JPS6010686A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS6010686A
JPS6010686A JP11765083A JP11765083A JPS6010686A JP S6010686 A JPS6010686 A JP S6010686A JP 11765083 A JP11765083 A JP 11765083A JP 11765083 A JP11765083 A JP 11765083A JP S6010686 A JPS6010686 A JP S6010686A
Authority
JP
Japan
Prior art keywords
light
semiconductor laser
reflectivity
resonator
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11765083A
Other languages
Japanese (ja)
Inventor
Yuichi Shimizu
裕一 清水
Masahiro Kume
雅博 粂
Masaru Wada
優 和田
Kunio Ito
国雄 伊藤
Takeshi Hamada
健 浜田
Fumiko Tajiri
田尻 文子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11765083A priority Critical patent/JPS6010686A/en
Publication of JPS6010686A publication Critical patent/JPS6010686A/en
Priority to US06/948,393 priority patent/US4731792A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • H01S5/2235Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface with a protrusion

Abstract

PURPOSE:To oscillate a semiconductor laser device in a low noise with a stable light output by enhancing the reflectivity of two resonator ends higher than that of the end of a semiconductor crystal material itself. CONSTITUTION:The reflectivity of a light in an oscillating wavelength of two resonator ends are enhanced larger than that of a semiconductor crystal itself of a laser medium, and smaller than that of 100 percent. Since the reflectivity of the resonator end is high in such a structure, the ratio of the returning light of the light itself into the resonator is decreased, and since the reflectivity is high, the light energy stored therein is hardly affected by the influence of the light incident from the exterior, thereby obtaining stable oscillated state. Further, since the reflectivity of the both ends is smaller than 100%, the lights can be produced from both side ends.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光情報処理用光源等に利用される半導体レーザ
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor laser device used as a light source for optical information processing.

従来例の構成とその問題点 半導体レーザは、小型でかつ効率が高く、駆動電流によ
る直接変調が可能であるなどの多くの特長を有しており
、近年、光通信や光情報処理用の光源として利用される
ように彦ってきた。
Conventional configurations and their problems Semiconductor lasers have many features such as being small, highly efficient, and can be directly modulated by drive current.In recent years, semiconductor lasers have been used as light sources for optical communications and optical information processing. It has come to be used as a.

これらの目的に使用するためには、光出力の変動すなわ
ち光強度雑音が少ないことが必要である。
In order to use it for these purposes, it is necessary that fluctuations in optical output, that is, optical intensity noise, be small.

2ページ 特に、光学系との結合において自分自身の光が反射され
て戻された場合の光強度雑音の少ないことが重要である
Page 2 In particular, it is important to have little light intensity noise when the own light is reflected and returned when coupled with an optical system.

従来の半導体レーザ、例えば第1図に示すようなG a
 A s基板1に溝11を設け、この上にn −G a
 1y A 7 y A s (y サO−4)層2 
、 n Ga1゜AI As(x=○〜0.2)活性層
3 r p G a 1yAll As (y=0.4
 )層4を備えた半導体レーザにおいては、共恨器端面
ば、結晶のへき開を利用しており、この端面は、通常例
もつけない状態か、あるいは、SiO2やA12o3と
いった誘電体膜をλ/2n(nはその材料の屈折率 λ
はレーザの発振波長)の厚さにつけている。なお、5は
n −G a A s層、6はT i / P t /
A u電極、7はAu−Ge−N i電極、51はZn
拡散領域である。このような半導体レーザの電流−光出
力特性および電流−雑音特性は第2図のようになってい
る。さらに、光出力を3mWで一定にし、自分自身の光
が反射によって0.1〜5%程度戻った場合の信号対雑
音強度比の温度依存性は、第3図のようになってい3 
ページ る。とれらの図で雑音周波数は2〜12IIIIで雑音
帯域幅は300kt(+で測定した。これらの雑音特性
は、実用上有害で、特に、光学式のビデオディスクの光
源としては、使うことができなかった。
Conventional semiconductor lasers, such as the one shown in FIG.
A groove 11 is provided in the A s substrate 1, and n - Ga is formed on this groove 11.
1y A 7 y As (y SaO-4) layer 2
, n Ga1゜AI As (x=○~0.2) active layer 3 r p Ga 1yAll As (y=0.4
) In the semiconductor laser equipped with layer 4, the crystal cleavage is used for the resonator end face, and this end face is usually left unattached or coated with a dielectric film such as SiO2 or A12o3 at λ/ 2n (n is the refractive index of the material λ
is the thickness of the laser (laser oscillation wavelength). In addition, 5 is an n-GaAs layer, and 6 is T i / P t /
Au electrode, 7 is Au-Ge-N i electrode, 51 is Zn
This is a diffusion area. The current-optical output characteristics and current-noise characteristics of such a semiconductor laser are as shown in FIG. Furthermore, when the optical output is kept constant at 3 mW and the own light returns by about 0.1 to 5% by reflection, the temperature dependence of the signal-to-noise intensity ratio is as shown in Figure 3.
Page Ru. In these figures, the noise frequency is 2 to 12III, and the noise bandwidth is 300kt (measured at There wasn't.

