JPS60107004A - Optical demultiplexer - Google Patents

Optical demultiplexer

Info

Publication number
JPS60107004A
JPS60107004A JP21325883A JP21325883A JPS60107004A JP S60107004 A JPS60107004 A JP S60107004A JP 21325883 A JP21325883 A JP 21325883A JP 21325883 A JP21325883 A JP 21325883A JP S60107004 A JPS60107004 A JP S60107004A
Authority
JP
Japan
Prior art keywords
fiber
diffracted light
diffraction grating
incident
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21325883A
Other languages
Japanese (ja)
Other versions
JPS6160402B2 (en
Inventor
Norio Nishi
功雄 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21325883A priority Critical patent/JPS60107004A/en
Publication of JPS60107004A publication Critical patent/JPS60107004A/en
Publication of JPS6160402B2 publication Critical patent/JPS6160402B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Abstract

PURPOSE:To obtain an optical demultiplexer which has wide passing wavelength band width by allowing diffracted light from a diffraction grating to travel backward through a corner cube, and making it incident to the diffraction grating again. CONSTITUTION:An incident light beam from an incidence fiber 13 is converted by a distributed index rod lens 14 into parallel luminous flux, which strikes the diffraction grating 16 installed at a specific angle through a glass block 15. The diffracted light within a wavelength range lambda-lambda2 converges on the reflective surface of a corner cube 17-a and then guided as backward traveling divergent light to the diffraction grating 16 again. The parallel luminous flux diffracted again by the diffraction grating 16 passes through the distributed index type rod lens 14 to converge on the end surface of a projection fiber 18-a. Similarly, diffracted light within a wavelength range lambda3-lambda4 is reflected by a corner cube 17-b to converge on a projection fiber 18-b.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光フアイバ用の分波器に係り、特に、広い通過
波長帯域幅を有する角度分散形の光分波器に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a demultiplexer for optical fibers, and particularly to an angularly dispersive optical demultiplexer having a wide passing wavelength bandwidth.

〔発明の背景〕[Background of the invention]

光分波器は入射ファイバ中を伝送している波長多重光を
複数の波長の波に分解してそれぞれ別々の出射ファイバ
に振9分けるもので、こ、の種の波長多重光ファイバ伝
送に用いる分波器として従来干渉膜形光分波器と角度分
散形光分波器が開発されている。干渉膜形光分波器は中
心波長、帯域幅が任意に設計可能であるという利点を有
するが、干渉膜の形成に極めて高度の技術と多大の作業
を要し、また分波数に等しい干渉膜を組合せる必要があ
るため分波数の増大に伴がつて製造が困難となる欠点が
あった。−刃角度分散形光分波器は1個の角度分散素子
で多数の分波が可能であるという利点を有する反面、通
過波長帯域幅が下記の理由により制限されるという欠点
があった。第1図は従来技術による角度分散形光分波器
の例である。
An optical demultiplexer separates the wavelength-multiplexed light transmitted through the input fiber into waves of multiple wavelengths and sends each wave to a separate output fiber, and is used for this type of wavelength-multiplexed optical fiber transmission. Conventional interference film type optical demultiplexers and angle dispersion type optical demultiplexers have been developed as demultiplexers. Interference film type optical demultiplexers have the advantage that the center wavelength and bandwidth can be designed arbitrarily, but forming the interference film requires extremely advanced technology and a great deal of work, and the interference film has the same number of demultiplexers. Since it is necessary to combine the two, there is a drawback that manufacturing becomes difficult as the number of demultiplexing waves increases. - Although the blade angle dispersion type optical demultiplexer has the advantage of being capable of multiple demultiplexing with one angle dispersion element, it has the disadvantage that the passing wavelength bandwidth is limited for the following reason. FIG. 1 is an example of a conventional angle dispersive optical demultiplexer.

第1図において1は入射ファイバ、2はコリメートレン
ズ、6は回折格子、4−a、4−b(以下、両者を含め
て4と記す)は出射ファイバである。
In FIG. 1, 1 is an input fiber, 2 is a collimating lens, 6 is a diffraction grating, and 4-a and 4-b (hereinafter referred to as 4 including both) are output fibers.

