JPS60106905A - Production of permanent magnet alloy powder - Google Patents

Production of permanent magnet alloy powder

Info

Publication number
JPS60106905A
JPS60106905A JP58214760A JP21476083A JPS60106905A JP S60106905 A JPS60106905 A JP S60106905A JP 58214760 A JP58214760 A JP 58214760A JP 21476083 A JP21476083 A JP 21476083A JP S60106905 A JPS60106905 A JP S60106905A
Authority
JP
Japan
Prior art keywords
alloy powder
rare earth
magnet alloy
permanent magnet
reduction diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58214760A
Other languages
Japanese (ja)
Inventor
Shigeo Tanigawa
茂穂 谷川
Takayoshi Sato
隆善 佐藤
Kenichi Kawana
川名 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP58214760A priority Critical patent/JPS60106905A/en
Publication of JPS60106905A publication Critical patent/JPS60106905A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a product contg. remaining Ca and C in a smaller amt. and having an excellent magnetic characteristic and stability with a direct reduction diffusion method for the permanent magnet alloy powder consisting of a Cu substd. type multi-element rare earth intermetallic compd. by using an acid for cleaning the resultant product of reduction diffusion reaction. CONSTITUTION:The permanent magnet alloy powder of the compsn. expressed by the formula (R is >=1 kind among rare earth metals including mainly Sm, Ce and Pr, M is >=1 kind among Si, Ti, Zr, Mn, V, Nb, Cr, Mo, Hf, 0.01<=x<=0.40, 0.02<=y<=0.25, 0.001<=z<=0.15, 5.0<=A<=8.0) is produced by a reduction diffusion method with rare earth oxide as a raw material. The resultant product of the reduction diffusion reaction is cleaned in an acidic aq. soln. having 2-5pH and is then neutralized by washing and dried. The dried product is subjected to wet pulverizing to form the powder which has 2-5mu average grain size and of which the contents of Ca and C as impurities during pulverization are maintained respectively at <=0.2wt%.

Description

【発明の詳細な説明】 本発明はCu@換型多元系希土類金属間化合物永久磁石
合金の製造方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a Cu@ exchange type multi-component rare earth intermetallic compound permanent magnet alloy.

従来R−Go −Fe−Cuなる合金系に5i1Ti 
、 Zr、Mn、 Cr、H(等の遷移金属元素を添加
することにより優れた磁気特性が得られることが知られ
ており、特にSs −Go −Fe −Cu−1yl系
にJ3いては、最大エネルギー積30MGQe以上の特
性が得られることが報告されている。
Conventionally, 5i1Ti was added to the alloy system R-Go -Fe-Cu.
It is known that excellent magnetic properties can be obtained by adding transition metal elements such as , Zr, Mn, Cr, and H (such as It has been reported that characteristics with an energy product of 30 MGQe or more can be obtained.

(例えば特公昭55−50100号公報参照)このよう
な高特性を得るためにはCOの一部を)”e SCu 
(For example, see Japanese Patent Publication No. 55-50100.) In order to obtain such high characteristics, a part of the CO)"e SCu
.

M(Si、−ri、Zr、Mn、V、、NiMo。M(Si, -ri, Zr, Mn, V,, NiMo.

1−1r等)で置換することが必須の条件となることは
公知の事実である。
It is a well-known fact that substitution with (1-1r, etc.) is an essential condition.

このような多元系希土類金属間金属化合物永久磁石合金
の製造方法としては、希土類金属、コバルト、鉄、その
他の合金構成成分の純金属(#1.密には純金属に近い
もの)を原料としてへ周波溶解しついで鋳造したインゴ
ットを粉砕づる方法が最も一般的である。しかしながら
、希土類金属は一般に高価であり、溶解法では原料コス
トが高く、製造コストを上げる原因となっている。
The method for producing such a multi-component rare earth intermetallic compound permanent magnetic alloy is to use rare earth metals, cobalt, iron, and other alloy constituents as pure metals (#1. Close to pure metals) as raw materials. The most common method is to crush the cast ingot after frequency melting. However, rare earth metals are generally expensive, and the melting method requires high raw material costs, which increases manufacturing costs.

