JPS60107518A - Optical scale - Google Patents

Optical scale

Info

Publication number
JPS60107518A
JPS60107518A JP21472183A JP21472183A JPS60107518A JP S60107518 A JPS60107518 A JP S60107518A JP 21472183 A JP21472183 A JP 21472183A JP 21472183 A JP21472183 A JP 21472183A JP S60107518 A JPS60107518 A JP S60107518A
Authority
JP
Japan
Prior art keywords
counter
scale
moving direction
output
line sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21472183A
Other languages
Japanese (ja)
Inventor
Sousaku Kimura
木村 壮作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP21472183A priority Critical patent/JPS60107518A/en
Publication of JPS60107518A publication Critical patent/JPS60107518A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/363Direction discrimination

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To improve precision by slanting photoelectric converting elements which are arrayed in a line corresponding to a scale grating or photodetection part slightly to its moving direction, and interpolating scale grating intervals in the moving direction with signals of photoelectric converting elements perpendicular to the intervals. CONSTITUTION:Numbers of scale gratings 5 made of opaque materials are arrayed on a glass substrate 4 at equal intervals perpendicularly to a moving direction shown by an arrow A in the moving direction. Further, a line sensor 6 is provided facing a projection lens and numbers of photoelectric converting elements S1-Sn are arrayed thereupon at a fine angle to the lengthwise direction of the unit scale gratings. Outputs of the respective elements S1-Sn are supplied to (n) counters of the 1st counter 7 and the output of the basic element S1 is added by a main counter 8. When a moving body starts moving, the position of the element outputted by the 1st counter 7 varies, and this variation is compared by a comparator 11 with the position signal of the 2nd counter 10 before the movement to decide on the direction and also output it.

Description

【発明の詳細な説明】 本発明は、移動体の移動距離、物体の長さ、角度等を測
定するための光学スケールに関するもので、特に移動方
向に交叉するように配設して通過光に対し変化を与える
ようにした多数の目盛格子とその格子に対し成る角度を
なして配列された多数の光電変換素子からなるラインセ
ンサを有する光学スケールに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical scale for measuring the moving distance of a moving body, the length of an object, an angle, etc. The present invention relates to an optical scale having a line sensor consisting of a large number of graduation gratings and a large number of photoelectric conversion elements arranged at an angle with respect to the gratings.

従来の光学スケールは、目盛格子が移動方向に対し直角
に刻まれており、格子間は受光部の信号を数組に分けて
取り込み、各相の信号強度を正弦波に近似した電気信号
に変換し、これを電気的に分割して格子間の位置を検出
するようになっている。したがってSN比の関係及び正
弦波からの波形ひずみによって分割精度が悪く、又01
μm以下の分割が出来ない等精度に満足のいくものが得
られなかった。
In conventional optical scales, the graduation grating is carved perpendicular to the direction of movement, and between the gratings, the signal from the light receiving section is divided into several sets and captured, and the signal strength of each phase is converted into an electrical signal that approximates a sine wave. However, this is electrically divided to detect the position between the grids. Therefore, the division accuracy is poor due to the S/N ratio relationship and waveform distortion from the sine wave, and
Satisfactory accuracy could not be obtained, such as inability to divide into micrometers or less.

以上の事実より本発明は、格子間の位置を正確に検出す
ることのできる光学スケールを提供せんとするものであ
る。この目的に従い、本発明の光学スケールは目盛格子
又は受光部に相当するライン状に配列される光電変換素
子を移動方向に対し微小角傾けることによって移動方向
の目盛格子間隔をそれと直角な方向の光電変換素子信号
で補間することを特徴とするものである。
Based on the above facts, it is an object of the present invention to provide an optical scale that can accurately detect the position between gratings. In accordance with this objective, the optical scale of the present invention tilts the photoelectric conversion elements arranged in a line, which correspond to the graduation grating or the light receiving part, at a small angle with respect to the moving direction, so that the interval between the graduation gratings in the moving direction can be changed to the photoelectric conversion elements in the direction perpendicular to the moving direction. This method is characterized by interpolation using conversion element signals.

以下図面を参照して説明すると、第1図において1は光
源、2は照明レンズ、6は投影レンズで、照明レンズ2
と投影レンズ6の間において移動体(図示せず)に固定
されたガラス基板4が介在している。ガラス基板4には
、例えば第2図に示すように、矢印Aで示す移動方向に
対し直角に、不透明材料よりなる多数の目盛格子5が等
間隔で移動方向に沿って配列されている。更に、投影レ
ンズに対向してラインセンサ6が設けられている。
The following will be explained with reference to the drawings. In FIG. 1, 1 is a light source, 2 is an illumination lens, 6 is a projection lens, and the illumination lens 2
A glass substrate 4 fixed to a moving body (not shown) is interposed between the projection lens 6 and the projection lens 6 . As shown in FIG. 2, for example, on the glass substrate 4, a large number of scale gratings 5 made of an opaque material are arranged at equal intervals along the direction of movement, perpendicular to the direction of movement indicated by arrow A. Furthermore, a line sensor 6 is provided opposite the projection lens.