入射ファイバ1からの入射光はコリメートレンズ2によ
り平行光束に変換され、回折格子乙に入射する。回折光
はコリメートレンズ2により再び収束されて出射ファイ
バ4の端面に結像する。ここで入射ファイバ1と出射フ
ァイバ4の端面が同一平面」=にあるときには横倍率が
1の光学系と彦る。
The incident light from the input fiber 1 is converted into a parallel light beam by the collimating lens 2, and enters the diffraction grating B. The diffracted light is converged again by the collimating lens 2 and forms an image on the end face of the output fiber 4. Here, when the end faces of the input fiber 1 and the output fiber 4 are on the same plane, the optical system has a lateral magnification of 1.

このとき出射ファイバ4の端面と入射ファイバ1の像と
の相対位置関係は第2図となる。第2図で5は入射ファ
イバ1のコア端面、6は入射ファイバ1のクラッド端面
、7−a、7−bを含めて7は出射ファイバ4のコア端
面、8−a、B−bを含めて8は出射ファイバ4のクラ
ッド端面、9.10.11.12は西長がそれぞれλ1
、λ2、λ3、λ4の場合の入射ファイバ1のコア端面
5の像である。λ1〜λ2の波長帯域においては入射フ
ァイバ1のコア端面像が出射フケイバ4−aのコア端面
7−a内部に結像されるため、100%の結合効率が得
られる。
At this time, the relative positional relationship between the end face of the output fiber 4 and the image of the input fiber 1 is as shown in FIG. In Figure 2, 5 is the core end face of the input fiber 1, 6 is the clad end face of the input fiber 1, 7 is the core end face of the output fiber 4, including 7-a and 7-b, and 8 is the core end face of the output fiber 4, including 8-a and B-b. 8 is the clad end face of the output fiber 4, and 9, 10, 11, and 12 are the west lengths of λ1, respectively.
, λ2, λ3, and λ4 are images of the core end face 5 of the input fiber 1. In the wavelength band λ1 to λ2, the core end face image of the input fiber 1 is imaged inside the core end face 7-a of the output fiber 4-a, so that a coupling efficiency of 100% is obtained.

すなわちλ1〜λ2が出射ファイバ4−aへの通過波長
帯域となる。同様にλ6〜λ4が出射ファイバ4−すへ
の通過波長帯域となる。このとき各々の通過ここでD1
ハ入射ファイバ1のコア径、Doは出射ファイバ4のコ
ア径、fはコリメートレンズ2の焦点距離、/dλは回
折格子6の角分散度である。一方出射ファイバ4−aお
よび4−1〕への通過波長中心間隔’abは次式で与え
られる。
That is, λ1 to λ2 become the wavelength band passing to the output fiber 4-a. Similarly, λ6 to λ4 are the wavelength bands passing through the output fiber 4. At this time, each passage is D1
C is the core diameter of the input fiber 1, Do is the core diameter of the output fiber 4, f is the focal length of the collimating lens 2, and /dλ is the angular dispersion of the diffraction grating 6. On the other hand, the passing wavelength center spacing 'ab to the output fibers 4-a and 4-1] is given by the following equation.

ここでCa’bは出射ファイバ4−a、4−1〕のコア
中心間隔である。ところで最小コア中心間隔に、出射フ
ァイバ4のクラツド径])。に等しいがら比帯域Δλ/
λabは次式となる。
Here, Ca'b is the core center spacing of the output fibers 4-a, 4-1]. By the way, the minimum core center spacing is the cladding diameter of the output fiber 4]). is equal to the fractional band Δλ/
λab is expressed by the following formula.

λdl)ともに零となる。そこで通常り。>Diの条件
が必要となる。しかしり。をり。に近づければ入射ファ
イバーの像が出射ファイバ4−a、4−bのコア端面7
−a、7−bKまたがって結像するだめ波長領域が増大
するだめ分離度が劣化する。十分な分離度を得るには次
の条件が必要とカる。
λdl) are both zero. So it's normal. >Di is required. However. Ori. If the image of the input fiber approaches the core end face 7 of the output fiber 4-a, 4-b,
If images are formed across -a and 7-bK, the wavelength range increases, and the degree of separation deteriorates. The following conditions are necessary to obtain a sufficient degree of separation.

