膜(約800kg / mm2)に比べて1.5倍以
上の硬度を持っていた。
Gas flow rate SiH410crr? /Familiar + SiF490
m3/IRiR+ N 2600 crn” / - Binding, reaction residue pressure 30Pa, total input power at 11:8 (1
When glow discharge was performed for 60 minutes with the distance between the opposing electrodes set to 0% and the distance between the opposing electrodes to be k 6 cm, a cured silicon film of about 35 g nm was formed. When the refractive index of this film was measured by elliplymetry, it was found to be about 1.8. Also, Lanf
orduno experiment (written by LBnford et al. The byd
rogen container of plasma-
deposited s+Jicon n1tride
JJournal of Applied Phys+
es magazine, Vol. 49, pp. 2473-2477, published in 1978. For complete reference, we measured the entire infrared absorption spectrum of this film.
The hydrogen content in the film was estimated from the 51-H bond absorption band and the N-H bond absorption band to be approximately 3211%. Furthermore, the hardness of this film was measured using Pinkers Hardness 1 and was 1800 kg/lan"6#7, compared to 2000 kg/'trvn2 of the conventional plasma CVD produced silicon film.
Although it was slightly smaller than that of Plasma CV DH Hayabusa Anri/)yA (approx. 12'00 kg/Suzuki 2) spear/glass membrane (approx. 800 kg/mm2), it had more than 1.5 times the hardness.

次に、ガス流量比を俊えて膜形成を行った例について説
明する。ガス流量を8iH450cm”/馴。
Next, an example in which film formation is performed by increasing the gas flow rate ratio will be described. Adjust the gas flow rate to 8iH450cm”/cm.

S IF< 50cm3/sin 、N2600cm”
/ wnとし、その他の条件は上記形成条件と同じにし
た。30分間グロー放電はせたところ、約1.2μIT
+の窒化シリコン膜が形成できた。この膜の屈折率、ビ
ッカース硬度はそ扛ぞれ2,2、約1800 kg /
 rtun”であった。また、水素含有量は約10at
、チでめった。
S IF < 50cm3/sin, N2600cm"
/wn, and other conditions were the same as the above formation conditions. Approximately 1.2 μIT after 30 minutes of glow discharge
A positive silicon nitride film was formed. The refractive index and Vickers hardness of this film are 2.2 and approximately 1800 kg/
rtun”.The hydrogen content was approximately 10 at
, I fell in love with Chi.

次に、これらの水素含有量の少ない族倉株護膜とした場
合の菓子の特性について測足し、従来の水素言七量の多
い(最大25at、%)膜の場合との比軟を行った。測
更は、便米法で作成したMUδトランジスタの表面に保
護膜として窒化/リコノ膜τ形成し、該NO8)、>7
ジスタのDCtXJJ作VCよるしきい111屯圧の変
動を調べた。
Next, we measured the characteristics of confectionery when using these protective membranes with a low hydrogen content, and compared them with the conventional membrane with a high hydrogen content (maximum 25 at, %). . For the measurement, a nitride/licon film τ was formed as a protective film on the surface of the MUδ transistor fabricated by the convenient method, and the NO. 8), > 7
We investigated the variation in threshold 111 tonne pressure due to VC made by DCtXJJ of JISTA.

側矩に]四相した素子の断面概略図を第3図に示す。p
型S、恭敬11の表面にポリSlゲート15のnPvl
(JS)う7ジスタ16が形成されている。
A schematic cross-sectional view of an element with four phases in the side rectangle is shown in FIG. p
Type S, nPvl of poly Sl gate 15 on the surface of Kyokei 11
(JS) U7 resistor 16 is formed.

ゲート酸化膜14の厚さは35nm、 ポリSlゲート
15のゲート長2μm、ゲート幅10μm。
The thickness of the gate oxide film 14 is 35 nm, the gate length of the poly-Sl gate 15 is 2 μm, and the gate width is 10 μm.