該ラインセンサは多数(例えば1000個)の光電変換
素子S1・・・・・5 nを単位目盛格子の長手方向に
対し微小角度(α)傾斜させて配列したものである。目
盛格子とラインセンサの配列関係は第2図に限ることな
く、第3図に示すようにラインセンサ6が移動方向に対
し直角で、目盛格子5が移動方向に対し傾斜した配列に
してもよい。そして、第4図に示すように下端の素子S
、が一方の格子5aの下端に対向した時、上端の素子S
nが隣接の格子5bの上端に対向するような関係位置に
配性されている。
The line sensor has a large number (for example, 1000) of photoelectric conversion elements S1...5n arranged at a slight angle (α) with respect to the longitudinal direction of a unit scale grating. The arrangement relationship between the scale grating and the line sensor is not limited to that shown in FIG. 2, but may be arranged such that the line sensor 6 is perpendicular to the moving direction and the scale grating 5 is inclined to the moving direction, as shown in FIG. . Then, as shown in FIG. 4, the lower end element S
, when facing the lower end of one of the gratings 5a, the upper end element S
n is arranged at a relative position such that it faces the upper end of the adjacent grid 5b.

第5図に示すようにラインセンサ6の各素子S1・・・
・・・Snの出力は第1カウンタ7に設けられたn個の
カウンタに夫々与えられ、基本素子S1の出力・はアノ
グダウンカウンタよりなる主カウンタ8に与えられ、そ
の出力数を加算するようになっている。
As shown in FIG. 5, each element S1 of the line sensor 6...
...The output of Sn is given to each of the n counters provided in the first counter 7, and the output of the basic element S1 is given to the main counter 8 consisting of an anog down counter, and the output numbers are added up. It looks like this.

各光電変換素子は目盛格子5による遮光による変化に応
じて出力するものでスタート信号STがラインセンサ6
、第1カウンタ7、第2カウンタ10、主カウンタ8に
与えられ、クロックパルスCLがラインセンサ6及び第
1カウンタ7に与えられると、クロックパルスに同期し
て素子S1・・・Snは目盛格子の遮光に応じて出力す
る。例えば第2図において、素子S2、S3、S4が出
力したとすると第1カウンタ7は夫々の出力信号数をカ
ウントし、更に中心の素子S4を検出し、その個数を第
2カウンタ1Dに送りそこに記憶させる。
Each photoelectric conversion element outputs an output according to changes caused by light shielding by the scale grating 5, and the start signal ST is output from the line sensor 6.
, the first counter 7, the second counter 10, and the main counter 8, and when the clock pulse CL is given to the line sensor 6 and the first counter 7, the elements S1...Sn change the scale grating in synchronization with the clock pulse. Output according to the shading of. For example, in FIG. 2, if elements S2, S3, and S4 output, the first counter 7 counts the number of output signals of each, detects the central element S4, and sends the number to the second counter 1D. to be memorized.

尚、第4図のように素子S1とS 両方より出力がある
時にはS、に格子があるものとして判断される。
Incidentally, when there is an output from both elements S1 and S as shown in FIG. 4, it is determined that there is a lattice on S.

次に移動体が移動を開始すると、第1カウンタ7が出力
する素子の位置が変化して行く。第2図において目盛格
子5が左方へ移動した場合には素子の出力は上位の方へ
変化して行く。この変化は比較器11において第2カウ
ンタ1oがらの移動前の位置信号と比較され、正方向へ
の移動が判断され、それを出力する。勿論逆方向へ移動
すれば、負方向の信号が出力される。比較器11の正負
判別信号は主カウンタ8に送られ素子S、がらの出力数
を正又は負方向に加算し、目盛格子50通過個数を算出
する。これにより移動体の移動による格子5による距離
が算出される。更にラインセンサの中途を目盛格子が交
叉する位置に停止した時は、第1カウンク7がその位置
の光電変換素子S1の出力を検出して出力し、演算回路
12に与える。
Next, when the moving object starts moving, the position of the element output by the first counter 7 changes. When the scale grating 5 moves to the left in FIG. 2, the output of the element changes toward the upper side. This change is compared with the position signal from the second counter 1o before the movement in the comparator 11, and movement in the positive direction is determined and outputted. Of course, if it moves in the opposite direction, a negative direction signal will be output. The positive/negative discrimination signal of the comparator 11 is sent to the main counter 8, and the output numbers of the elements S and G are added in the positive or negative direction to calculate the number of elements passing through the scale grating 50. As a result, the distance according to the grid 5 due to the movement of the moving object is calculated. Furthermore, when the line sensor stops at a position where the scale grid intersects, the first counter 7 detects and outputs the output of the photoelectric conversion element S1 at that position, and provides it to the arithmetic circuit 12.

演算回路では、その素子SIの基準素子S1からの距離
をLとするとL X sinαの計算を行って中間位置
の長さを算出する。その中間位置長さに基準素子S1の
個数の合計を加えて全移動距離を算出し、その信号を表
示装置16に送って距離を表示する。
In the arithmetic circuit, when the distance of the element SI from the reference element S1 is L, L x sin α is calculated to calculate the length of the intermediate position. The total moving distance is calculated by adding the total number of reference elements S1 to the intermediate position length, and the signal is sent to the display device 16 to display the distance.

