JPS60107003A - Material of light transmitting path - Google Patents

Material of light transmitting path

Info

Publication number
JPS60107003A
JPS60107003A JP58214835A JP21483583A JPS60107003A JP S60107003 A JPS60107003 A JP S60107003A JP 58214835 A JP58214835 A JP 58214835A JP 21483583 A JP21483583 A JP 21483583A JP S60107003 A JPS60107003 A JP S60107003A
Authority
JP
Japan
Prior art keywords
refractive index
silica
quartz glass
core
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58214835A
Other languages
Japanese (ja)
Inventor
Yasuo Kuroda
黒田 康雄
Kuniaki Wakabayashi
若林 邦昭
Takeshi Kimura
猛 木村
Teruzo Ito
伊藤 輝三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP58214835A priority Critical patent/JPS60107003A/en
Publication of JPS60107003A publication Critical patent/JPS60107003A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain a silica layer contg. B and F and a difference of 0.01-0.03 in refractive index (RI) from quartz glass by limiting an amt. of O2 to be used and increasing an amt. of dopant to be used. CONSTITUTION:A quartz glass tube of 12mm. inside diameter set to a glass lathe and rotated in 60rpm is being supplied with a gas mixture of 700ml/min O2, 200ml/min SiCl4, and 230ml/min BF3, and heated to 1,500 deg.C by moving an oxyhydrogen burner along the tube in the direction of gas flow in a speed of 10cm/min, thus producing a silica layer as a clad layer codoped with B and F on the inside wall of the tube. A high-purity quartz glass rod of 6mm. outside diameter to be made a core is inserted into the quartz glass tube, collapsed by said burner, and drawn into a thin fiber. The optical fiber thus obtained has a core RI of 1.4583 and a clad RI of 1.4476, and a light loss of 3.2dB/km as to 800nm wavelength light.

Description

【発明の詳細な説明】 本発明はドープされたシリカ層をクラッドとする、開口
数の大きな光伝送路用素材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a material for an optical transmission line having a large numerical aperture and having a doped silica layer as a cladding.

現在、通信用光伝送路の材料としては材料自体の吸収や
散乱による光透過損失が少ないことから、主忙高純度の
石英ガラスが選ばれている。石英ガラスを光伝送路用素
材として用いるためには、光伝送路の構成単位であるガ
ラスファイバー断面の中心部(コア)の屈折率を周辺部
(クラッド)のそれに比べて高(することが必要で、こ
のような構造によって、コアに閉じ込められた光がクラ
ッドとの界面において全反射または屈折を繰返しながら
ガラスファイバーの軸に沿って進む性質を利用するもの
であり、開口数で表わされるところのコアとクラッドの
屈折率差が大きい方がコア外への光の漏洩が少なくなり
、さらに光源からの光伝送路への光の導入、並びに光伝
送路から受光素子への光の取出しが有利となる。このた
め、屈折率差にして0.01以上、開口数忙してo、1
7以上の光伝送路が要望されているのである。
Currently, high-purity quartz glass is selected as a material for optical transmission lines for communication because it has little light transmission loss due to absorption and scattering of the material itself. In order to use silica glass as a material for optical transmission lines, it is necessary that the refractive index of the central part (core) of the cross section of the glass fiber, which is the structural unit of the optical transmission line, be higher than that of the peripheral part (cladding). This structure utilizes the property that light confined in the core travels along the axis of the glass fiber while repeating total reflection or refraction at the interface with the cladding, and the numerical aperture is The larger the difference in refractive index between the core and cladding, the less light leaks out of the core, and the more advantageous it is to introduce light from the light source to the optical transmission path and to extract light from the optical transmission path to the light receiving element. Therefore, the refractive index difference is 0.01 or more, and the numerical aperture is o, 1.
There is a demand for seven or more optical transmission lines.