拡散層12はドレイン又はソースである。トラ7ジスタ
の上部には、絶縁膜として0.8μIIIのり/カ、l
+ス17、配線として0.8μmのAtが形成されてお
り、更にその上に、保腹膜として0.3μn1のり/ガ
ラス19と1.0μmの望化シリコ/膜20全形成した
。窒化シリコ/膜20としては、不発明で得られた水素
含有量3 at、%、1Oat、%の窒化シリコン膜の
他に、従来のi 4 at、%、25at0%の窒化ン
リコノ膜の4仕様の素子全作成した。測定は1ず、MU
S)う/ジスタのしきい値電圧を測定し、その後所定の
DCストレスを印加し、またしきい値電圧をl1lII
定するということを線り返して行った。結果の一例を第
4図に示す。
Diffusion layer 12 is a drain or a source. On the upper part of the transistor, 0.8μ
A 0.8 .mu.m thick At film was formed as a wiring and a 0.8 .mu.m thick At film was formed thereon, and a 0.3 .mu.n glue/glass 19 and a 1.0 .mu.m thick silicone/film 20 were further formed as a peritoneal membrane. As the silicon nitride/film 20, in addition to the uninvented silicon nitride film with a hydrogen content of 3 at, %, 1 Oat, %, there are four specifications: a conventional silicon nitride film with a hydrogen content of 3 at, %, 25 at, 0%. All elements were created. Measurement is 1, MU
S) Measure the threshold voltage of the transistor, then apply a predetermined DC stress, and change the threshold voltage to l1lII
I went back and forth on deciding what to do. An example of the results is shown in FIG.

ここで、しきい値電圧の測定条件はドレイ/電圧5V、
基板電圧−3V、ドレイ/電流I III Aでろり、
DCストレス条件はドレイ/電圧8V、ゲ・−ト電圧2
V、茫板電圧−3vで、lO分間DCストレスを印加し
た場合の結果でるる。向、しきい値電圧測足時には、ス
トレス印加時とドレイ/とソース全逆転させている。第
4図より、本発明により水素含有Mを低減させた窒化シ
リコ/膜はしきい値電圧の震動が少なく、従来の膜に比
べ保護膜として優っていることがわかる。
Here, the threshold voltage measurement conditions are: drain/voltage 5V;
Substrate voltage -3V, drain/current I III A,
DC stress conditions are drain/voltage 8V, gate voltage 2
The results are obtained when DC stress is applied for 10 minutes at a plate voltage of -3V. When measuring the threshold voltage, the drain/source is completely reversed from when stress is applied. From FIG. 4, it can be seen that the silicon nitride/film with reduced hydrogen content M according to the present invention has less fluctuation in threshold voltage and is superior to conventional films as a protective film.

更に、本発明によって得られた水系含有量の少ない窒化
シリコ/膜ケ保論膜として形成した256I(ビットn
M(JSDRAM fL)ynamic Random
Access Men+ory Iの劇湿信si試@に
行ったが、問題は無かった。
Furthermore, 256I (bit n
M (JSDRAM fL) dynamic Random
I went to the Access Men + Ory I Gekisui Shinsi Exam@, and there were no problems.

実施例2 次に、第2の発明の実1M例について説明する。Example 2 Next, an actual 1M example of the second invention will be described.

本実施例においても、第lの実施例と同じプラズマCV
D装置會由いて窒化シリコン膜の形成を行った。用いた
ソースガスが異なる以外、形成手順も同じである。ガス
a、量k S i L 100crn” /sin 。
In this embodiment, the same plasma CV as in the first embodiment is used.
A silicon nitride film was formed using the D apparatus. The formation procedure is also the same except that the source gas used is different. Gas a, quantity k S i L 100 crn”/sin.

NHs 100cnr”/=n、N2 500cm”/
z=nとし、反応ガス圧力’j(30P a +入力篭
力’i 800W、対向電極の間隔全6圀として60分
間グロー放電させたところ、約400 nmの蓋化シリ
コ/膜が形成丁きた。この膜は、屈折率1.9.ビッカ
ース硬度1800 kg/w2.水素含有郊、約10a
L、1であった。
NHs 100cnr”/=n, N2 500cm”/
When z = n, a glow discharge was performed for 60 minutes at a reaction gas pressure 'j (30 Pa + input capacitance 'i) of 800 W, and a total spacing of 6 squares between opposing electrodes, a capping silicon/film of about 400 nm was formed. This film has a refractive index of 1.9, a Vickers hardness of 1800 kg/w2, a hydrogen content of approximately 10 a
It was L.1.