一方溶解法の上記欠点を改善する方法としては、安価な
希土類酸化物を原料として還元剤(Ca 。
On the other hand, as a method to improve the above-mentioned drawbacks of the dissolution method, a reducing agent (Ca 2 ) is used using an inexpensive rare earth oxide as a raw material.

Ca H2、M(+等)を用いて還元し、コバルト、鉄
その他の合金成分と拡散反応により合金化させる直接還
元拡散法が知られている。(例えば特公昭49−729
6号、同53−16798号、同55−30575号お
よび同55−27602号の各公報参照)しかしながら
、直接還元拡散法においては、従来高周波溶解法による
ものより、磁気特性が劣っているという問題点があった
。その理由は次の通りである。
A direct reduction-diffusion method is known in which CaH2, M (+, etc.) is used to reduce the material and alloy it with cobalt, iron, and other alloy components through a diffusion reaction. (For example, Tokuko Sho 49-729
6, No. 53-16798, No. 55-30575, and No. 55-27602) However, the problem with the direct reduction diffusion method is that the magnetic properties are inferior to those using the conventional high-frequency dissolution method. There was a point. The reason is as follows.

従来の直接還元拡散法においては、希土類酸化物と、他
の構成元素の金属粉あるいは酸化物をCa SCa H
2、MO等により還元拡散して得た反応生成物から、不
純物であるCa O,1vlo OをCa (OH)2
、tVlg (OH)2に変換し、Ca(OH)2 、
Mll (Ol−1)2を繰り返し水洗することにより
、排出する方法(デカンテーション)が一般的である。
In the conventional direct reduction diffusion method, rare earth oxides and metal powders or oxides of other constituent elements are converted into Ca SCa H
2. From the reaction product obtained by reduction and diffusion with MO etc., impurities CaO, 1vloO are converted to Ca(OH)2
, tVlg (OH)2, Ca(OH)2,
A common method is to discharge Mll (Ol-1)2 by repeatedly washing it with water (decantation).

しかしながら、Ca(OH)2、M(J(Of−1)2
はいずれも難溶性の化合物であり、その分離には多量の
水と、労力を必要とし、ロストアツプとなる。しかも、
このようにして分離回収した磁石合金粉末中には、通常
0,2wt%以上のCaおよびCが不純物として残存し
ているため、この磁石合金粉末を材料として、粉末冶金
法により作製した永久磁石は、残存CaOによる残留磁
束密度(Br )の低下が生ずると共に、残存Cが焼結
時に、本合金系において適切な保磁力付与のため必須の
構成元素であるM (Si 、1川、Zr、■、Nb 
1Cr 、MO、Hf等あるいはSl)と炭化物を形成
するため磁石合金中の実質的に有効な重量比率が低下し
、その結果保磁力が低下してしまうという欠点を有して
いる。一方、この保磁力の低下を防止するために、あら
かじめM元素の配合量を目標組成に対して過剰に配合す
るかあるいはQuを過剰に添加することにより、保磁力
を目的とする値に回復させることは可能ぐある。しかし
ながら、このような手段によっても、炭化物および酸化
物による若干の3rの低下は避けられないため、溶解法
に近い磁気特性は得られるものの、残存ca 、cai
のばらつきにより、溶解法によるもののと比較して磁気
特性のばらつきが大きいという欠点を有する。
However, Ca(OH)2, M(J(Of-1)2
Both are poorly soluble compounds, and their separation requires a large amount of water and labor, resulting in loss of production. Moreover,
The magnet alloy powder separated and collected in this way usually contains 0.2 wt% or more of Ca and C as impurities, so permanent magnets made by powder metallurgy using this magnet alloy powder as materials are , the residual magnetic flux density (Br) decreases due to residual CaO, and the residual C decreases M (Si, Ichikawa, Zr, ,Nb
Since carbides are formed with 1Cr, MO, Hf, etc. or Sl), the substantially effective weight ratio in the magnet alloy decreases, resulting in a decrease in coercive force. On the other hand, in order to prevent this decrease in coercive force, the coercive force can be restored to the desired value by adding an excessive amount of M element to the target composition in advance or by adding an excessive amount of Qu. It is possible. However, even with such means, a slight decrease in 3r due to carbides and oxides cannot be avoided, so although magnetic properties close to those obtained by the melting method can be obtained, residual ca, cai
Due to the variations in magnetic properties, the magnetic properties have a disadvantage that they vary more than those produced by the melting method.