開口数の大きな光伝送路用素材としては、化学気相析出
法(CVD法)、垂直軸付法CVAD法)等によってゲ
ルマニウム、リン等の屈折率を高める効果のあるドーパ
ントを加えて製造したシリカをコアとし、無ドープのシ
リカをクラッドとするものが実用化されているが、光を
通すコアは出来るだけ屈折率が低く、純粋で光損失の少
ない材料であることが望ましく、そのためには、屈折率
を高めるドーパントの添加量のできるだけ少ないシリカ
、乃至は無ドープのシリカ、さらに望ましくは屈折率を
低減し、光散乱損失を減少した石英ガラスを使用するの
がよい。
As a material for optical transmission paths with a large numerical aperture, silica manufactured by adding dopants such as germanium and phosphorus that have the effect of increasing the refractive index by chemical vapor deposition (CVD method, vertical axis CVAD method), etc. A material with a core of silica and a cladding of undoped silica has been put into practical use, but it is desirable that the core that transmits light be made of a pure material with as low a refractive index as possible, and with little optical loss. It is preferable to use silica in which the amount of dopant that increases the refractive index is added as small as possible, or undoped silica, and more preferably silica glass with a reduced refractive index and reduced light scattering loss.

このような屈折率の低い材料をコアとする光伝送路用素
材を形成するために、石英ガラスとの屈折率差が0.0
1以上のクラッド用低屈折率のシリカが要望されている
のである。低屈折率のシリカとしては次のような方法に
より得られるものが知られている。
In order to form an optical transmission path material with a core of such a material with a low refractive index, the difference in refractive index with quartz glass is 0.0.
There is a need for one or more silicas with a low refractive index for the cladding. Silica having a low refractive index is known to be obtained by the following method.

(1)パイコールガラスとして知られている高ケイ酸ガ
ラス、 (2) 水素化ホウ素乃至塩化ホウ素と四塩化ケイ素の
混合ガスの酸化により得られるホウ素ドープのシリカ、 (3)四フッ化ケイ素、フレオンとして知られているフ
ッ化炭素、あるいはフッ化イオウと四塩化ケイ素の混合
ガスの酸化により得られるフッ素ドープのシリカ、 (4)ホウ素を含み、水素を含まない、常温で液体乃至
気体のフッ素化合物と四塩化ケイ素の混合ガスの酸化に
より得られるホウ素とフッ素を共ドープしたシリカ。
(1) High silicate glass known as Pycor glass, (2) Boron-doped silica obtained by oxidation of a mixed gas of boron hydride or boron chloride and silicon tetrachloride, (3) Silicon tetrafluoride, Fluorine-doped silica obtained by oxidizing fluorocarbon known as freon or a mixed gas of sulfur fluoride and silicon tetrachloride; (4) Fluorine that contains boron but does not contain hydrogen and is a liquid or gas at room temperature. Silica co-doped with boron and fluorine obtained by oxidizing a mixed gas of a compound and silicon tetrachloride.

しかしながら、以上の(1)〜(4)の方法で得られる
クラツド材にはそれぞれ次のような難点がある。
However, the clad materials obtained by methods (1) to (4) above each have the following drawbacks.

すなわち、 (1)については製法上、光の散乱による光損失のもと
になる気泡を含んでいる上、石英ガラスとの屈折率差が
0.01に達せず、選択性がないのである。
That is, regarding (1), due to the manufacturing method, it contains bubbles that cause light loss due to light scattering, and the difference in refractive index with silica glass does not reach 0.01, so there is no selectivity.

(2)については石英ガラスとの屈折率差が0.01を
越えるものも得られているが、残念ながら熱履歴により
屈折率の変動を受け易く、そのため光伝送路の重要な特
性の1つである開口数が不定で光伝送システムの設計を
困難とする。
Regarding (2), some products with a refractive index difference of more than 0.01 with quartz glass have been obtained, but unfortunately, the refractive index is easily affected by thermal history, and therefore it is one of the important characteristics of optical transmission lines. The numerical aperture is unstable, making it difficult to design optical transmission systems.

