JPS60184217A - Optical demultiplexer - Google Patents

Optical demultiplexer

Info

Publication number
JPS60184217A
JPS60184217A JP3876684A JP3876684A JPS60184217A JP S60184217 A JPS60184217 A JP S60184217A JP 3876684 A JP3876684 A JP 3876684A JP 3876684 A JP3876684 A JP 3876684A JP S60184217 A JPS60184217 A JP S60184217A
Authority
JP
Japan
Prior art keywords
light
wavelength
diffraction grating
input
diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3876684A
Other languages
Japanese (ja)
Other versions
JPS6231323B2 (en
Inventor
Norio Nishi
功雄 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3876684A priority Critical patent/JPS60184217A/en
Publication of JPS60184217A publication Critical patent/JPS60184217A/en
Publication of JPS6231323B2 publication Critical patent/JPS6231323B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To make the structure simple, to make fine angle adjustment unnecessary and to simplify the assembling process by providing plural diffraction gratings different in blaze wavelength on the same substrate surface. CONSTITUTION:A trapezoidal prism 9 and triangular prisms 15 and 16 consist of an optical glass, and interference film filters 10 and 11 are formed on respective contacting surfaces of these prisms, and long wavelengths pass through them. A diffraction grating substrate 12 consists of a silicon single crystal, and diffraction gratings 13 and 14 different in grating pitch are formed on the same surface. The incident light from an incidence fiber 7 placed near the center of a distributed index rod lens 8 is diffracted by the diffraction grating 13 in case of 1,200-1,300nm wavelength and is formed an image on end faces of incidence/ exit fibers 17-a and 17-b. In case of 810-890nm wavelength, the incident light is diffracted by the diffraction grating 14 and is formed an image on end faces of exit fibers 17-c and 17-d.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光フアイバ用の分波器に係り、特に、広い通過
波長帯域幅を有して組立調整の容易な光分波器に関する
ものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a demultiplexer for optical fibers, and in particular to an optical demultiplexer that has a wide passing wavelength bandwidth and is easy to assemble and adjust. .

〔発明の背)λ〕[Behind the invention) λ]

光分波f!)は入射ファイバ中を伝搬する波長多重光を
複数の波長の波に分解してそれぞれ別の出射ファイバに
振り分けるもので、この種の波長多重光ファイバ伝送に
用いる光分波器として従来干渉1漠形光分波器と回折格
子形光分波器が開発されている。干渉膜形光分波器は中
心波長、帯域幅が任意に設a1可能であるという利点を
有するが、干渉膜の形成に極めて高度の技術と多大の作
業を要し、また分波数に等しい干渉膜を組合わせる必要
があるため分波数の増大に伴って1造が困難となる欠点
があった。一方、回折格子形分波器は1個の回折格子で
多数の分波が6丁能であるという利点を有する反面、回
折効率の高い波長帯域がブレーズ波長の近傍に限られて
おり、広帯域化が困難であるという欠点があった。この
欠点を解決するために従来、第1図の例に示すように、
干渉膜と回折格子を組合わせた構造が提案されている。
Optical demultiplexing f! ) is a device that decomposes wavelength-multiplexed light propagating through an input fiber into waves of multiple wavelengths and distributes them to different output fibers. Type optical demultiplexers and diffraction grating type optical demultiplexers have been developed. Interference film type optical demultiplexers have the advantage that the center wavelength and bandwidth can be set arbitrarily, but forming the interference film requires extremely advanced technology and a great deal of work, and the interference film is equal to the demultiplexing number. Since it is necessary to combine membranes, there is a drawback that it becomes difficult to build one as the number of demultiplexes increases. On the other hand, a diffraction grating type demultiplexer has the advantage of being able to split a large number of wavelengths into six units with one diffraction grating, but on the other hand, the wavelength band with high diffraction efficiency is limited to the vicinity of the blaze wavelength, making it possible to widen the wavelength range. The disadvantage was that it was difficult. In order to solve this drawback, conventionally, as shown in the example of Fig. 1,
A structure combining an interference film and a diffraction grating has been proposed.