本発明は、従来の直接還元拡散法における上記欠点を改
善し、磁気特性が優れかっ、安定で生産効率の優れたC
LI置換型多元系希土類金属間化合物永久磁石合金粉末
を得ることのできる製造方法を提供することを目的とす
る。
The present invention improves the above-mentioned drawbacks of the conventional direct reduction-diffusion method, and provides carbon fiber with excellent magnetic properties, stability, and production efficiency.
It is an object of the present invention to provide a manufacturing method capable of obtaining LI-substituted multi-component rare earth intermetallic compound permanent magnet alloy powder.

本発明の永久磁石合金粉末の製造方法は、希土類酸化物
とFe 、Go SM等の金属粉あるいは一部または全
酸化物ど混合して、i ooo〜1300’Cの温度範
囲で、アルゴン好ましくは水素ガスを含む還元性雰囲気
中で還元拡散反応させた後、反応生成物をPH2〜5の
酸性水溶液中で酸洗した後、水洗により中和、乾燥して
得た合金粉末を乾式微粉砕して平均粒径2〜5μ−とし
、微粉砕粉中の残以下本発明をより詳細に説明づる。
The method for producing the permanent magnet alloy powder of the present invention is to mix a rare earth oxide with a metal powder such as Fe or Go SM, or a part or all of the oxide, at a temperature range of Iooo to 1300'C, preferably under argon gas. After carrying out a reduction-diffusion reaction in a reducing atmosphere containing hydrogen gas, the reaction product is pickled in an acidic aqueous solution with a pH of 2 to 5, neutralized by washing with water, and the resulting alloy powder is dry-pulverized. The present invention will be explained in more detail below.

直接還元拡散法により生成する還元副生成物Ca O,
Ca Co 3は、水に対する溶解度が各々0.13g
Ca O/ 100111 (20℃)、1.4i g
 Ca C。
Reduction by-product CaO produced by direct reduction diffusion method
Ca Co 3 has a solubility in water of 0.13 g each.
CaO/ 100111 (20℃), 1.4i g
Ca C.

3/ 100(J (20℃)と小さく、従って従来性
われている、水洗によるデカンテーションによると、多
本発明に係る還元反応副生成物ca o、 ca cO
3のデカンテーションにおいては、予め、PH2〜5の
酸性水溶液中で酸洗し、水に対して難溶性のCa O,
Ca Co 3をCa cl 2、Ca (cト13C
oo)2等の水に対して溶解度の大きいカルシウム塩に
変換する。その後、水洗によりデカンテーションを行な
い、PH6〜8に調整することにより、乾燥後の永久磁
石合金粉末中の不純物Ca量およびC量を容易に共に0
.2重重%以下に制御することが可能となる。
According to conventional decantation by washing with water, the reduction reaction by-products ca o, ca cO
In step 3, decantation, CaO, which is sparingly soluble in water, is pickled in an acidic aqueous solution with a pH of 2 to 5 in advance.
Ca Co 3 to Ca cl 2, Ca (cto13C
oo) Convert to a calcium salt with high solubility in water such as 2. After that, by decantation by washing with water and adjusting the pH to 6 to 8, the amount of impurities Ca and C in the dried permanent magnet alloy powder can be easily reduced to 0.
.. It becomes possible to control the weight to 2% or less.