(3)については化学気相析出法(CVD法)により、
コア部の生成に先立ち1石英ガラス′Uの内壁に形成す
る場合と酸素を含むプラズマ炎により酸化、溶融して素
塊を作り、次いで半溶融状態下でダイスを通して管とし
、CVD法、あるいはロンドインチューブ法のクラツド
材とする場合とがあるが、それぞれ次のような欠点があ
る。すなわち、前者の場合には石英ガラスとの屈折率差
0.01以上な得るべく多量にドーパントを使用すると
、フッ素による石英ガラスのエツチング効果が顕著とな
って、シリカの析出が困難となるのである。一方、後者
の場合VCは屈折率の十分低いものが得られているが%
製管工程に高温と煩雑な操作を要する上、純度の維持が
困難で、光損失の原因となる不純物の混入防止に多大の
努力を要するという欠点がある。
Regarding (3), by chemical vapor deposition method (CVD method),
Prior to the generation of the core part, it is formed on the inner wall of 1 quartz glass 'U, and is oxidized and melted using a plasma flame containing oxygen to form an elementary block, which is then passed through a die in a semi-molten state to form a tube, and then processed by CVD or rond. Clad materials are sometimes used using the in-tube method, but each method has the following drawbacks. In other words, in the former case, if the dopant is used in as large a quantity as possible, with a refractive index difference of 0.01 or more with respect to silica glass, the etching effect of fluorine on silica glass becomes significant, making it difficult to precipitate silica. . On the other hand, in the latter case, VC has a sufficiently low refractive index, but
The drawbacks are that the tube-making process requires high temperatures and complicated operations, and that it is difficult to maintain purity and requires great effort to prevent contamination with impurities that cause optical loss.

(4)については(2)の難点である熱履歴による屈折
率の変動を防除すべく、本発明者らが開発した方法であ
るが、ホウ素のフッ素化合物、たとえば三フッ化ホウ素
を多量にドープしようとすると、ホウ素とフッ素を共ド
ープしたシリカの析出速度が低下するため、ドーパント
の添加量は四塩化ケイ素の40係までが限度であり、従
って生成するシリカの屈折率は石英ガラスのそれとの差
で0.01%が限度となるう しかしながら、コア材の屈折率低減と光伝送路の開口数
増大の要請が強<1、このため、この(4)で述べたホ
ウ素とフッ素を共ドープしてなる低屈折率のシリカを得
る方法について、本発明者らはさらに屈折率を低減した
シリカを得るべく、種々研究を行なった結果、改良点を
見出し1本発明に到達した。
Regarding (4), this is a method developed by the present inventors in order to prevent fluctuations in the refractive index due to thermal history, which is a drawback of (2). If one attempts to do so, the precipitation rate of silica co-doped with boron and fluorine decreases, so the amount of dopant added is limited to 40 parts of silicon tetrachloride, and therefore the refractive index of the silica produced is similar to that of silica glass. However, there is a strong demand for reducing the refractive index of the core material and increasing the numerical aperture of the optical transmission path, and for this reason, it is necessary to co-dope boron and fluorine as described in (4). Regarding the method for obtaining silica with a low refractive index, the present inventors conducted various studies in order to obtain silica with a further reduced refractive index, and as a result, they found improvements and arrived at the present invention.

すなわち、前発明の様に、通常のCVD法におけるドー
ピングの観念に従い、析出体の主体であるシリカの原料
(四塩化ケイ素等〕に比べて、少量のドーパント(三フ
ッ化ホウ素)を用い、かり該シリカ原料と該ドーパント
の酸化に要する理論曾より著しく大過剰のeiR素ガス
をキャリヤーガスとして用いた場合には、ドーパン14
加蓋の増大と共にシリカの析出速度が低下するので、実
用上石英ガラスとの屈折率差は0.01が限度となる。
That is, as in the previous invention, in accordance with the concept of doping in the usual CVD method, a small amount of dopant (boron trifluoride) is used compared to the raw material of silica (silicon tetrachloride, etc.) which is the main part of the precipitate. When a significantly larger excess of eiR gas than the theoretical value required for oxidation of the silica raw material and the dopant is used as a carrier gas, the dopant 14
Since the precipitation rate of silica decreases as the adhesion increases, the practical limit for the difference in refractive index with silica glass is 0.01.

