JPS60107270A - Multivariable operation and control of fuel cell - Google Patents

Multivariable operation and control of fuel cell

Info

Publication number
JPS60107270A
JPS60107270A JP58213492A JP21349283A JPS60107270A JP S60107270 A JPS60107270 A JP S60107270A JP 58213492 A JP58213492 A JP 58213492A JP 21349283 A JP21349283 A JP 21349283A JP S60107270 A JPS60107270 A JP S60107270A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
efficiency
multivariable
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58213492A
Other languages
Japanese (ja)
Inventor
Tatsushi Sugimoto
杉本 達志
Kaoru Munekura
宗倉 薫
Isao Aramaki
勲 荒巻
Yoichi Nomura
洋一 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Research and Development Institute of Japan Defence Agency
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP58213492A priority Critical patent/JPS60107270A/en
Publication of JPS60107270A publication Critical patent/JPS60107270A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04447Concentration; Density of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • H01M8/04194Concentration measuring cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuel Cell (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)

Abstract

PURPOSE:To enable electric energy to be efficiently produced by maximizing total thermal efficiency which is the product of fuel utilization efficiency, current efficiency and voltage efficiency through multivariable control. CONSTITUTION:The relationship between load current and total thermal efficiency is obtained from both the relationship between the load current of a fuel cell 1 and its voltage and the relationship between the load current and fuel utilization efficiency by using the temperature of the fuel cell 1 as a variable. These data are used as the inputs to a control device 9 so as to control the temperature of the fuel cell 1 so that its thermal efficiency beomes maximum for each load current. The temperature of the fuel cell 1 is detected by a temperature sensing element 8. When a fuel contained in anolyte is consumed, the consumption is detected by a concentration sensor 7 and then a fuel supply valve 10 is opened by the control device 9 to supply the fuel from a fuel tank 11 into an anolyte tank 2.

Description

【発明の詳細な説明】 燃料電池は燃料の持つ化学エネルギーを電気化学的に直
接電気エネルギーに変換する直流発電装置で、広い負荷
範囲にわたって効率が高く環境保全性が長い等の利点を
持っている。燃料電池から効率良く電気エネルギーを取
り出すために、燃料及び酸化剤を負荷に応して供給した
り電池温度を一義的に制御する方式をとっていた。この
他に電池電圧を検出し所定の電圧を維持するように燃料
を供給する制御方式がある。
[Detailed Description of the Invention] A fuel cell is a direct current power generation device that electrochemically converts the chemical energy of fuel directly into electrical energy, and has advantages such as high efficiency over a wide load range and long environmental protection. . In order to efficiently extract electrical energy from a fuel cell, a method has been adopted in which fuel and oxidizer are supplied according to the load and the cell temperature is primarily controlled. In addition, there is a control method that detects the battery voltage and supplies fuel to maintain a predetermined voltage.

しかし、このような方法は設定値を一義的に決めて制御
則る方式のため、必ずしも燃料電池の総合熱効率を最大
にする条件で運転しているとは言えない。例えは、気体
燃料電池での燃料圧力制御方式及び液体燃料電池での濃
度制御方式では、ある負荷電流に対して最適圧力及び濃
度を設定しても負荷が変動するとその設定はもう最適で
はな(なる。
However, since such a method is a method in which the set value is uniquely determined and controlled, it cannot be said that the fuel cell is necessarily operated under conditions that maximize the overall thermal efficiency of the fuel cell. For example, in the fuel pressure control method for gaseous fuel cells and the concentration control method for liquid fuel cells, even if the optimal pressure and concentration are set for a certain load current, if the load changes, the settings are no longer optimal ( Become.

本発明はこれらの欠点を解決し、燃料電池から最大総合
熱効率で電気エネルギーを取り出すため、多残数制御の
燃料電池逆転制御方法を提供するものである。
The present invention solves these shortcomings and provides a fuel cell reversal control method with large remaining number control in order to extract electrical energy from the fuel cell with maximum overall thermal efficiency.

次に本発明の計細について実施例をもって説明する。Next, details of the present invention will be explained using examples.

本実施例は液体燃料電池に関するもので燃料にヒドラジ
ンを用い、負荷電流を設定すると熱効率が最大となるよ
うにヒドラジン濃度、電池温度を制御するようになって
いる。一般に燃料電池の熱効率は電池効率、主流効率の
積で表せるか、液体燃料電池の場合14これに燃料利用
効率をかける必要がある。ここで電流効率は電極に供給
された燃料のもつ化学エネルギーがどれたけ電気工オル
ギーに変換されたかその比率を表したもので、はぼ10
0%に近く、液体燃料電池の熱効率は電圧効率と燃料利
用効率の積で近似される。
This embodiment relates to a liquid fuel cell, in which hydrazine is used as the fuel, and when the load current is set, the hydrazine concentration and cell temperature are controlled so that the thermal efficiency is maximized. In general, the thermal efficiency of a fuel cell can be expressed as the product of cell efficiency and mainstream efficiency, or in the case of liquid fuel cells, this must be multiplied by fuel utilization efficiency. Here, the current efficiency represents the ratio of how much chemical energy of the fuel supplied to the electrode is converted into electric energy, which is approximately 10
It is close to 0%, and the thermal efficiency of a liquid fuel cell is approximated by the product of voltage efficiency and fuel utilization efficiency.