更に、このようにして得られた合金粉末を原料として粉
末冶金法により永久磁石化するに際しては、合金粉末を
湿式あるいは乾式法により微粉砕する必要があるが、本
発明においては、この微粉砕工程において、不活性ガス
雰囲気中にて、乾式微粉砕、好ましくはジェットミル粉
砕することを特徴とする。乾式微粉砕が本発明の必須構
成要件となるのは、次の理由による。
Furthermore, when turning the alloy powder thus obtained into a permanent magnet by powder metallurgy as a raw material, it is necessary to pulverize the alloy powder by a wet or dry method, but in the present invention, this pulverization step is The process is characterized by dry pulverization, preferably jet mill pulverization, in an inert gas atmosphere. The reason why dry pulverization is an essential component of the present invention is as follows.

本発明に係る合金粉末を湿式ボールミル、振動ミル、ア
トライター等により、微粉砕を行なう際には、活性な希
土類化合物の酸化、さらには着化防止のために、トルエ
ン、アセ1〜ン等の粉砕媒体中で、粉砕を行なうのが一
般的である。
When finely pulverizing the alloy powder according to the present invention using a wet ball mill, vibration mill, attritor, etc., toluene, acetone, etc. Grinding is typically carried out in grinding media.

しかしながら、トルエン、アセトン等の媒体中で湿式粉
砕を行なうと、粉砕時、媒体と希土類金属粉末とがメカ
ノケミカル反応により反応し媒体中のCが、合金粉末表
面に吸着反応し、合金粉末中のC量を増加させたり、極
端な場合粉砕時にSs C+Ti C,Zr C等の炭
化物を形成し焼結後の磁気特性を低下させる。ただし溶
解法による合金粉末の場合には、粉末前のC量が通常0
.1wt%以下であるので、湿式微粉砕により、C扮が
多少増加しても、微粉砕後のC量が0.2WL%を越え
ることはなく、そのため磁気特性に与える影響は小さく
、湿式微粉砕が可能である。一方、還元拡散法による合
金粉末においては、通常粉砕後の粉末中に0.2重量%
以上、本発明に係る洗浄方法を用いたとしても、通常0
.08〜0.2重量%以上のCが含まれるため、粉砕時
のメカノケミカル反応による、C量の増加は、最終磁気
特性に対して、無視出来ない影響を与える。
However, when wet pulverization is performed in a medium such as toluene or acetone, the medium and rare earth metal powder react through mechanochemical reaction during pulverization, and C in the medium adsorbs and reacts with the surface of the alloy powder. If the amount of C is increased, or in extreme cases, carbides such as Ss C + Ti C and Zr C are formed during pulverization, which deteriorates the magnetic properties after sintering. However, in the case of alloy powder produced by the melting method, the amount of C before the powder is usually 0.
.. Since it is less than 1wt%, even if the C content increases slightly due to wet pulverization, the amount of C after pulverization will not exceed 0.2WL%, and therefore the effect on magnetic properties is small, and wet pulverization is possible. On the other hand, in alloy powder produced by the reduction diffusion method, 0.2% by weight is usually added to the powder after pulverization.
As mentioned above, even if the cleaning method according to the present invention is used, normally 0
.. Since C is contained in an amount of 0.8 to 0.2% by weight or more, an increase in the amount of C due to a mechanochemical reaction during pulverization has a non-negligible effect on the final magnetic properties.

そこで、本発明においては、微粉砕を、乾式ボールミル
、乾式アトライター、ジェットミル等を用いることによ
り、粉砕後の不純物CIを0.2魁%以下に制御するこ
とを特徴としている。乾式粉砕の中でもAr 、N2中
等でのジェットミル粉砕が特に有効であり、ジェットミ
ル粉砕を行なうことにより、Ca量、C量を微粉砕前に
比較して、低下させることが可能となり、Caff1を
0.15重 。
Therefore, the present invention is characterized in that the impurity CI after pulverization is controlled to 0.2% or less by using a dry ball mill, dry attritor, jet mill, etc. for fine pulverization. Among dry pulverization methods, jet mill pulverization using Ar, N2, etc. is particularly effective.By performing jet mill pulverization, it is possible to reduce the Ca content and C content compared to before fine pulverization, and Caff1 can be reduced. 0.15 weight.