屈折率差の上限値としては、該シリカ原料に比べて該ド
ーパントの添加量を増大させると同時に酸素ガスの混合
t7に限定すれば、該シリカの析出速度を著しく損うこ
となく、石英ガラスとの屈折率差が0.01以上のホウ
素とフッ素を共ドープした所望の低屈折率のシリカ層を
化学気相析出法により形成できることを見出しのである
。すなわち、本発明の要旨とするところは、相対的に光
屈折率の高い中心部(コア)と該コアに隣接し、相対的
に光屈折率の低い周辺部(クラッド)を含むシリカ系光
伝送路用素材において、ホウ素とフッ素を含み、石英ガ
ラスとの屈折率差が0.01以上0.03’以下のシリ
カをクラッドとすることを%徴とする光伝送路用素材、
にある。
As for the upper limit of the refractive index difference, if the amount of the dopant added is increased compared to the silica raw material and at the same time the oxygen gas mixture is limited to t7, the silica precipitation rate can be increased without significantly impairing the silica precipitation rate. It was discovered that a desired low refractive index silica layer co-doped with boron and fluorine and having a refractive index difference of 0.01 or more can be formed by chemical vapor deposition. That is, the gist of the present invention is to provide a silica-based optical transmission system that includes a central portion (core) having a relatively high optical refractive index and a peripheral portion (cladding) adjacent to the core and having a relatively low optical refractive index. A material for an optical transmission line, which contains boron and fluorine and has a cladding of silica with a refractive index difference of 0.01 or more and 0.03' or less with respect to silica glass;
It is in.

本発明では、以上のように、酸素ガスの使用量を限定し
、かつドーパントの量を増大すれば、ホウ素とフッ素を
含み、石英ガラスとの屈折率差が0.01以上0.03
以下のシリカ層を得ることができる。屈折率差が0.0
3を越えると、シリカの析出速度が低下し、所要のシリ
カ層を得るためには長大な時間を要するので工業的には
不適であり、−万、石英ガラスとの屈折率差が0.03
であれば高開口数の光伝送路の形成には十分である。
In the present invention, as described above, if the amount of oxygen gas used is limited and the amount of dopant is increased, boron and fluorine are included, and the refractive index difference with quartz glass is 0.01 or more and 0.03.
The following silica layer can be obtained. Refractive index difference is 0.0
If it exceeds 3, the precipitation rate of silica decreases and it takes a long time to obtain the required silica layer, making it industrially unsuitable.
This is sufficient for forming an optical transmission line with a high numerical aperture.

次に、本発明を実施例によってさらに具体的に説明する
が、本発明はその要旨を越えない限り以Fの実施例によ
って限定されるものではない。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

実施例1 ガラス姻磐にセットし、毎分60回転させた石l 英ガラス管(内径12醜)に酸素700 /g、四塩化
ケイ素200/II//分、三フッ化ホウ素230′n
%の混合ガスを供給しながら、酸水素バーナーを11亥
石英ガラス’#に沿って、該混合ガスの流れの方向に1
分間10cMLの速度で移動させつつ、該石英ガラス管
をL500°Cに加熱し、ホウ素とフッ素を共ドープし
たシリカノーを該石英ガラス管の内壁に生成させた。酸
水素バーナー妊よる加熱ゾーンの移動を60回くり返し
た後、加熱ならびに上記混訃ガスの供給を止めて、コア
となるべき、vあ所産石英ガラスI4(径6喝)を該石
英ガラス管に挿入し。
Example 1 Oxygen 700/g, silicon tetrachloride 200/II/min, boron trifluoride 230'n were placed in a stone glass tube (inner diameter 12/min) set on a glass plate and rotated at 60/min.
While supplying a mixed gas of
While moving at a rate of 10 cML per minute, the quartz glass tube was heated to L500° C. to form silica powder co-doped with boron and fluorine on the inner wall of the quartz glass tube. After repeating the movement of the heating zone using the oxyhydrogen burner 60 times, the heating and the supply of the above-mentioned mixed gas were stopped, and a locally produced quartz glass I4 (diameter 6 mm), which was to become the core, was placed in the quartz glass tube. Insert.