2(Do−Do)≧D1−=−(4) ■)。−125μm 、 DI= 50 ttmφの場
合第4式よりφ I)。≦100μmφとなる。このとき比帯域Δλ/λ
ab=0.4が最大と々る。上記のように従来技術では
同一パラメータの入出射ファイバを用いると帯域幅が零
となり伝送路の途中に分波器を入れることが困難なこと
、および入出射ファイバのコア径を変えても最大比帯域
が0.4程度に限定される欠点があった。
2(Do-Do)≧D1-=-(4) ■). -125 μm, DI=50 ttmφ From equation 4, φ I). ≦100 μmφ. In this case, the specific band Δλ/λ
ab=0.4 reaches the maximum. As mentioned above, in the conventional technology, if input and output fibers with the same parameters are used, the bandwidth becomes zero, making it difficult to insert a demultiplexer in the middle of the transmission line, and even if the core diameters of the input and output fibers are changed, the maximum There was a drawback that the band was limited to about 0.4.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来技術での上記した欠点を除去し、
入射ファイバの光学パラメータに限定されないで広い通
過波長帯域幅を得ることのできる光分波器を提供するこ
とにある。
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and
An object of the present invention is to provide an optical demultiplexer that can obtain a wide passing wavelength bandwidth without being limited by the optical parameters of an input fiber.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、角度分散素子からの回折光をコーナキ
ー−ブを通して逆行させて再び角度分散素子に入射して
再回折光を得て、この再回折光により、入射ファイバの
近傍に設けた出射ファイバに入射ファイバ像を結像させ
る構成とすることにある。
A feature of the present invention is that the diffracted light from the angle dispersion element is made to travel backwards through the corner keave and enters the angle dispersion element again to obtain re-diffracted light. The object of the present invention is to form a configuration in which an incident fiber image is formed on a fiber.

〔発明の実施例〕[Embodiments of the invention]

以下、図面により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第5図は本発明の一実施例を説明するための斜視図であ
り、15は入射ファイバ、14は分布屈折率形ロッドレ
ンズ、15はガラスブロック、16i11回折格子、1
7−a及び17−bは:I−fキー −フ、18−a及
び18−1)は出射ファイバである。本実施例は次のよ
うに動作する。入射ファイバ16からの入射光線は分布
屈折率形ロンドレ/ズ14によって平行光束に変換され
、ガラスブロック15によって所定の角度に設置された
回折格子16に入射する。
FIG. 5 is a perspective view for explaining one embodiment of the present invention, in which 15 is an input fiber, 14 is a distributed index rod lens, 15 is a glass block, 16i11 diffraction grating, 1
7-a and 17-b are: If key f, 18-a and 18-1) are output fibers. This embodiment operates as follows. The incident light beam from the input fiber 16 is converted into a parallel beam by the Rondre/Z of distributed index type 14, and is incident on the diffraction grating 16 set at a predetermined angle by the glass block 15.