m%以下、C量を0.1重量%以下とすることも可能と
なる。この理由は、CaO1Ca CO3を含む希土類
金属問永久磁石合金粉末が、ジェットミル粉砕される際
、サイクロン内でその比重差により分離され比重の小さ
い不純物ca o、ca c。
m% or less, and it is also possible to make the C content 0.1% by weight or less. The reason for this is that when the rare earth metal permanent magnet alloy powder containing CaO1CaCO3 is pulverized by a jet mill, it is separated in a cyclone due to the difference in specific gravity, resulting in impurities with small specific gravity such as ca o and ca c.

3はフィルター側へ濃縮されるためである。3 is because it is concentrated to the filter side.

以下、本発明の詳細な説明をする。The present invention will be explained in detail below.

実施例1 最終目標組成が311125,4wt%、Co 49.
8wt%、Cu7,5wt%、F e15.0wt%、
Hf2.3wt%となるように、5ill 203、C
a 1Fe % Co s Cu SHf粉末を秤量し
、V型混合機中で30分間混合して得られた原料粉を、
鉄製反応容器中で、H2ガス中で1200℃にて3@間
還元拡散反応し、約20kgの反応ケーキを得lC0 上記反応ケーキを二分し、一方(試料A)は、約50Ω
の水を満たした洗浄バケツ中に投じ、一時間スターラー
で混合した後、水洗を5時間連続的に繰り返した後、水
のPHが10以下となるのを確認した後、乾燥し、不純
物Ca量とC量の分析を行った。
Example 1 Final target composition: 311125.4 wt%, Co 49.
8wt%, Cu7.5wt%, Fe15.0wt%,
5ill 203,C so that Hf2.3wt%
a 1Fe% Cos Cu SHf powder was weighed and mixed for 30 minutes in a V-type mixer, and the resulting raw material powder was
In an iron reaction vessel, a reduction-diffusion reaction was carried out in H2 gas at 1200°C for 3 hours to obtain a reaction cake of about 20 kg.
After mixing with a stirrer for one hour, washing with water was repeated for 5 hours, and after confirming that the pH of the water was 10 or less, it was dried and the impurity amount of Ca was poured into a washing bucket filled with water. and the amount of C was analyzed.

他方(試料B)は、約30αの水を満たした洗浄バケツ
中に投じた後、酸性水溶液を排出し、数回水洗を行った
のち乾燥し、試料Aと同様にCa。
The other sample (Sample B) was poured into a washing bucket filled with approximately 30α water, the acidic aqueous solution was discharged, and the sample was washed several times with water and then dried.

CIの分析を行ったところ、第1表に示り−ように、試
料Bにおいては、’ca 、c量が0.2重量%以下で
あるのに対して、試料Bにおいては、0.2重量%以上
の残存Ca、Cff1認められた。
When CI was analyzed, as shown in Table 1, in sample B, the amount of 'ca and c was less than 0.2% by weight, whereas in sample B, it was 0.2% by weight or less. Residual Ca and Cff1 of more than % by weight were observed.

実施例2 実施例1で得た、磁石合金粉末の1部を、乾式ボールミ
ル中にて、N2雰囲気中で、ジャケットを水金しながら
、4時間微粉砕を行った。粉砕後の平均粒径はA、B試
料共に約4μ―であった。
Example 2 A portion of the magnetic alloy powder obtained in Example 1 was pulverized for 4 hours in a dry ball mill in an N2 atmosphere while the jacket was being heated with water. The average particle size after pulverization was approximately 4 μ for both samples A and B.