酸、に素バーナーにより該石英ガラス管を加熱、コラブ
シングして該高純度石英ガラス棒と一体化し。
The quartz glass tube was heated with an acid and nitric burner and co-labsed to integrate it with the high-purity quartz glass rod.

光伝送路用素材をf停た。このもののコア径は6輔。Materials for optical transmission lines were stopped. The core diameter of this item is 6 mm.

ドープされたクラッドの厚さは1.0 ttmであった
The thickness of the doped cladding was 1.0 ttm.

この三フッ化ホウ素をドープしてなるクランドの屈折率
は1,4476、コアのそれは1.4583であり、そ
の差は0.0107であった。この素材ヲ2.030’
C,40m/分で線引きして得たファイバーのクラッド
層の屈折率は1.4476であり、光損失は3.2 d
 B/Km (波長0.8 tnn )を再た。
The refractive index of the crand doped with boron trifluoride was 1,4476, that of the core was 1.4583, and the difference between them was 0.0107. This material is 2.030'
C, the refractive index of the cladding layer of the fiber obtained by drawing at 40 m/min is 1.4476, and the optical loss is 3.2 d
B/Km (wavelength 0.8 tnn) was calculated again.

また、この7フイバーを1.000°CIfCj)D熱
した後、徐冷したが、このクラッド層の屈折率は1.4
478であって、熱履歴による変動は1信めて小さく、
実際上無視できることがわかった。なお、三フッ化ホウ
素をドープしたシリカの成分分析を行うため、上述と同
様に酸素ガス700m1.四塩化ケイ素200m1.三
フッ化ホウ素230 mlよりなる混合ガラスを1,5
00°Cに加熱した石英ガラス管に通気して生成させた
シリカを化学分析したところ1重量でホウ素4.1%、
フッ素1.6係を含むことが分った。
In addition, after heating these 7 fibers to 1.000° CIfCj)D, they were slowly cooled, but the refractive index of this cladding layer was 1.4.
478, and the variation due to thermal history is incredibly small.
It turns out that it can be practically ignored. In addition, in order to perform a component analysis of silica doped with boron trifluoride, 700 ml of oxygen gas was added in the same manner as described above. Silicon tetrachloride 200ml1. Mixed glass consisting of 230 ml of boron trifluoride
Chemical analysis of silica produced by aerating a quartz glass tube heated to 00°C revealed that 1 weight of silica contained 4.1% boron.
It was found that it contains fluorine 1.6.

実施例2 四塩化ケイ素の供給量を175m11分、三フッ化ホウ
素の供給量’r:325m11分とし、コア材としては
屈折率1.4547のフッ素をドープした合成石英ガラ
ス棒(径6 rtrm )を用いたこと以外は実施例1
と同様の操作により、光伝送路用素材を得た。
Example 2 The supply amount of silicon tetrachloride was 175 m11 minutes, the boron trifluoride supply amount 'r was 325 m11 minutes, and the core material was a synthetic quartz glass rod (diameter 6 rtrm) doped with fluorine with a refractive index of 1.4547. Example 1 except that
A material for an optical transmission line was obtained by the same operation as above.

この場合のクラッド層の屈折率は1.4405である。The refractive index of the cladding layer in this case is 1.4405.

この光伝送路用素材を実砲例1と同様VC116+引き
して得たファイバーのコアとクラッドの屈折率は1.4
547及び1.4405であって変化なく、かつ光損失
は2.9dB/Km(波長0.8μm)であった。
The refractive index of the core and cladding of the fiber obtained by pulling VC116+ from this optical transmission line material as in Actual Gun Example 1 is 1.4.
547 and 1.4405, with no change, and the optical loss was 2.9 dB/Km (wavelength 0.8 μm).