第1図に゛おいて、1は入射ファイバ、2はコリター1
〜レンズ、3は干渉膜フィルタ、4及び5はそオシぞれ
回折格子、6−a、6−b、6− c、、6−dはそれ
ぞれ出射ファイバである。第1図の構造によれば、干渉
膜フィルタ3で波長帯域を分離した後に各波長帯域で高
回折効率を有する回折格子4.5を使用することにより
広帯域な光分波器を構成することが可能となる。
In Fig. 1, 1 is the input fiber, 2 is the collitter 1
- lens; 3 is an interference film filter; 4 and 5 are each a diffraction grating; 6-a, 6-b, 6-c, and 6-d are output fibers. According to the structure shown in FIG. 1, a broadband optical demultiplexer can be constructed by separating wavelength bands with an interference film filter 3 and using a diffraction grating 4.5 having high diffraction efficiency in each wavelength band. It becomes possible.

しかし、第1図の構造tこおいては、独立な2個の回折
格子を用いていることから、再回折格子を所定の角度に
設定するために極めて精密な角度調整を必要とし、組立
工程が複雑となることが避けられない。
However, since the structure shown in Figure 1 uses two independent diffraction gratings, extremely precise angle adjustment is required to set the re-diffraction grating at a predetermined angle, and the assembly process inevitably becomes complicated.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来技術での上記した不都合を除き、
複数の回折格子を用いて広波長帯域の回折格子形分波器
を構成する場合に、構造簡易で、微細な角度調整を不要
とし、組立工程を簡易化することのできる光分波器を提
供することにある。
The purpose of the present invention is to eliminate the above-mentioned disadvantages of the prior art,
Provides an optical demultiplexer that has a simple structure, eliminates the need for minute angle adjustments, and simplifies the assembly process when configuring a wide wavelength band diffraction grating type demultiplexer using multiple diffraction gratings. It's about doing.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、上記目的を達成するために、ブレーズ
波長の異なる複数の回折格子を同一基板面りに設置する
構造とすること、及び、°さらに広波長帯域とするため
に、回折格子からの回折光の結像位置近傍に複数個のコ
ーナキューブをそれぞれ一定間隔だけ離して配置して各
通過波長帯域にわたる入射ファイバ実像により大きな反
射面を有して入射してくる回折光を再び回折格子側に逆
平行に戻させろ構成とすることにある。
In order to achieve the above object, the present invention has a structure in which a plurality of diffraction gratings with different blaze wavelengths are installed on the same substrate, and in order to achieve a wider wavelength band, A plurality of corner cubes are arranged at regular intervals near the imaging position of the diffracted light, and the real image of the input fiber covering each passing wavelength band has a large reflective surface, and the incoming diffracted light is redirected to the diffraction grating. The purpose is to have a configuration that allows the sides to return to antiparallel.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の一実施例図であって、回折格子を2個
とする場合である。第2図において、7は入射ファイバ
、8は分布屈折率形ロッドレンズ、9は台形プリズム、
10及び11はそれぞれ干渉膜フィルタ、12は回折格
子基板、13及び14はそれぞれ回折格子、15及び1
6は三角プリズム、17− a、17−b、17−c、
17−dは出射ファイバである。
FIG. 2 is a diagram showing an embodiment of the present invention, in which two diffraction gratings are used. In FIG. 2, 7 is an input fiber, 8 is a distributed index rod lens, 9 is a trapezoidal prism,
10 and 11 are interference film filters, 12 is a diffraction grating substrate, 13 and 14 are diffraction gratings, and 15 and 1 are respectively
6 is a triangular prism, 17-a, 17-b, 17-c,
17-d is an output fiber.