このようにして得た微粉砕粉を磁場中にて、2FON/
am2の成形圧力で成形した。得られた成形体を119
0℃で2時間真空中で焼結後熱処理を施ししかる後、磁
気特性を測定したところ、第2表に示すように、B試料
においては、A試料に較べて残留磁束密度、保磁力とも
^い特性が得られた。
The finely pulverized powder thus obtained was placed in a magnetic field with 2FON/
It was molded at a molding pressure of am2. The obtained molded body was heated to 119
After performing post-sintering heat treatment in vacuum at 0°C for 2 hours, the magnetic properties were measured. As shown in Table 2, sample B had a lower residual magnetic flux density and coercive force than sample A. New characteristics were obtained.

第2表 実施例3 実施例1で得た、試1pABを1ko、湿式振動ミルに
よりトルエン中で3時間微粉砕し、平均粒径3.3μm
とし試ncとした。一方、試料Bを別に1kill、N
2ガス中でジェットミルにて微粉砕を行ない、平均粒径
3.1μmとし試料りとした。
Table 2 Example 3 1 ko of the sample 1 pAB obtained in Example 1 was pulverized in toluene for 3 hours using a wet vibration mill, and the average particle size was 3.3 μm.
I tried it as nc. On the other hand, another 1 kill of sample B, N
The powder was finely pulverized using a jet mill in two gases to obtain a sample with an average particle size of 3.1 μm.

試料〆およびD中の不純物ca 、cmを分析したとこ
ろ第3表に示覆ように試料CにJ3いてはCmが微粉砕
前と比較して増加したが、試料りにおいてはCa 、 
Cff1とも微粉砕前に比較し−C低下した。
When analyzing the impurities ca and cm in sample final and D, as shown in Table 3, in sample C and J3, Cm increased compared to before pulverization, but in sample C, Ca, cm increased.
-C also decreased in Cff1 compared to before pulverization.

これ等微粉砕粉を各々、実施例2と同様に成形、焼結、
熱処理を施して、磁気特性を測定比較したところ、第4
表に示すように、C試料においては、C試料に比較して
高い保磁力が得られた。
These finely pulverized powders were molded, sintered, and
After applying heat treatment and measuring and comparing the magnetic properties, it was found that the fourth
As shown in the table, a higher coercive force was obtained in the C sample than in the C sample.

以上記述の如く、本発明によれば、不純物の少い、多元
系希土類磁石合金粉末の製造が、容易に旬間となる。
As described above, according to the present invention, a multi-component rare earth magnet alloy powder containing few impurities can be easily manufactured in a timely manner.

なお、本実施例においては、8l−CO−Fe−Cu−
Hr系について説明したが、本発明は、本実施例の範囲
に限定されるものではない。
In this example, 8l-CO-Fe-Cu-
Although the Hr system has been described, the present invention is not limited to the scope of this example.

Claims (1)

【特許請求の範囲】 1 、 R(GO+ −X−y−ZFeXCLIyMZ
 ) A (ここでRは5IIl、Ce1Prを中心と
した希土類金属の1種または2種以上の組み合せであり
、Mは5i1T+ SZ+’ 1M1l 、V、Nb 
、 Cr 、Mo 、Hfの1種または2種以上の組み
合ゼ、0.01≦X≦0.40.、 0,02≦y≦0
.25、o、ooi≦l≦0.15.5.0≦A≦8.
0)で示される組成を有する永久磁石合金粉末を、希土
類酸化物を出発材料として還元拡散法により製造する方
法において、還元拡散反応生成物をPH2〜5の酸性水
溶液中で洗浄した後水洗乾燥し、乾式微粉砕して平均粒
径2〜5μ川とし、微粉砕中の不純物Ca量が0.2重
量%以下でかつ不純物C旧が0.2重量%以下としたこ
とを特徴とJる永久磁石合金粉末の製造方法。 2、微粉砕中のCamを0.15重量%以下でかつCI
を0.2型録%以下としたことを特徴とする特許請求の
範囲第1項記載の永久磁石合金粉末の製造方法。
[Claims] 1, R(GO+ -X-y-ZFeXCLIyMZ
) A (Here, R is one type or a combination of two or more rare earth metals centered on 5IIIl and Ce1Pr, and M is 5i1T+ SZ+' 1M1l , V, Nb
, a combination of one or more of Cr, Mo, Hf, 0.01≦X≦0.40. , 0,02≦y≦0
.. 25, o, ooi≦l≦0.15.5.0≦A≦8.
In the method of producing a permanent magnet alloy powder having the composition shown in 0) by a reduction diffusion method using a rare earth oxide as a starting material, the reduction diffusion reaction product is washed in an acidic aqueous solution with a pH of 2 to 5, and then washed with water and dried. It is characterized by dry pulverization to give an average particle size of 2 to 5μ, and the amount of impurity Ca during pulverization being 0.2% by weight or less and impurity C being 0.2% by weight or less. A method for producing magnet alloy powder. 2. Cam during pulverization is 0.15% by weight or less and CI
2. A method for producing a permanent magnet alloy powder according to claim 1, wherein: 0.2% or less.
JP58214760A 1983-11-15 1983-11-15 Production of permanent magnet alloy powder Pending JPS60106905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58214760A JPS60106905A (en) 1983-11-15 1983-11-15 Production of permanent magnet alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58214760A JPS60106905A (en) 1983-11-15 1983-11-15 Production of permanent magnet alloy powder