波長範囲ハ〜λ2の回折光はコーナキー−ブ17−aの
反射面内に収束した後、逆行する発散光となって分布屈
折率形ロッドレンズ14を通過し平行光束に変換されて
回折格子16に再度溝びかれる。回折格子16で再度回
折された平行光束は分布屈折率形ロンドレンズ14を通
り出射ファイバ18−aの端面に収束する。同様に波長
範囲λ3〜λ4の回折光はコーナキューブ17−bで反
射され出射ファイバ18−1〕に収束する。この関係を
第4図によって詳細に説明する。第4図は第6図におけ
る分布屈折率形ロッドレンズのファイバ側端面における
入出射ファイバとコーナキー−プの相対位置を示したも
のである。第4図において19は入射ファイバ16のコ
ア端面、20は入射ファイバ13のクラッド端面、21
−aはコーナキー−ブ17−aの入射側反射面、22−
aは17−aの出射側反射面、23−a、24−aは波
長λ1の回折光が反射面21−a、22−aで反射され
る領域、25−a、26−aは波長λ2の回折光が反射
面21−a、22−aで反射される領域である。同様に
21−b、22−bはコーナキー−ブ17−bの人、出
射側反射面、23−b、24−bは波長λ6の回折光が
反射面21−b、22−bで反射される領域、25−b
、26−11は波長λ4の回折光が反射面21−b、2
2−bで反射される領域である。捷た27−a、28−
aは出射ファイバ18−aのコアおよびクラッド端面で
あり、27−b、28−1)は出射ファイバ18−bの
コアおよびクラッド端面である。
After the diffracted light in the wavelength range C to λ2 converges within the reflecting surface of the corner key 17-a, it becomes retrograde divergent light, passes through the distributed index rod lens 14, and is converted into a parallel beam of light, which is then applied to the diffraction grating 16. It is grooved again. The parallel light beam diffracted again by the diffraction grating 16 passes through the distributed index Ronde lens 14 and converges on the end face of the output fiber 18-a. Similarly, the diffracted light in the wavelength range λ3 to λ4 is reflected by the corner cube 17-b and converged on the output fiber 18-1]. This relationship will be explained in detail with reference to FIG. FIG. 4 shows the relative positions of the input/output fiber and the corner keep on the fiber side end face of the distributed index rod lens in FIG. 6. In FIG. 4, 19 is the core end face of the input fiber 16, 20 is the clad end face of the input fiber 13, and 21
-a is the incident side reflection surface of the corner keave 17-a, 22-
23-a and 24-a are regions where the diffracted light with wavelength λ1 is reflected by reflection surfaces 21-a and 22-a, and 25-a and 26-a are the wavelength λ2 This is the region where the diffracted light of is reflected by the reflecting surfaces 21-a and 22-a. Similarly, 21-b and 22-b are the reflection surfaces on the exit side of the corner key 17-b, and 23-b and 24-b are the reflection surfaces 21-b and 22-b of which the diffracted light of wavelength λ6 is reflected. area, 25-b
, 26-11, the diffracted light of wavelength λ4 is reflected by the reflecting surfaces 21-b, 2
This is the area reflected by 2-b. 27-a, 28-
a is the core and clad end face of the output fiber 18-a, and 27-b, 28-1) is the core and clad end face of the output fiber 18-b.

第4図に従って、以下に本実施例の動作を説明する。入
射ファイバのコア端面19から発した光束は回折格子1
6によって回折され、λ1〜λ2の波長範囲においてコ
ーナキー、−プ17−aの入射側反射面21−a上の2
3−aから25−aにわたる領域の近傍に収束し反射さ
れる。波長範囲Δλ3−λ2−λ1は次式で近似的に与
えられる。
The operation of this embodiment will be described below with reference to FIG. The light beam emitted from the core end face 19 of the input fiber is transmitted through the diffraction grating 1
6 on the incident side reflective surface 21-a of the corner key 17-a in the wavelength range of λ1 to λ2.
The light converges and is reflected near the area from 3-a to 25-a. The wavelength range Δλ3-λ2-λ1 is approximately given by the following equation.

ここでLaはコーナキー−ブ17−aの辺長、DIは入
射ファイバ1ろのコア径、fはコリメートレンズ14の
焦点距離、(d0/dλ)は回折格子160角分散度で
ある。近似的に与えられるとしたのは、厳密には焦点を
コーナキー−ブ17−aの両度射面21−a、22−a
の垂直2等分面上に設けるが、その面から両度射面21
−a、2:2−atでの距離は短かく、さらに回折光の
角度広がりが入射コアイノ;13のNA、(開口数)で
決する小さな値であるため、両度射面21−a、22−
a上の像と焦点面上の像は略々等しいと考えられるから
である。
Here, La is the side length of the corner key 17-a, DI is the core diameter of the input fiber 1, f is the focal length of the collimating lens 14, and (d0/dλ) is the angular dispersion of the diffraction grating 160. Strictly speaking, the fact that it is given approximately means that the focal point is given by the bifocal planes 21-a and 22-a of the corner key 17-a.
It is provided on the perpendicular bisector of
-a, 2: The distance at 2-at is short, and furthermore, the angular spread of the diffracted light is a small value determined by the NA (numerical aperture) of the incident core ino; −
This is because the image on a and the image on the focal plane are considered to be approximately equal.