第2図において、入射ファイバ7はコア径が507+m
、外径が125μmのOF(グレーテッド・インデック
ス)形ファイバである。分布屈折率形ロッドレンズ8は
外径2nwn、ピッチ0.25、焦点距離4.2mであ
る。台形プリズム9及び三角プリズム15.16は光学
ガラス(BK7)より成り、プリズム相互間の接触表面
には、TiO2及び5j02を多層に蒸着して成る干渉
膜フィルタ10.11が形成されている。干渉膜フィル
タ10.11の光学特性は、波長] 150nm以−1
=を通過域とし、波長950nm以下を阻+h域とする
長波長通過形である。回折格子基板12はシリコン昨結
晶であり、公知の異方性エツチング技術によって同一表
面」二に回折格子13及び14が形成されている。回折
格子13の格子ピッチは1.667m、ブレーズ波長は
]157nmであり、回折格子14の格子ピッチは1.
3371m、ブレーズ波長は928nmである。
In Figure 2, the input fiber 7 has a core diameter of 507+m.
, is an OF (graded index) type fiber with an outer diameter of 125 μm. The distributed index rod lens 8 has an outer diameter of 2nwn, a pitch of 0.25, and a focal length of 4.2m. The trapezoidal prism 9 and the triangular prism 15.16 are made of optical glass (BK7), and an interference film filter 10.11 made of TiO2 and 5j02 deposited in multiple layers is formed on the contact surface between the prisms. The optical characteristics of the interference film filter 10.11 are wavelength] 150 nm or more -1
It is a long-wavelength pass type with = as a pass band and a wavelength of 950 nm or less as a +h band. The diffraction grating substrate 12 is a silicon crystal, and the diffraction gratings 13 and 14 are formed on the same surface by a known anisotropic etching technique. The grating pitch of the diffraction grating 13 is 1.667 m, the blaze wavelength is ]157 nm, and the grating pitch of the diffraction grating 14 is 1.667 m.
3371 m, and the blaze wavelength is 928 nm.

回折格子13.14の法線方向は分布屈折率形ロワ1−
レンズ8の光軸方向に対して、ブレーズ角13度に等し
く、13度傾斜している。
The normal direction of the diffraction gratings 13 and 14 is the distributed index type lower 1-
It is inclined by 13 degrees with respect to the optical axis direction of the lens 8, which is equal to the blaze angle of 13 degrees.

分布屈折率形ロッドレンズ8の中心近傍に位16する入
射ファイバ7からの入射光は、波長がI200口m及び
1300nmの場合、回折格子13で回折され、入射光
に列してそれぞれ0.!168度及び3.274’;度
傾斜した回折光となって焦点XIIZ Wi 4 、2
 mmの分布屈折率形ロットレンズ8を通過して入射フ
ァイバ7の端面中心からそれぞれ711lm及び239
7lm離れた位置に設置した出射ファイバ17−.1、
+7−bの端面に結像する。人n−1光の波長が8]O
nm、8りOnmの場合には、同様に、回折格子14で
回折され、入射ファイバ7の端面中心からそれぞれ一7
R1tm、 244 lrm離れた位置に、設置した出
射ファイバ17−c、17−dの端面に結像する。なお
、第2図において入射ファイバ7は、分布屈折率形ロツ
1くレンズ8の中心から紙面と垂直方向に+ 007/
III ilれた位置に設置しであるため、出射ファイ
バ17−a、17−b、17−c、+7−(+は紙面と
は2oo/71Nだけ垂直方向に離れている。
The incident light from the input fiber 7 located near the center of the distributed index rod lens 8 is diffracted by the diffraction grating 13 when the wavelength is 1200 nm and 1300 nm, and is aligned with the incident light and has a wavelength of 0.0 nm, respectively. ! 168 degrees and 3.274'; the diffracted light is tilted to the focal point XIIZ Wi 4,2
711 lm and 239 lm from the center of the end face of the input fiber 7 after passing through the distributed index type Rott lens 8 of mm.
Output fiber 17-. installed at a distance of 7 lm. 1,
Image is formed on the end face of +7-b. The wavelength of light for person n-1 is 8]O
In the case of 8 nm and 8 nm, it is similarly diffracted by the diffraction grating 14, and 17 nm from the center of the end face of the input fiber 7
R1tm, the image is formed on the end faces of the output fibers 17-c and 17-d installed at positions 244 lrm apart. In addition, in FIG. 2, the input fiber 7 is +007/
Since the output fibers 17-a, 17-b, 17-c, +7- (+ are vertically separated from the plane of the paper by 2oo/71N).