第1図は、本発明を適用したヒドラジンを燃料とする循
環形成体燃料電池を示したものである; lは電池本体
で、150 cniの有効面積を持つ単位電池20個を
積層し、電気的に直列接続しである。アノライトはアノ
ライトタンク2に貯蔵されアノライトポンプ3で電池本
体1に供給される。アノライト循環系のアノライトポン
プ3と電池本体lの間には始動用ヒーター4とラジェー
タ5が組み込まれており、始動用ヒーター4は運転開始
時の電池温度の上昇に、ラジェータ5は電池温度の調整
に使われる。6は電池本体1で発生した熱をアノライト
循環によりラジェータ5の表面から放散させるための冷
却ファンである。7はアメライト中の燃料濃度を検出す
る濃度セン勺−である。電池本体lから排出される未反
応の燃料を含むアノライトは直接アノライトタンク2に
回収される。8は電池温度を検出する感温素子である。
FIG. 1 shows a hydrazine-fueled circulating fuel cell to which the present invention is applied; l is the cell body, in which 20 unit cells with an effective area of 150 cni are stacked, and the electrical Connected in series. The anolyte is stored in an anolyte tank 2 and supplied to the battery body 1 by an anolyte pump 3. A starting heater 4 and a radiator 5 are built in between the anolite pump 3 of the anolite circulation system and the battery main body l. used for adjustment. Reference numeral 6 denotes a cooling fan for dissipating heat generated in the battery body 1 from the surface of the radiator 5 by circulating the anolyte. 7 is a concentration sensor for detecting the fuel concentration in amerite. The anolyte containing unreacted fuel discharged from the battery body 1 is directly collected into the anolyte tank 2. 8 is a temperature sensing element that detects battery temperature.

アノライト中の燃料が消費されると濃度センナ−7で検
出し、制御装置9によって燃料供給弁lOを開閉して燃
料を燃料タンク11からアノライトタンク2へ供給する
When the fuel in the anorite is consumed, it is detected by the concentration sensor 7, and the control device 9 opens and closes the fuel supply valve IO to supply fuel from the fuel tank 11 to the anorite tank 2.

第1図に示していないか、制御装置9は第1図の液体燃
料電池を自動的に運転、停止する制御、電池温度を所定
の範囲に維持する制御、濃度センサー7に流す電流を自
由に変化さ廿、アノライト中の燃料a度を絶えず監視し
て所定の濃度範囲に維持する制御、電解えきの濃度を所
定の範囲に維持する制御等液体燃料電池から効率F:!
 <電気エネルギーを取り出すすべての制御が含まれて
おり、さらに1池本体1の電圧及び各単位電池7B圧が
異常に低下するかアノライトタンク2の中の液面が所定
の位置より低下するか又は71i池温度か異常に上昇し
た時に液体燃料電池を安全にイ“r止させる制御か含ま
れている。
If not shown in FIG. 1, the control device 9 can automatically operate and stop the liquid fuel cell shown in FIG. Efficiency F:! from liquid fuel cells, such as control to constantly monitor the fuel a content in the anorite and maintain it within a predetermined concentration range, control to maintain the concentration of electrolyte within a predetermined range, etc.
<Includes all controls for extracting electrical energy, and also determines whether the voltage of the cell body 1 and the pressure of each unit cell 7B drops abnormally or the liquid level in the anorite tank 2 drops below a predetermined position. Alternatively, control is included to safely shut down the liquid fuel cell when the temperature of the 71i pond rises abnormally.

制御範囲及びli+11転、停止のシーケンスは指令表
示装置fiτ12によって自由に設定できる。空気は空
気ブ[1ワー13tζよってriLFlハ本体1に供給
され、未反応空気はそのまま電池本1本1から排出され
る。
The control range and the li+11 rotation and stop sequence can be freely set using the command display device fiτ12. Air is supplied to the riLFl main body 1 by an air blower 13tζ, and unreacted air is discharged from each battery 1 as it is.

第2図は第1[¥1に示した電池本体1の負荷電流−電
池電圧曲線で、燃料濃度は25%である。
FIG. 2 is a load current-cell voltage curve of the battery main body 1 shown in the first [¥1], and the fuel concentration is 25%.