Publications (1)

Publication Number Publication Date
JPS60106905A true JPS60106905A (en) 1985-06-12

Family

ID=16661090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58214760A Pending JPS60106905A (en) 1983-11-15 1983-11-15 Production of permanent magnet alloy powder

Country Status (1)

Country Link
JP (1) JPS60106905A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108907216A (en) * 2018-07-19 2018-11-30 兰州大学 High-frequency high temperature R2Co17The reduction scattering preparation of based magnetic powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316798A (en) * 1976-07-30 1978-02-16 Chemie Linz Ag Process for producing foamed synthetic resin having improved flammability
JPS5527602A (en) * 1978-08-18 1980-02-27 Fujitsu Ltd Electron beam exposure device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316798A (en) * 1976-07-30 1978-02-16 Chemie Linz Ag Process for producing foamed synthetic resin having improved flammability
JPS5527602A (en) * 1978-08-18 1980-02-27 Fujitsu Ltd Electron beam exposure device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108907216A (en) * 2018-07-19 2018-11-30 兰州大学 High-frequency high temperature R2Co17The reduction scattering preparation of based magnetic powder

Similar Documents

Publication Publication Date Title
US4681623A (en) Process for producing alloy powder containing rare earth metals
JP3304726B2 (en) Rare earth-iron-nitrogen magnet alloy
KR900006193B1 (en) Making method for nd-fe-b permanent magnet
JPS60106905A (en) Production of permanent magnet alloy powder
JP7044082B2 (en) Method for producing acidic slurry and method for recovering rare earth elements
JPH05271852A (en) Production of rare earth magnet alloy
JPH06124815A (en) Manufacture of material powder of r-tm-b group permanent magnet
JP2985545B2 (en) Manufacturing method of alloy powder
JPS60125338A (en) Production of permanent magnet alloy
JPS61208807A (en) Permanent magnet
JP7151916B2 (en) Method for producing acidic slurry and method for recovering rare earth elements
JP4407047B2 (en) Method for producing rare earth-transition metal alloy powder and product obtained
JPS6160809A (en) Production of rare earth alloy powder
JPS62257705A (en) Manufacture of rco5 rare-earth cobalt magnet
JPS60116734A (en) Manufacture of permanent magnet alloy
JPS62261101A (en) Manufacture of alloy powder for permanent magnet
JPH08291346A (en) Method for recovering rare earth element from scrap and production of rare earth-transition metal alloy powder
JPS60106930A (en) Manufacture of permanent magnet alloy
JPS63118042A (en) Permanent magnet material and its production
JPH08188803A (en) Production of powdery rare earth-transition metal alloy
JPH0123923B2 (en)
JPH08176756A (en) Production of r-fe-b alloy powder
JPS5928543A (en) Manufacture of permanent magnet alloy
JPS6160801A (en) Rare earth alloy powder
JPH0582442B2 (en)