実施例3 ガラス確盤に七ッ卜し、毎分60回転させたバイコ k
’U(内径12m)ItC酸素tJス600”7分。
Example 3 A vacuum k that was mounted on a glass plate and rotated at 60 revolutions per minute.
'U (inner diameter 12m) ItC oxygen tJsu 600" 7 minutes.

四塩化ケイ素100 ml1分、三フッ化ホウ素350
m11分よりなる混合ガスを供給しながら、酸水素バー
ナーを該石英ガラス管に沼って該混合ガスの流れの方向
に10an1分の速度で移動させつつ、該石英ガラス管
を1.600°Cに加熱し、ホウ素とフッ素を共ドープ
したシリカ層′Jk該石英ガラス・gの内壁に生成させ
た。酸水素バーナーによる加熱ゾーンの移動を60回繰
り返した後、上記混合ガスに代り、酸素500m11分
、四塩化ケイ素200m11分、三フッ化ホウ素70ゴ
/分よりなる混合ガスをJa1気し、上述と同様に酸水
素バーナーによる1 、 600°Cの加熱ゾーンの移
動′Ij!ニア0回繰り返し、仄いで該混合ガスの通気
を止めて、酸水素バーナーによる加熱温度を高め、内啼
忙ホウ素とフッ素を共ド−プしたシリカッ#を生成させ
た該石英ガラス−gをコラプシングして、光伝送路用素
材ヲ得た。
Silicon tetrachloride 100ml 1 minute, boron trifluoride 350ml
The quartz glass tube was heated to 1.600 °C while supplying a gas mixture consisting of 11 min and moving an oxyhydrogen burner into the quartz glass tube at a speed of 10 an1 min in the direction of the flow of the mixed gas. A silica layer co-doped with boron and fluorine was formed on the inner wall of the quartz glass. After repeating the movement of the heating zone with the oxyhydrogen burner 60 times, instead of the above mixed gas, a mixed gas consisting of 500 ml of oxygen for 11 minutes, 200 ml of silicon tetrachloride for 11 minutes, and 70 g/min of boron trifluoride was injected, and the mixture was heated as described above. Similarly, the movement of the heating zone at 1,600°C by an oxyhydrogen burner 'Ij! Repeatedly 0 times, the ventilation of the mixed gas was stopped, the heating temperature was increased with an oxyhydrogen burner, and the quartz glass-g was collapsed to form silica co-doped with boron and fluorine. As a result, we obtained materials for optical transmission lines.

このもののコアとクラッドのJm折4AFi1.449
4及びt 4281であった。この素材を2,010°
C940m/分で線引きしてf勢だファイバーのコアと
クラッド部の屈折率差は0.0213であって変らず、
光損失は2.3 d B /Kmを優だ。
Jm fold 4AFi1.449 of this thing's core and cladding
4 and t 4281. This material is 2,010°
The refractive index difference between the core and cladding portion of the fiber drawn at C940m/min remains unchanged at 0.0213.
The optical loss is better than 2.3 dB/Km.

又、このファイバーを1.0000Cに加熱後、徐冷し
た。この場合のコアとクラッドの屈折率差は0.021
2であって、熱履歴による変動はぎわめて小さく、実際
上無視できることが分った。
Further, this fiber was heated to 1.0000C and then slowly cooled. In this case, the refractive index difference between the core and cladding is 0.021
2, and it was found that the fluctuations due to thermal history are extremely small and can be ignored in practice.