第2図の実施例によれば、同一基板面上に2つの回折格
子を設ける構造であることがら、810nm、890n
m、1200nm、1300nmの各波長を高効率に回
折し、広帯域にわたる低損失の光分波特性を得ることが
可能であり、しかも構造が簡単なため、組立て調整が容
易である。ただし、第2図実施例構造では、各波長の通
過41F域幅が充分でないという問題が残る。この点を
さらに改良するには、第2図構造の出射ファイバの位置
に、第3図に示すように、コーナキューブを設けて回折
格子からの回折光を逆平行に戻して再び回折格子に尊び
き、得られる両回折光を、入射ファイバの端面近傍に設
置した出射ファイバ端面にそれぞれ集束させることが有
効である。
According to the embodiment shown in FIG. 2, since the structure is such that two diffraction gratings are provided on the same substrate surface,
It is possible to diffract wavelengths of m, 1200 nm, and 1300 nm with high efficiency, and obtain optical demultiplexing characteristics with low loss over a wide band.Moreover, since the structure is simple, assembly and adjustment are easy. However, in the structure of the embodiment shown in FIG. 2, there remains a problem that the passage 41F bandwidth of each wavelength is insufficient. To further improve this point, as shown in Figure 3, a corner cube is provided at the position of the output fiber of the structure shown in Figure 2, and the diffracted light from the diffraction grating is returned to antiparallel, so that the diffraction grating returns to the diffraction grating. It is effective to focus both of the resulting diffracted lights onto the end face of an output fiber installed near the end face of the input fiber.

第3図において、18は入射ファイバ、19は分布屈折
率形ロッドレンズ、20−a、20−b、20−c、2
0−dはコーナキューブ、21−a、21−b、2l−
C121−dは出射ファイバ、22は台形プリズム、2
3及び24は干渉膜フィルタ、25及び26は三角プリ
ズム、27は回折格子基板、28及び29は回折格子基
板27の同一面上に設けられたブレーズ波長の異なる回
折格子である。なお、コーナキューブは反射光の変位方
向が回折格子主面と垂直となるように設定しである。
In FIG. 3, 18 is an input fiber, 19 is a distributed index rod lens, 20-a, 20-b, 20-c, 2
0-d is a corner cube, 21-a, 21-b, 2l-
C121-d is an output fiber, 22 is a trapezoidal prism, 2
3 and 24 are interference film filters, 25 and 26 are triangular prisms, 27 is a diffraction grating substrate, and 28 and 29 are diffraction gratings with different blaze wavelengths provided on the same surface of the diffraction grating substrate 27. Note that the corner cube is set so that the direction of displacement of the reflected light is perpendicular to the main surface of the diffraction grating.

第3図実施例の動作を、第4図に示した分布h1折十形
ロツ1〜レンズ19の端部拡大図を用いて説明する。入
射ファイバ18から入射した波長+200nmの光は回
折格子28で回折され、コーナキューブ2〇−ilに集
光する。この光は、コーナキューブ20−aの・1法と
結像位置で決まる距離だけ回折格子主面と垂直に変位し
て回折格子28に向って反射され、再び回折されて出U
、Iファイバ21−aに結像する。
The operation of the embodiment shown in FIG. 3 will be explained with reference to an enlarged view of the end portion of the distribution h1-shaped lens 1 to the lens 19 shown in FIG. Light with a wavelength of +200 nm entering from the input fiber 18 is diffracted by the diffraction grating 28 and focused on the corner cube 20-il. This light is displaced perpendicularly to the main surface of the diffraction grating by a distance determined by the .1 law of the corner cube 20-a and the imaging position, is reflected toward the diffraction grating 28, is diffracted again, and is emitted from the U.
, the image is formed on the I fiber 21-a.