第3図は負倚電流−燃料利用効率曲線でいずれも電池温
度をパラメータにとっである。第2図及び第3図より算
出した負荷電流−総合熱効率の間係を第4図+C示す。
FIG. 3 shows negative current-fuel utilization efficiency curves, both of which take battery temperature as a parameter. The relationship between load current and total thermal efficiency calculated from FIGS. 2 and 3 is shown in FIG. 4+C.

これらのデータを制御装置9に入ツノし各負荷電流に対
して熱効率が最大になるように電池温度を運転制御した
時の結果を第5図に示す。この結果かられかるように9
Aでの熱効率が最大1こなる時の電池温度は55℃、1
5Aでは65℃、21Aでは75℃であり、いずれの族
7u電流においても最大総合熱効率が維持されるように
電池温度が制御されていることかわかる。また第1表に
示すように?jL米の電圧制御法による結果と本結果の
比較から多度数制御方式が優れていることがわかる。
FIG. 5 shows the results when these data are input to the control device 9 and the battery temperature is controlled so that the thermal efficiency is maximized for each load current. As you can see from this result9
The battery temperature when the thermal efficiency at A is maximum 1 is 55℃, 1
The temperature was 65°C for 5A and 75°C for 21A, indicating that the battery temperature was controlled so that the maximum overall thermal efficiency was maintained for any group 7u current. Also, as shown in Table 1? A comparison of the present results with the results obtained using the jL voltage control method shows that the multi-frequency control method is superior.

燃料濃度が25%と一定とした場合を説明したが、燃料
濃度を制御構成要素とした時のデータを制御袋bl:t
 9に入力することにより、さらに効率の良い運転か可
能である。これまでは液体燃料電池tこついて説明して
きたが静止形液体燃料電池の他、炭化水素系燃料を用い
る燃料電池にも適用できることは明らかである。
Although we have explained the case where the fuel concentration is constant at 25%, the data when the fuel concentration is used as a control component is the control bag bl:t.
By inputting to 9, even more efficient operation is possible. Although the explanation has been given with a focus on liquid fuel cells, it is clear that the invention can be applied not only to stationary liquid fuel cells but also to fuel cells using hydrocarbon fuels.

上述のように本発明になる多変数制御方式による燃料電
池運転制御方法を用いて運転すると、當に総合熱効率が
最大となるように運転条件が自動的に設定されることか
ら、効率良く電気工オルキーを取り出rことがてきる等
工業的価値極めて大なるものである。
As described above, when operating using the fuel cell operation control method using the multivariable control method according to the present invention, the operating conditions are automatically set so that the overall thermal efficiency is maximized, so electrical work can be carried out efficiently. It is of great industrial value, as it allows the extraction of orchie.

4 図面の簡、+11な説明 第1図は本発明を適用したヒドラジンを燃料とした液体
燃料電池図、第2図は液体燃料電池の電池本体の負荷電
流−電/I!!電圧曲線図、第3図は負荷電流−燃料利
用効率曲線図、第4図は液体燃料亀?1ムの負荷電流−
総合熱効率曲線図、第5図は液体燃料it池の運転結果
である。
4 Simple explanation of the drawings Fig. 1 is a diagram of a liquid fuel cell using hydrazine as fuel to which the present invention is applied, and Fig. 2 is a diagram of the load current of the cell main body of the liquid fuel cell - electric/I! ! Voltage curve diagram, Figure 3 is load current-fuel utilization efficiency curve diagram, Figure 4 is liquid fuel turtle? 1 μm load current -
The comprehensive thermal efficiency curve diagram, Figure 5, shows the operational results of the liquid fuel IT pond.

Iは電池本体、7は濃度センサー、 9は制御装置、11は燃料タンク 特許出願人 代表者 負部電流(A) 貢伺電流!A)I is the battery body, 7 is the concentration sensor, 9 is a control device, 11 is a fuel tank patent applicant representative Negative current (A) Tribute current! A)

Claims (1)