以上で明かなように本発明によれば、ラインセンサと目
盛格子とが相対的に傾斜しており、格子間の位置を計算
により正確に算出するこ゛とができ、精度の高い位置検
出を行うことができる。
As is clear from the above, according to the present invention, the line sensor and the scale grating are relatively inclined, and the position between the gratings can be calculated accurately, and highly accurate position detection can be performed. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による装置の一部を示す斜視図、第2図
乃至第4図はラインセンサと目盛格子の配置関係を示す
図、第5図は位置検出回路のブロック図である。 1・・・・・・光源、 2・・・・・・照明レンズ、6
・・・・・投影レンズ、 4・・・・ガラス基板、5・
・・・・・目盛格子、 5a、5b・・・・・・格子、
6・・・・・ラインセンサ、7・・・・・・第1カウン
タ、8・・・・・主カウンタ、 10・・・・・・第2
カウンタ、11・・・比較器、 12・・・・・演算回
路、13・・・・・・表示装置。
FIG. 1 is a perspective view showing a part of the apparatus according to the present invention, FIGS. 2 to 4 are views showing the arrangement relationship between a line sensor and a scale grating, and FIG. 5 is a block diagram of a position detection circuit. 1... Light source, 2... Lighting lens, 6
...projection lens, 4...glass substrate, 5.
...Graduation grid, 5a, 5b...Grid,
6... Line sensor, 7... First counter, 8... Main counter, 10... Second
Counter, 11... Comparator, 12... Arithmetic circuit, 13... Display device.

Claims (1)

【特許請求の範囲】[Claims] 移動体の移動方向に沿い、その方向と交叉する方向に配
列された多数の目盛格子と、該目盛格子に対し角度をも
って交叉する線上に配列された多数の光電変換素子より
なるラインセンサと、前記目盛格子を介してラインセン
サに投光する光源装置と、移動中に各光電変換素子の出
力を計数することにより目盛格子の数を計数する回路と
、停止時にラインセンサと目盛格子の交叉点の位置を算
出する演算回路とよりなる光学スケール。
a line sensor comprising a large number of scale gratings arranged in a direction along and intersecting the moving direction of the moving body, and a large number of photoelectric conversion elements arranged on lines intersecting the scale gratings at an angle; A light source device that emits light to the line sensor through the scale grid, a circuit that counts the number of scale grids by counting the output of each photoelectric conversion element during movement, and a circuit that measures the intersection of the line sensor and the scale grid when stopped. An optical scale consisting of an arithmetic circuit that calculates position.
JP21472183A 1983-11-15 1983-11-15 Optical scale Pending JPS60107518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21472183A JPS60107518A (en) 1983-11-15 1983-11-15 Optical scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21472183A JPS60107518A (en) 1983-11-15 1983-11-15 Optical scale

Publications (1)

Publication Number Publication Date
JPS60107518A true JPS60107518A (en) 1985-06-13

Family

ID=16660518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21472183A Pending JPS60107518A (en) 1983-11-15 1983-11-15 Optical scale

Country Status (1)

Country Link
JP (1) JPS60107518A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101090271B1 (en) 2009-03-05 2011-12-07 제주대학교 산학협력단 Apparatus for detecting line position using optical detecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101090271B1 (en) 2009-03-05 2011-12-07 제주대학교 산학협력단 Apparatus for detecting line position using optical detecting device

Similar Documents

Publication Publication Date Title
EP0039082B1 (en) Method and apparatus for measuring the displacement between a code plate and a sensor array
EP0042179B1 (en) Encoder
US4595991A (en) Position measuring method and apparatus
US5821423A (en) Apparatus and method for binocular measurement system
US4595294A (en) Position detecting device
JPH05223599A (en) Apparatus for generating cycle signal with no harmonic
JPH08178700A (en) Incremental encoder
JPS60107518A (en) Optical scale
JPS5822914A (en) Zero point detecting device of photoelectric encoder
JPS61182522A (en) Linear scale measuring device
JPH03175319A (en) Correcting method for error of linear encoder
JPH0736252Y2 (en) Length measuring device
DE69535479D1 (en) METHOD AND DEVICE FOR POSITION AND MOTION MEASUREMENT
JPS6089713A (en) Absolute type position encoder
GB1472454A (en) Method for determining the position of a focussing plane
JPH0389112A (en) Incremental type encoder
JPH0481612A (en) Scale plate of optical encoder and optical encoder using the scale plate
RU2220402C2 (en) Gear measuring position and movement of object
JPH0648339Y2 (en) Optical displacement detector
JPH0555804B2 (en)
SU1269260A1 (en) Method and apparatus for digitizing shift
JP3273201B2 (en) Optical incremental encoder device
JPH0672926B2 (en) Laser light irradiation device in speed measurement device using laser light
JP2651276B2 (en) Position detection device
JPS6258448B2 (en)