このとき中心波長が1200nmから変動すれば、コー
ナキューブ20−aの集光位置は回折格子主面内で移動
するが、その位置がコーナキューブ20−aの反則面内
にあれはコーナキューブ20−aかr)の反射光は回折
光とばぼ同一・角度で逆行するため、再回折さAした光
は波長の変化にかかわらず常に一定の角度を保ち、出射
ファイバ21−aに結像することになり、この結果、広
い通過波長帯域の特性を実J31することが可能となる
。同様に波長1300nm、810nm、890 n 
mの入射光はそれぞれコーナキューブ20−b、20−
c、20−dを経由して出射ファイバ2l−1)、21
−c、21−dに結像する。このようにして、第3図実
施例によれば、第2図実施例で残された問題点を解決し
、各波長の通過41F域幅を充分に広いものとすること
ができる。
At this time, if the center wavelength changes from 1200 nm, the focusing position of the corner cube 20-a moves within the main surface of the diffraction grating, but if the position is within the irregular surface of the corner cube 20-a, Since the reflected light from a and r) travels in the opposite direction at exactly the same angle as the diffracted light, the re-diffracted light A always maintains a constant angle regardless of changes in wavelength and forms an image on the output fiber 21-a. As a result, it becomes possible to realize the characteristics of a wide passing wavelength band. Similarly, wavelengths of 1300nm, 810nm, 890n
The incident lights of m are respectively corner cubes 20-b and 20-
Output fibers 2l-1), 21 via c, 20-d
-c and 21-d. In this way, according to the embodiment of FIG. 3, the problems remaining in the embodiment of FIG. 2 can be solved, and the passage 41F bandwidth of each wavelength can be made sufficiently wide.

なお、」二記第2図及び第3図実施例では、設置する回
折格子の数を2個とする場合について説明したが、本発
明では、さらに回折格子の数を多くし、それに応じて干
渉膜フィルタの個数を多くしても、前述実施例の場☆と
同じ動作を行なわせることができ、しかもその場合も同
一基板面」二に複数の回折格子を設ける構造をそのまま
採用できることから、微細な角度調整を全く不要とし、
組立工程を極めて簡易化することができる利点がある。
In addition, in the embodiments in Figures 2 and 3 described in Section 2, the case where the number of installed diffraction gratings is two was explained, but in the present invention, the number of diffraction gratings is further increased and interference is reduced accordingly. Even if the number of membrane filters is increased, the same operation as in the above embodiment can be performed, and in that case, the structure in which multiple diffraction gratings are provided on the same substrate surface can be adopted as is, making it possible to No need for angle adjustment at all,
This has the advantage that the assembly process can be extremely simplified.