特肝出願人三菱金属株式会社 代 埋 人 白 川 義 直Special liver applicant Mitsubishi Metals Co., Ltd. Substitute Yoshinao Shirakawa

Claims (1)

【特許請求の範囲】[Claims] (1) 相対的に光屈折率の高い中心部(コア)と該コ
アlICl1lI接し、相対的に光屈折率の低い周辺部
(クラッド)を含むシリカ系伝送路用素材において、ホ
ウ素とフッ素を含み、石英ガラスとの屈折率差が0.0
1以上0.03以下のシリカをクラッドとする光伝送路
用素材。
(1) A silica-based transmission line material that includes a center portion (core) with a relatively high optical refractive index and a peripheral portion (cladding) that is in contact with the core and has a relatively low optical refractive index, and contains boron and fluorine. , the refractive index difference with quartz glass is 0.0
A material for optical transmission lines whose cladding is silica of 1 or more and 0.03 or less.
JP58214835A 1983-11-15 1983-11-15 Material of light transmitting path Pending JPS60107003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58214835A JPS60107003A (en) 1983-11-15 1983-11-15 Material of light transmitting path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58214835A JPS60107003A (en) 1983-11-15 1983-11-15 Material of light transmitting path

Publications (1)

Publication Number Publication Date
JPS60107003A true JPS60107003A (en) 1985-06-12

Family

ID=16662321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58214835A Pending JPS60107003A (en) 1983-11-15 1983-11-15 Material of light transmitting path

Country Status (1)

Country Link
JP (1) JPS60107003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180692A (en) * 1988-03-30 1993-01-19 Tokyo Electron Limited Method for the manufacture of boron-containing films by CVD or epitaxial techniques using boron trifluoride
KR100490135B1 (en) * 2001-11-12 2005-05-17 엘에스전선 주식회사 Method of making optical fiber preform having ultimate low PMD

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512948A (en) * 1978-07-13 1980-01-29 Dainichi Nippon Cables Ltd Light communication fiber and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512948A (en) * 1978-07-13 1980-01-29 Dainichi Nippon Cables Ltd Light communication fiber and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180692A (en) * 1988-03-30 1993-01-19 Tokyo Electron Limited Method for the manufacture of boron-containing films by CVD or epitaxial techniques using boron trifluoride
KR100490135B1 (en) * 2001-11-12 2005-05-17 엘에스전선 주식회사 Method of making optical fiber preform having ultimate low PMD

Similar Documents

Publication Publication Date Title
US4666247A (en) Multiconstituent optical fiber
US4217027A (en) Optical fiber fabrication and resulting product
US7524780B2 (en) Low loss optical fiber and method for making same
US4385802A (en) Long wavelength, low-loss optical waveguide
Blankenship et al. The outside vapor deposition method of fabricating optical waveguide fibers
JP2005502071A (en) Optical waveguide article having a fluorine-containing region
US4334903A (en) Optical fiber fabrication
EP0160244B1 (en) Quartz glass optical fiber
US4335934A (en) Single mode fibre and method of making
EP0177040B1 (en) Method for producing glass preform for optical fiber
US4165152A (en) Process for producing optical transmission fiber
EP0438876B1 (en) Fabrication of doped optical fibers
US4149867A (en) Method of producing an optical fiber
CN101253126A (en) Process for producing glass material and process for producing optical fiber
US20070137256A1 (en) Methods for optical fiber manufacture
JPS60107003A (en) Material of light transmitting path
CN113461322B (en) Optical fiber and method for manufacturing optical fiber preform
US4318726A (en) Process for producing optical fiber preform
EP0251312B1 (en) Method of manufacturing fiber preform for single-mode fibers
WO2004018374A1 (en) Method of manufacturing optical fiber preform using modified chemical vapor deposition including dehydration and dechlorination process and optical fiber manufactured by the method
JP3258478B2 (en) High viscosity synthetic quartz glass tube for thermal CVD method and quartz glass preform for optical fiber using the same
US5641333A (en) Increasing the retention of Ge02 during production of glass articles
EP0135126A1 (en) Preparation of glass for optical fibers
JPH0742131B2 (en) Method for manufacturing glass base material for optical fiber
JPS5925738B2 (en) Optical glass fiber manufacturing method