【特許請求の範囲】 1 燃料極、酸化剤極、電解質、燃料極に燃料を供給す
る燃料室及び酸化剤極に酸化剤を供給する酸化剤室から
なる燃料電池において、多変数制御により燃料利用効率
、電流効率、電圧効率の積である総合熱効率を最大にす
ることを特徴とする燃料電池多変数運転制御方法。 2、特許請求の範囲 御の制御検銭要素を燃料供給量、電池温度、放電電流及
び電池7n圧とすることを特徴とする燃料電池多変数運
転制御方法。 3 特許請求の範囲第2項において、多変数飼料電池多
変数運転制御方法。 4、 特許請求の範囲第2項において、多変数制御の制
御措成要素である燃料供給量は気体撚
[Scope of Claims] 1. In a fuel cell consisting of a fuel electrode, an oxidizer electrode, an electrolyte, a fuel chamber that supplies fuel to the fuel electrode, and an oxidizer chamber that supplies oxidizer to the oxidizer electrode, fuel utilization is achieved through multivariable control. A fuel cell multivariable operation control method characterized by maximizing overall thermal efficiency, which is the product of efficiency, current efficiency, and voltage efficiency. 2. A fuel cell multivariable operation control method, characterized in that the control verification elements as claimed in the claims are fuel supply amount, battery temperature, discharge current, and battery 7n pressure. 3. A multivariable feed battery multivariable operation control method as set forth in claim 2. 4. In claim 2, the fuel supply amount, which is a control element of multivariable control, is determined by gas twisting.
JP58213492A 1983-11-14 1983-11-14 Multivariable operation and control of fuel cell Pending JPS60107270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58213492A JPS60107270A (en) 1983-11-14 1983-11-14 Multivariable operation and control of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58213492A JPS60107270A (en) 1983-11-14 1983-11-14 Multivariable operation and control of fuel cell

Publications (1)

Publication Number Publication Date
JPS60107270A true JPS60107270A (en) 1985-06-12

Family

ID=16640092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58213492A Pending JPS60107270A (en) 1983-11-14 1983-11-14 Multivariable operation and control of fuel cell

Country Status (1)

Country Link
JP (1) JPS60107270A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0692835A3 (en) * 1994-07-13 1998-05-06 Toyota Jidosha Kabushiki Kaisha Fuel cell generator and method of operating the same
JP2002231295A (en) * 2000-11-28 2002-08-16 Toyota Motor Corp Output characteristic estimation device and output characteristic estimation method for fuel cell, fuel cell system, vehicle for loading it, fuel cell output control method and storage medium
JP2004171813A (en) * 2002-11-18 2004-06-17 Nec Corp Fuel cell system, portable electric equipment using fuel cell and operation method of fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581975A (en) * 1981-06-26 1983-01-07 Shin Kobe Electric Mach Co Ltd Output control of fuel cell
JPS58133782A (en) * 1982-02-01 1983-08-09 Hitachi Ltd Control system of fuel cell power generating plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581975A (en) * 1981-06-26 1983-01-07 Shin Kobe Electric Mach Co Ltd Output control of fuel cell
JPS58133782A (en) * 1982-02-01 1983-08-09 Hitachi Ltd Control system of fuel cell power generating plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0692835A3 (en) * 1994-07-13 1998-05-06 Toyota Jidosha Kabushiki Kaisha Fuel cell generator and method of operating the same
JP2002231295A (en) * 2000-11-28 2002-08-16 Toyota Motor Corp Output characteristic estimation device and output characteristic estimation method for fuel cell, fuel cell system, vehicle for loading it, fuel cell output control method and storage medium
US8518590B2 (en) 2000-11-28 2013-08-27 Toyota Jidosha Kabushiki Kaisha Fuel cell output characteristic estimation apparatus and output characteristic estimation method, fuel cell system and vehicle having the same, and fuel cell output control method and data storage medium
JP2004171813A (en) * 2002-11-18 2004-06-17 Nec Corp Fuel cell system, portable electric equipment using fuel cell and operation method of fuel cell

Similar Documents

Publication Publication Date Title
CN104409750B (en) A kind of fuel cell tail gas blood circulation
JP2893344B2 (en) Fuel cell system
US7014932B2 (en) Drainage system and process for operating a regenerative electrochemical cell system
US3935028A (en) Fuel cell set and method
KR101795245B1 (en) Apparatus for controlling fuel cell stack and method threreof
JP2003234108A (en) Fuel cell system
CN114156502A (en) Fuel cell cogeneration system
EP2461407B1 (en) Fuel cell device
CN114335629B (en) Combined heat and power control method and system for fuel cell
CN112201806A (en) Control system, method and device for fuel cell, storage medium and processor
JP2005129252A (en) Fuel cell system
KR100807875B1 (en) Combined heat and power co-generation system for fuel cell
CN202712342U (en) Fuel cell device
EP2485310B1 (en) Fuel cell device
JP2020149838A (en) Nitrogen gas generation method and device for filtering high-pressure fuel cell exhaust gas
JP4095782B2 (en) Gas generator
JPS60107270A (en) Multivariable operation and control of fuel cell
JPS62198058A (en) Electric heat supply system of liquid cooling type fuel cell
JPH11214022A (en) Fuel cell power generating device
JP3906677B2 (en) Water treatment device for fuel cell
JPH0461464B2 (en)
JPS60208067A (en) Fuel cell power generating system
JPH04115468A (en) Start-controlling apparatus for liquid electrolyte type fuel cell
CN100392901C (en) Electric machine driving and controlling device for supporting fuel cell self-operating wasted work component
JP2020068112A (en) Fuel cell system