〔発明の効果〕〔Effect of the invention〕

以」−説明したように、本発明によれば、複数の回折格
子を用いて広波長帯域の回折格子形光分波器を構成する
場合に、回折格子間の微細な角度調整が不要となり、組
立工程が極めて容易となる。
As described above, according to the present invention, when configuring a wide wavelength band diffraction grating type optical demultiplexer using a plurality of diffraction gratings, fine angle adjustment between the diffraction gratings is no longer necessary. The assembly process becomes extremely easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の説明図、第2図は本発明の一実施例図
、第3図は本発明の他の実施例図、第4図は第3図にお
ける分布屈折率形ロッドレンズ19の端部拡大図である
。 符号の説明 】、7.18・・・入射ファイバ 2・・コリツー1〜レンズ ;1.10.11.2;3.24・・・干渉膜フィルタ
4.5.13.14.28.29・・・回折格子6.1
7.21・・・出射ファイバ 8.19・・・分布屈折率形ロッドレンズ9.22・・
・台形プリズム 12.27・・・回折格子上(板 15.16.25.26・・・三角ブリズ1120・・
コーナキューブ 特W1出願人 「1本電信電話公社 代理人弁理士 中村 純之助 埼 1 図 瀾・2図
FIG. 1 is an explanatory diagram of a conventional example, FIG. 2 is a diagram of one embodiment of the present invention, FIG. 3 is a diagram of another embodiment of the present invention, and FIG. 4 is a gradient index rod lens 19 in FIG. 3. FIG. 2 is an enlarged view of the end. Explanation of symbols], 7.18... Input fiber 2... Coritsu 1 ~ lens; 1.10.11.2; 3.24... Interference film filter 4.5.13.14.28.29. ...Diffraction grating 6.1
7.21... Output fiber 8.19... Gradient index rod lens 9.22...
・Trapezoidal prism 12.27...on the diffraction grating (plate 15.16.25.26...triangular prism 1120...
Corner Cube Special W1 Applicant ``1 Telegraph and Telephone Corporation Representative Patent Attorney Junnosuke Nakamura 1 Figure 2 Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)入n・1フアイバ中を伝搬する波長多重光を複数
の波J(の波に分解してそれぞれ別の出射ファイバに振
り分ける光分波器によンいて、入射光を平行光束とする
コリメー1へレンズと、特定波長帯域の光を選択的に通
過させる複数個の干渉膜フィルタと、同一・、1.(板
面1−に設けたブレーズ波長の異なる複数の回折格子と
を備え、入射ファイバからの入力・1光に上記コリメー
トレンズ及び−に記干渉膜フィルタを順次通して波長帯
域の異なる互いにほぼ平行な複数光束に分離し各光束を
上記回折格子にそJしぞオシ尋びいて回折光とし、得ら
れた各回折光を1−副子d1;膜フィルタを通して一光
束とし、」二記コリメートレンズにより入射ファイバの
端面近傍に設置した複数個の出射ファイバ端面にそれぞ
れ集束させることを特徴とする光分波器。
(1) The wavelength-multiplexed light propagating through the input n-1 fiber is decomposed into multiple waves J (waves) and distributed to separate output fibers.The input light is converted into a parallel beam using an optical demultiplexer. The collimator 1 includes a lens, a plurality of interference film filters that selectively pass light in a specific wavelength band, and a plurality of diffraction gratings with different blaze wavelengths provided on the same plate surface 1-, The input light from the input fiber is sequentially passed through the above-mentioned collimating lens and the interference film filter described in - to separate it into multiple mutually almost parallel light beams with different wavelength bands, and each light beam is applied to the above-mentioned diffraction grating. Each of the obtained diffracted lights is passed through a splint d1 membrane filter to form a single beam of light, and is focused onto the end faces of a plurality of output fibers installed near the end faces of the input fibers using collimating lenses. An optical demultiplexer featuring
(2)入射ファイバ中を伝搬する波長多重光を複数の波
長の波に分解してそれぞれ別の出射ファイバに振り分け
る光分波器において、入射光を平行光束とするコリツー
1−レンズと、特定波長帯域の光を選択的に通過させる
複数個の干渉膜フィルタと、同一基板面−1−に設けた
ブレーズ波長の異なる複数の回折格子と、回折光の結像
位置近傍にそれぞれ一定間隔だけ離して配置されて各通
過波長帯域にわたる入射ファイバ実像より大きな反射面
を有して入射してくる回折光を逆平行に戻す複数個のコ
ーナキューブとを備え、入射ファイバからの入射光を上
記コリメートレンズ及び上記干渉膜フィルタを順次通し
て波長帯域の異なる互いにほぼ平行な複数光束に分離し
各光束を上記回折格子にそれぞれ導びいて回折光とし、
この回折光を上記コーナキューブを介して再び上記回折
格子に導びき、得られる再回折光を入射ファイバの端面
近傍に設置した複数個の出射ファイバ端面にそれぞれ集
束させることを特徴とする光分波器。
(2) In an optical demultiplexer that decomposes wavelength-multiplexed light propagating in an input fiber into waves of multiple wavelengths and distributes them to different output fibers, a Cori2 1-lens that converts the input light into a parallel beam and a specific wavelength A plurality of interference film filters that selectively pass band light, a plurality of diffraction gratings with different blaze wavelengths provided on the same substrate surface -1-, and a plurality of diffraction gratings arranged at fixed intervals near the imaging position of the diffracted light. a plurality of corner cubes arranged to have reflective surfaces larger than the real image of the input fiber over each passing wavelength band and return the incident diffracted light to antiparallel; Passing through the interference film filter sequentially, the light beams are separated into a plurality of substantially parallel light beams having different wavelength bands, and each light beam is guided to the above-mentioned diffraction grating to become diffracted light,
Optical demultiplexing characterized by guiding this diffracted light to the diffraction grating again via the corner cube, and focusing the obtained re-diffracted light onto each of the end faces of a plurality of output fibers installed near the end face of the input fiber. vessel.
JP3876684A 1984-03-02 1984-03-02 Optical demultiplexer Granted JPS60184217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3876684A JPS60184217A (en) 1984-03-02 1984-03-02 Optical demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3876684A JPS60184217A (en) 1984-03-02 1984-03-02 Optical demultiplexer