ここでコーナキューブ17−aの代りに同一場所に同一
辺長L2を有する平面反射鏡を設ければ波長範囲λ1〜
λ2の回折光は逆行し、回折格子16で再度回折して入
射ファイバコア端面19・に結像することは自明である
。ところでコーナキューブ゛17−aを用いた本実施例
では入射側反射面21−aに入射した光束は2ろ−a〜
25−aの領域で反射され出射側反射面22−aに導か
れ、この上の24−a〜26−aの領域で反射されて回
折格子に導かれる。
Here, if a flat reflecting mirror with the same side length L2 is provided at the same location instead of the corner cube 17-a, the wavelength range λ1~
It is obvious that the diffracted light of λ2 travels backward, is diffracted again by the diffraction grating 16, and is imaged on the input fiber core end face 19. By the way, in this embodiment using the corner cube 17-a, the luminous flux incident on the incident side reflective surface 21-a is 2-a~
It is reflected at the area 25-a and guided to the output-side reflecting surface 22-a, and then reflected at the areas 24-a to 26-a above this and guided to the diffraction grating.

すなわち、回折光がコーナキー−ブを経由して逆行する
間に像位置が入出射ファイバとコーナキ−プを含む面内
で距離Tだけ移動する。移動量Tはコーナキー−ブ17
−aに入射する回折光の位置で決まる。出射側反射面2
2−aから逆行した光束は回折格子16で再度回折され
、入射ファイ・(コア端面から距離Tだけ移動した所定
の位置に設けた出射ファイバ18−aのコア端面27−
aに結像する。
That is, while the diffracted light travels backward via the corner keeper, the image position moves by a distance T within a plane including the input and output fibers and the corner keeper. The amount of movement T is the corner key 17
It is determined by the position of the diffracted light incident on -a. Output side reflective surface 2
The light flux that has gone backwards from 2-a is diffracted again by the diffraction grating 16, and the light beam is re-diffracted by the diffraction grating 16, and the light beam is reflected from the input fiber 18-a to the core end face 27- of the output fiber 18-a, which is provided at a predetermined position moved by a distance T from the core end face.
The image is formed on a.

同様に波長範囲λ6〜λ4の回折光はコーナキ−プ17
−11により反射され、回折格子16で1〕度回□折さ
れて出射ファイバ18−1)のコア端面27−13に結
像する。波長範囲Δλb−λ4−λ3ニ1、次式でJj
えられる。
Similarly, the diffracted light in the wavelength range λ6 to λ4 is corner kept at 17.
-11, is refracted 1] degree by the diffraction grating 16, and is imaged on the core end face 27-13 of the output fiber 18-1). Wavelength range Δλb - λ4 - λ3 Ni1, Jj in the following formula
available.

ここでり、はコーナキー−ブ17−bの辺長である。Here, is the side length of the corner key 17-b.

一方出射ファイバ18−a、13−1)の通過波長中心
間隔Δ’abは次式で与えられる。
On the other hand, the passing wavelength center spacing Δ'ab of the output fibers 18-a, 13-1) is given by the following equation.

ここでGはコーナキー−ブ17−aと17−1)との間
隔である。十分な分離度を得るためにG≧D、の関係が
必要であるから比帯域Δλ3、Δλ1.)/Δλ31゜
は次式となる。
Here, G is the distance between the corner keeves 17-a and 17-1). Since the relationship G≧D is required to obtain a sufficient degree of separation, the fractional bands Δλ3, Δλ1 . )/Δλ31° is given by the following formula.