更に、この膜を第3図に示すMOS)う/ラスタ16の
保護膜20として形成し、M(JS)ランジスタのしき
い値電圧の変動を調べた。DCストレス条件をドレイ/
電圧8v、ゲート 板電圧−3■とし、lO分間L)Cストレス分印加した
場合のしきい値電圧の変化は0. 1 0 Vであり、
従来膜に比べて変化量は小さかった。同、しきい値電圧
の測定条件は、ドレイ/電圧5V,基板型fi3V, 
ドレイ/電流1mAであり、ドレインとソースはDCス
トレス印〃口時と逆転させて測定した。また、この膜を
保獲刃鉢として用.いた256にピッ) nMO8DR
AMの面l湿イh頼朋試験を行ったが、問題はなかった
Furthermore, this film was formed as the protective film 20 of the MOS transistor 16 shown in FIG. 3, and the fluctuation of the threshold voltage of the M(JS) transistor was investigated. Dry DC stress conditions/
When the voltage is 8V, the gate plate voltage is -3■, and the L)C stress is applied for 10 minutes, the change in threshold voltage is 0. 10 V,
The amount of change was smaller than that of conventional membranes. The threshold voltage measurement conditions were: drain/voltage 5V, substrate type fi3V,
The drain/current was 1 mA, and measurements were taken with the drain and source reversed from when DC stress was applied. This membrane is also used as a pot for holding knives. nMO8DR
I conducted the AM face l wetness test and found no problems.

更に、ガス流量ksiF4100cIT+” /mtn
, NHs6 0 0cm” /IHnとし、他の条件
は前と同様にして60分間グロー77電させたところ、
約550旧n (D W化シリコ7膜が形成できた。こ
の膜は、屈折率1、9,ビッカース硬朋17rJOkg
/順2.水索含弔幇約1 2 at.%であった。また
、この膜をMOS トラ7ジスタの保護膜として形成し
た場合のDCストレスによるトランジスタのしきい値電
圧の変化全測定したところ.o.isvでめった。ここ
で、DCストレス条件、しきい1厘電圧の測定条件はt
前述の条件と全く同じである。更に、この膜を保護j換
として用いた2 5 6 KビットnMO8DRAMの
耐湿信頼要試願を行ったが、問題はなかった。
Furthermore, the gas flow rate ksiF4100cIT+”/mtn
, NHs600cm"/IHn, and the other conditions were the same as before, and a glow of 77 volts was applied for 60 minutes.
Approximately 550 old n (DW silicon 7 film was formed. This film has a refractive index of 1.9 and a Vickers hardness of 17 rJOkg.
/Order 2. Approximately 1 2 at. %Met. In addition, when this film was formed as a protective film for a MOS transistor, all changes in the threshold voltage of the transistor due to DC stress were measured. o. I was disappointed with ISV. Here, the DC stress conditions and the measurement conditions for the threshold voltage are t
The conditions are exactly the same as above. Furthermore, we tested the moisture resistance of a 256 Kbit nMO8 DRAM using this film as a protective layer, but no problems were found.

以上、本発明について、nMU8トランジスタ及び25
6にヒ’7トnMO8DRAMo実施例テ説明したが、
本発明は水素含有量の少ない窒化7リコ/膜の形成力法
ケ規足したものであって、この膜の使用が上記素子にの
み限定さnないことは15寸でもない。
As described above, regarding the present invention, the nMU8 transistor and 25
Although the example of nMO8DRAM was explained in 6.
The present invention is based on the method of forming a nitride 7-layer film with a low hydrogen content, and the use of this film is not limited to the above-mentioned devices.