Publications (2)

Publication Number Publication Date
JPS60184217A true JPS60184217A (en) 1985-09-19
JPS6231323B2 JPS6231323B2 (en) 1987-07-08

Family

ID=12534407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3876684A Granted JPS60184217A (en) 1984-03-02 1984-03-02 Optical demultiplexer

Country Status (1)

Country Link
JP (1) JPS60184217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001037014A1 (en) * 1999-11-12 2001-05-25 Cme Telemetrix Inc. Volume or stacked holographic diffraction gratings for wavelength division multiplexing and spectroscopy

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285271A (en) * 1987-05-15 1988-11-22 Hitachi Ltd Distributor rotor
JPH01103214U (en) * 1987-12-28 1989-07-12
JPH01103215U (en) * 1987-12-28 1989-07-12
US4833354A (en) * 1988-06-13 1989-05-23 Trw Inc. Oil-filled submergible electric pump motor with unvarnished stator structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723906A (en) * 1980-07-21 1982-02-08 Fujitsu Ltd Broad-band optical branching filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723906A (en) * 1980-07-21 1982-02-08 Fujitsu Ltd Broad-band optical branching filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001037014A1 (en) * 1999-11-12 2001-05-25 Cme Telemetrix Inc. Volume or stacked holographic diffraction gratings for wavelength division multiplexing and spectroscopy

Also Published As

Publication number Publication date
JPS6231323B2 (en) 1987-07-08

Similar Documents

Publication Publication Date Title
US4786133A (en) Multiplexer-demultiplexer using an elliptical concave grating and produced in integrated optics
US5737104A (en) Wavelength division multiplexer and demultiplexer
US4198117A (en) Optical wavelength-division multiplexing and demultiplexing device
US4643519A (en) Wavelength division optical multiplexer/demultiplexer
US6008920A (en) Multiple channel multiplexer/demultiplexer devices
US4622662A (en) Wavelength-selective multiplexer-demultiplexer
US6542306B2 (en) Compact multiple channel multiplexer/demultiplexer devices
US5973838A (en) Apparatus which includes a virtually imaged phased array (VIPA) in combination with a wavelength splitter to demultiplex wavelength division multiplexed (WDM) light
US7483190B2 (en) Method and apparatus for implementing a multi-channel tunable filter
WO2012172968A1 (en) Optical device
JPS61212805A (en) Reverser for separating a plurality of light signals in optical integration
US7162115B2 (en) Multiport wavelength-selective optical switch
JPS5844414A (en) Wavelength multiplexer or wavelength demultiplexer
JP2003114402A (en) Optical multiplexer/demultiplexer and its adjusting method
US4735478A (en) Optical coupling device for optical waveguides
WO2001086848A1 (en) Optical wavelength division multiplexer and de-multiplexer
JPS60184217A (en) Optical demultiplexer
JPH11223745A (en) Device equipped with virtual image phase array combined with wavelength demultiplexer for demultiplexing wavelength multiplexed light
JP2733116B2 (en) Optical multiplexer / demultiplexer
JPH11101923A (en) Optical fiber wavelength multiplexer-demultiplexer
JPS61223711A (en) Demultiplexer for optical communication
US20020085801A1 (en) Wavelength division multiplexing and de-multiplexing element and wavelength router
US6701045B2 (en) Planar optical waveguide dense wavelength division multiplexer
JPS6247005A (en) Wavelength multiplexing and demultiplexing diffraction grating
WO2001037014A1 (en) Volume or stacked holographic diffraction gratings for wavelength division multiplexing and spectroscopy