Δλab(T−3十Lb)/2+D1 第(5)弐〜第(8)式においてLa、Lbは入出射フ
ァイバと独立な量であるだめ、同一の入出射ファイバを
用いても任意の通過帯域幅Δλ3、Δλbと大きな比較
域Δλa/Δλab、Δλb/Δλabを得ることがで
きる、L、、= 500 μm、 Lb= 500 μ
m、D1= 5011mの場合 Δλa/Δλab=Δλb/Δλab=0.8 ・・・
・・・ (9)となり従来技術の比帯域の倍となる。
Δλab(T-30Lb)/2+D1 In equations (5) 2 to (8), La and Lb are quantities independent of the input and output fibers, so even if the same input and output fibers are used, any passband can be obtained. Widths Δλ3, Δλb and large comparison ranges Δλa/Δλab, Δλb/Δλab can be obtained, L, , = 500 μm, Lb = 500 μm
m, D1 = 5011 m, Δλa/Δλab=Δλb/Δλab=0.8...
...(9), which is twice the specific bandwidth of the conventional technology.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、入出射ファイバ
の光学パラメータに依存しないで広い通過帯域と大きな
比帯域を得ることができ、波長多重光通信用分波器を構
成する上で極めて有効である。
As explained above, according to the present invention, it is possible to obtain a wide passband and a large fractional band without depending on the optical parameters of input and output fibers, and it is extremely effective in configuring a demultiplexer for wavelength division multiplexing optical communication. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の説明図、第2図は第1図における出射
ファイバ端面と入射ファイバの像との相対位置関係図、
第3図は本発明の一実施例の斜視図、第4図は第6図に
おける入出射ファイバとコーナキー−ブの相対位置関係
を示す図である。 符号の説明 1.13・・・入射ファイバ 2・・・コリメートレンズ 6.16・・・回折格子4
−a、4−b、IL−a、’18−b・・出射7フイバ
14・・・分布屈折率形ロンドレンズ 15・・・ガラスブロック 17−a、17−b・・・コーナキー−ブ19・・・入
射ファイバ16のコア端面20・・・入射ファイバ13
のクラッド端面21−a、22−a・・・コーナキー−
ブ17−aの入射側、出射側反射面 21−b、22−b・・コーナキー−ブ17−bの入射
側、出射側反射面 26−a、24−a・・・波長λ1の回折光が21−a
、22−aで反射される領域 25+−a、 26−8・・波長λ2の回折光が21−
a、22−aで反射される領域 27−a、28−a・・出射ファイバ18−aのコア及
びクラッド端面 27−b、28−b・・・出射ファイバ18−bのコア
及びクラッド端面 特許出願人 日本電信電話公社 代理人弁理士 中村純之助
FIG. 1 is an explanatory diagram of a conventional example, and FIG. 2 is a diagram of the relative positional relationship between the output fiber end face and the input fiber image in FIG.
FIG. 3 is a perspective view of one embodiment of the present invention, and FIG. 4 is a diagram showing the relative positional relationship between the input/output fiber and the corner keave in FIG. 6. Explanation of symbols 1.13...Input fiber 2...Collimating lens 6.16...Diffraction grating 4
-a, 4-b, IL-a, '18-b... Output 7 fiber 14... Gradient index type Rondo lens 15... Glass block 17-a, 17-b... Corner key 19 ...Core end face 20 of input fiber 16...Input fiber 13
clad end faces 21-a, 22-a...corner keys
Incident side of corner key 17-a, exit side reflective surfaces 21-b, 22-b...Incidence side, exit side reflective surfaces 26-a, 24-a of corner key 17-b...Diffracted light of wavelength λ1 is 21-a
, 22-a, 25+-a, 26-8...The diffracted light of wavelength λ2 is reflected by 21-
Areas reflected by a, 22-a 27-a, 28-a...Core and clad end surfaces of output fiber 18-a 27-b, 28-b...Core and clad end surfaces of output fiber 18-b Patent Applicant Nippon Telegraph and Telephone Public Corporation Patent Attorney Junnosuke Nakamura

Claims (1)