し発明の効果〕 本発明によれば、従来のプラズマCVD窒化シリコ/膜
に比べて膜中の水索含南址の少ないプラズマCVD窒化
シリコ/膜が形成でき、これ筐で問題になってきた窒化
シリコン保映膜中の水素に因るデバイス慣性の劣化(し
きい値電圧の変動、相互コ/ダクタ/スの劣化)を低減
することができる。これにより、従来に比べ信頼度の高
い半褥体素子を製造することが可能になった。
[Effects of the Invention] According to the present invention, a plasma CVD silicon nitride film can be formed that contains less water cables in the film compared to conventional plasma CVD silicon nitride film, which has been a problem in the case. Deterioration of device inertia (variation of threshold voltage, deterioration of mutual conductor/s) caused by hydrogen in the silicon nitride reflective film can be reduced. This has made it possible to manufacture semi-bedded elements with higher reliability than before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は5iI4nとSiF4のガス流量比と窒化シリ
コン膜の水素含有量,形成速度との関係ヲ示すグラフ、
第2図は本発明の実施例で1更用しfcプラズマCVD
装置の概略構成図、第3図は本発明の効果ケ調べるため
に用いた素子の断面概略図、第4図は本発明の窒化シリ
コ/膜の効果ケ示す膜中の水素含有量としきい値電圧の
変動との関係金石すグラフである。 1・・・真空容器、2・・・上部を極、3・・・下部電
怜、6・・・RF電源、7・・・マスフローコノトロー
ラ、8・・・ガスボ/べ、9・・・試料、lO・・・ヒ
ーター、11・・・シリコ/基板、16・・・MO8型
トランジスタ、17、19・・・す/カラス膜、18・
・・アルミニウム茅 1 図 5LH4すふ°F4 茅2 図 第 3 目 ノー 預 4 図 水素な消量 (^t2%) 第1頁の続き 0発 明 者 向 喜 −部 国分前布」央研究所p
FIG. 1 is a graph showing the relationship between the gas flow rate ratio of 5iI4n and SiF4, the hydrogen content of the silicon nitride film, and the formation rate.
Figure 2 shows an embodiment of the present invention using FC plasma CVD.
A schematic configuration diagram of the apparatus, Figure 3 is a cross-sectional schematic diagram of the element used to examine the effects of the present invention, and Figure 4 shows the hydrogen content and threshold value in the film showing the effects of the silicon nitride/film of the present invention. This is a graph showing the relationship with voltage fluctuation. DESCRIPTION OF SYMBOLS 1...Vacuum container, 2...Upper pole, 3...Lower electrode, 6...RF power supply, 7...Mass flow controller, 8...Gas cylinder/vehicle, 9... Sample, lO...Heater, 11...Silicon/Substrate, 16...MO8 type transistor, 17, 19...S/Crow film, 18.
...Aluminum grass 1 Figure 5LH4°F4 Grass 2 Figure 3 No reservations 4 Figure Hydrogen consumption (^t2%) Continued from page 1 0 Inventor Mukai Ki - Department Kokubunzenfu Central Research Institute p

Claims (1)

【特許請求の範囲】 1、反応ガス全反応容器内に導入し、グロー放電により
膜の気相成長を行うプラズマCVD法において、主反応
ガスとしてモノシランガス(Si)44)と四弗化珪素
ガス(8iFi)と窒素ガス(N2)を用いることを特
徴とする窒化シリコン膜の形成方法。 2、上記SiI」4とSi 1.+4のガス流量比(S
 t H4/(SiH4+8iF4)) が0.05〜
0.80である仁とを特徴とする特許請求の範囲第1項
記載の窒化シリコノ膜の形成方法。 3、反応ガスを反応容器内に導入し、グロー放電に工9
膜の気相成長を行うプラズマCVD法に3いて、主反応
ガスとし、て四弗化珪素カスl5iF+)とア7モ二つ
′ガス(N)I3JTh用いることを特徴とする窒化シ
リコ/膜の形成方法。 4、反応ガスを反応容器内に導入し、グロー放電にエリ
膜の気相成長を行うプラズマCVD法において、主反応
ガスとして四弗化珪素ガスiSi■゛、)とアンモニア
ガス(N Hs)と窒素ガス1N2)を用いることを特
徴とする窒化シリコ/膜の形成方法。
[Claims] 1. In the plasma CVD method, in which all reactant gases are introduced into a reaction vessel and a film is grown in a vapor phase by glow discharge, monosilane gas (Si)44) and silicon tetrafluoride gas (44) are used as main reactant gases. 8iFi) and nitrogen gas (N2). 2. The above SiI'4 and Si1. +4 gas flow rate ratio (S
tH4/(SiH4+8iF4)) is 0.05~
The method for forming a silicon nitride film according to claim 1, wherein the silicon nitride film has a thickness of 0.80. 3. Introduce the reaction gas into the reaction vessel and create a glow discharge9.
A method for producing silicon nitride/films using a plasma CVD method for vapor phase growth of films, which uses silicon tetrafluoride gas (15iF+) and nitrogen gas (N)I3JTh as main reaction gases. Formation method. 4. In the plasma CVD method, in which a reactive gas is introduced into a reaction vessel and an EL film is vapor-phase grown in a glow discharge, silicon tetrafluoride gas (iSi) and ammonia gas (NHs) are used as the main reactive gases. A method for forming silicon nitride/film, characterized by using nitrogen gas (1N2).
JP58213972A 1983-11-16 1983-11-16 Formation of silicon nitride film Pending JPS60107841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58213972A JPS60107841A (en) 1983-11-16 1983-11-16 Formation of silicon nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58213972A JPS60107841A (en) 1983-11-16 1983-11-16 Formation of silicon nitride film

Publications (1)

Publication Number Publication Date
JPS60107841A true JPS60107841A (en) 1985-06-13

Family

ID=16648110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58213972A Pending JPS60107841A (en) 1983-11-16 1983-11-16 Formation of silicon nitride film

Country Status (1)

Country Link
JP (1) JPS60107841A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298625A (en) * 1985-10-24 1987-05-08 Nec Corp Semiconductor device
JPS62174927A (en) * 1986-01-28 1987-07-31 Nec Corp Semiconductor device
EP0269008A2 (en) * 1986-11-22 1988-06-01 Yamaha Corporation Semiconductor device with improved passivation film and process of fabrication thereof
US5096851A (en) * 1988-05-19 1992-03-17 Semiconductor Energy Laboratory Co., Ltd. Method of packaging an electronic device using a common holder to carry the device in both a cvd and molding step
US5929975A (en) * 1995-05-17 1999-07-27 Fuji Photo Film Co., Ltd. Method and apparatus for exposing photosensitive material
JP2013135195A (en) * 2011-12-27 2013-07-08 Furukawa Electric Co Ltd:The Semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298625A (en) * 1985-10-24 1987-05-08 Nec Corp Semiconductor device
JPS62174927A (en) * 1986-01-28 1987-07-31 Nec Corp Semiconductor device
EP0269008A2 (en) * 1986-11-22 1988-06-01 Yamaha Corporation Semiconductor device with improved passivation film and process of fabrication thereof
US4866003A (en) * 1986-11-22 1989-09-12 Yamaha Corporation Plasma vapor deposition of an improved passivation film using electron cyclotron resonance
US5096851A (en) * 1988-05-19 1992-03-17 Semiconductor Energy Laboratory Co., Ltd. Method of packaging an electronic device using a common holder to carry the device in both a cvd and molding step
US5929975A (en) * 1995-05-17 1999-07-27 Fuji Photo Film Co., Ltd. Method and apparatus for exposing photosensitive material
JP2013135195A (en) * 2011-12-27 2013-07-08 Furukawa Electric Co Ltd:The Semiconductor device

Similar Documents

Publication Publication Date Title
Claassen et al. Characterization of plasma silicon nitride layers
US5660895A (en) Low-temperature plasma-enhanced chemical vapor deposition of silicon oxide films and fluorinated silicon oxide films using disilane as a silicon precursor
Ray et al. Properties of silicon dioxide films deposited at low temperatures by microwave plasma enhanced decomposition of tetraethylorthosilicate
US8173554B2 (en) Method of depositing dielectric film having Si-N bonds by modified peald method
EP0010910B1 (en) Method for forming an insulating film layer on a semiconductor substrate surface
US6531193B2 (en) Low temperature, high quality silicon dioxide thin films deposited using tetramethylsilane (TMS) for stress control and coverage applications
Gusev et al. Growth and characterization of ultrathin nitrided silicon oxide films
CA1327338C (en) Process for producing devices containing silicon nitride films
US6593655B1 (en) Method for producing hydrogenated silicon oxycarbide films having low dielectric constant
US20120220139A1 (en) Method of depositing dielectric film by modified peald method
TWI223857B (en) Method of making a silicon nitride film that is transmissive to ultraviolet light
Kuo Etch mechanism in the low refractive index silicon nitride plasma‐enhanced chemical vapor deposition process
JPS60107841A (en) Formation of silicon nitride film
US5045346A (en) Method of depositing fluorinated silicon nitride
Saito Oxynitridation of silicon by remote‐plasma excited nitrogen and oxygen
US5763005A (en) Method for forming multilayer insulating film of semiconductor device
Chen et al. Silicon surface and bulk defect passivation by low temperature PECVD oxides and nitrides
US4960656A (en) Devices and process for producing devices containing silicon nitride films
Kanicki Role of hydrogen in silicon nitride films prepared by various deposition techniques
Nguyen et al. Initial transient phenomena in the plasma enhanced chemical vapor deposition process
US4704300A (en) Method for producing silicon nitride layer
Saito et al. Thermal expansion and atomic structure of amorphous silicon nitride thin films
Hernandez et al. Compositional and electrical properties of ECR-CVD silicon oxynitrides
Yu et al. Correlation Between Processing, Composition, And Mechanical Properties Of PECVD-SiNx, Thin Films
Song et al. Effects of native oxide removal from silicon substrate and annealing on SiO2 films deposited at 120° C by plasma enhanced chemical vapor deposition using disilane and nitrous oxide