【特許請求の範囲】[Claims] 入射ファイバ中を伝送している波長多重光を複数の波長
の波に分解してそれぞれ別々の出射ファイバに振り分け
る光分岐器において、入射ファイバからの入射光を角度
分散素子に導びいて回折光とし、この回折光の結像位置
近傍に各通過波長帯域にわたる入射ファイバ実像より大
きな反射面を有して入射してくる回折光を逆平行に戻す
コーナキー−ブの複数個をそれぞれ一定間隔だけ離して
配置して上記回折光を再び上記角度分散素子に導びき、
得られる再回折光を入射ファイバの端面近傍に設置した
複数個の出射ファイバ端面にそれぞれ集束させることを
特徴とする光分波器。
In an optical splitter that separates wavelength-multiplexed light transmitted through an input fiber into waves of multiple wavelengths and distributes them to separate output fibers, the incident light from the input fiber is guided to an angular dispersion element and converted into diffracted light. , near the image formation position of this diffracted light, a plurality of corner keaves each having a reflecting surface larger than the real image of the incident fiber covering each passing wavelength band and returning the incident diffracted light antiparallel are spaced apart by a certain distance. and guide the diffracted light to the angle dispersion element again,
An optical demultiplexer characterized in that the obtained re-diffracted light is focused on each of a plurality of output fiber end faces installed near the end face of an input fiber.
JP21325883A 1983-11-15 1983-11-15 Optical demultiplexer Granted JPS60107004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21325883A JPS60107004A (en) 1983-11-15 1983-11-15 Optical demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21325883A JPS60107004A (en) 1983-11-15 1983-11-15 Optical demultiplexer

Publications (2)

Publication Number Publication Date
JPS60107004A true JPS60107004A (en) 1985-06-12
JPS6160402B2 JPS6160402B2 (en) 1986-12-20

Family

ID=16636115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21325883A Granted JPS60107004A (en) 1983-11-15 1983-11-15 Optical demultiplexer

Country Status (1)

Country Link
JP (1) JPS60107004A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275406A (en) * 1985-09-27 1987-04-07 Fujitsu Ltd Optical demultiplexer
EP0231874A2 (en) * 1986-01-30 1987-08-12 Fujitsu Limited Optical wavelength compounding/dividing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275406A (en) * 1985-09-27 1987-04-07 Fujitsu Ltd Optical demultiplexer
EP0231874A2 (en) * 1986-01-30 1987-08-12 Fujitsu Limited Optical wavelength compounding/dividing device
US4747655A (en) * 1986-01-30 1988-05-31 Fujitsu Limited Optical wavelength compounding/dividing device
EP0231874A3 (en) * 1986-01-30 1988-10-05 Fujitsu Limited Optical wavelength compounding/dividing device

Also Published As

Publication number Publication date
JPS6160402B2 (en) 1986-12-20

Similar Documents

Publication Publication Date Title
JP5692865B2 (en) Wavelength cross-connect equipment
JPH07109447B2 (en) Optical devices and filters
US6587615B1 (en) Wavelength multiplexer-demultiplexer having a wide flat response within the spectral passband
WO2021244107A1 (en) Optical switching device, redirection method, and reconfigurable optical add-drop multiplexer and system
JPH11223745A (en) Device equipped with virtual image phase array combined with wavelength demultiplexer for demultiplexing wavelength multiplexed light
CN101018098B (en) Wave division multiplexer/demultiplexer and its making method
US20110150389A1 (en) Wss with hitless switching
US20040196556A1 (en) Diffraction grating for wavelength division multiplexing/demultiplexing devices
JPH11101923A (en) Optical fiber wavelength multiplexer-demultiplexer
JPS60107004A (en) Optical demultiplexer
JP4505313B2 (en) Optical device and optical control method
US5808765A (en) Multiplexer-demultiplexer for optical wavelengths
US6636660B2 (en) Monochrometer and wavelength division multiplexer comprising said monochrometer
JPS61223711A (en) Demultiplexer for optical communication
WO2002001772A9 (en) Optical wavelength-division multiplexing and demultiplexing by using a common optical bandpass filter
JP2683161B2 (en) Optical multiplexer / demultiplexer
JPS60257411A (en) Optical multiplexer/demultiplexer
JPS60184217A (en) Optical demultiplexer
US6859317B1 (en) Diffraction grating for wavelength division multiplexing/demultiplexing devices
JPS6023809A (en) Optical multiplexer-demultiplexer
TW499581B (en) Planar waveguide diffractive beam splitter/beam coupler
JPS6247005A (en) Wavelength multiplexing and demultiplexing diffraction grating
JP2634979B2 (en) Optical multiplexer / demultiplexer
JPS5882219A (en) Light wavelength demultiplexer
JP2005010423A (en) Optical signal multiplexer/demultiplexer