発明の目的 本発明は上記欠点に鑑み、戻り光がある場合においても
低雑音で発振することのできる半導体レーザを提供する
ものである。
OBJECTS OF THE INVENTION In view of the above drawbacks, the present invention provides a semiconductor laser that can oscillate with low noise even in the presence of return light.

発明の構成 この目的を達成するために本発明の半導体レーザは、二
つの共振器端面の発振波長における光の反射率を、レー
ザ媒質の半導体結晶自体の反射率よりも高く、かつ1o
○パーセントの反射率よりも小さくする、ことから構成
されている。
Structure of the Invention In order to achieve this object, the semiconductor laser of the present invention has a reflectance of light at the oscillation wavelength of the two cavity end faces that is higher than the reflectance of the semiconductor crystal itself as a laser medium, and has a reflectance of 1o.
It consists of making the reflectance smaller than ○%.

この構成によって、共振器端面の反射率が高いため、自
分自身の光の戻り光が共振器内部に帰還する割合が小さ
くなり、かつ反射率が高いために内部に蓄えられる光エ
ネルギーが高く外部から入射する光の影響を受けに<<
、安定な発振状態が得られることになる。さらに両方の
端面の反射率は100パーセントよりも小さくしている
ため両方の端面から光を取り出すことができ、一方をモ
ーニター用の光出力として利用することができる、光出
力の変化を検出し、負帰還をかけることにより、光出力
の安定化を図ることも可能である。この構成によって光
出力変動の少ない低雑音動作が実現されることになる。
With this configuration, the reflectance of the resonator end face is high, so the proportion of the return light of the own light returning to the inside of the resonator is small. Under the influence of incident light
, a stable oscillation state can be obtained. Furthermore, since the reflectance of both end faces is smaller than 100%, light can be extracted from both end faces, and one can be used as a light output for a monitor. Changes in light output can be detected, It is also possible to stabilize the optical output by applying negative feedback. This configuration realizes low-noise operation with little variation in optical output.

実施例の説明 以下本発明の一実施例について、図面を参照しなから説
明する。第4図は本発明の一実施例における半導体レー
ザの構造を示すものである。第4図拠おいて8は、本発
明者らがすでに提案したTwin Ridge 5ub
strate (T RS )型半導体レーザであり、
第5図に同レーザの共振器端面に平行なx−y断面図を
示す。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 4 shows the structure of a semiconductor laser in an embodiment of the present invention. In Figure 4, 8 is Twin Ridge 5ub, which the present inventors have already proposed.
A straight (T RS ) type semiconductor laser,
FIG. 5 shows an xy cross-sectional view parallel to the cavity end face of the same laser.

9はSi3N4膜で膜厚はλ/4n、(λはレーザの発
振波長、nlはλにおけるSi3N4の屈折率)とする
。10は、アモルファスSt(以下a −S i TH
とよぶ)膜で膜厚はλ/4n2(n2はλにおけるa 
−S iの屈折率)以上とする。
Reference numeral 9 denotes a Si3N4 film having a thickness of λ/4n (λ is the oscillation wavelength of the laser, and nl is the refractive index of Si3N4 at λ). 10 is amorphous St (hereinafter a-S i TH
The film thickness is λ/4n2 (n2 is a at λ).
- refractive index of Si) or more.

5ページ 以上のように構成された半導体レーザについて以下その
動作について説明する。TR8型半導体レーザは、基板
に設けられた2つのリッジによって光の吸収が生じ、レ
ーザの発振横モードを安定化し、基本横モード発振を実
現する。共振器端面につけたSi3N4/a−9t膜ば
くり返し反射干渉によって光の反射率を高めるためのも
ので、本実施例では発振波長7800Aのレーザを用い
ただめ、70〜80係の反射率と々っている。
The operation of the semiconductor laser configured as described above on page 5 will be described below. In the TR8 type semiconductor laser, two ridges provided on the substrate absorb light, stabilize the oscillation transverse mode of the laser, and realize fundamental transverse mode oscillation. This is to increase the reflectance of light by repeated reflection interference of the Si3N4/a-9t film attached to the end face of the resonator.In this example, a laser with an oscillation wavelength of 7800A is used, so the reflectance is in the range of 70 to 80. ing.

第6図は、本実施例の半導体レーザにおける電流−光出
力特性および電流−羅音特性を示したものである。第7
図は、本実施例の半導体レーザにおいて一方の端面から
出射される光出力を3mWとし、これに比例する他方の
光出力を検出し負帰還をかけ、動作電流を制御し3mW
の光出力を一定化した場合の光出力信号対雑音強度比(
、S/N)の温度依存性を測定した結果である。
FIG. 6 shows the current-optical output characteristics and current-light characteristics of the semiconductor laser of this example. 7th
The figure shows that in the semiconductor laser of this example, the optical output emitted from one end face is 3 mW, the other optical output proportional to this is detected, negative feedback is applied, and the operating current is controlled to 3 mW.
Optical output signal-to-noise intensity ratio when the optical output is constant (
, S/N).

このような光出力制御は、共振器端面の光の反射率を1
00パーセントよりも小さくし両方の端面から光出力を
取り出せるようにしたためである。
Such optical output control reduces the light reflectance of the resonator end face to 1.
This is because it is made smaller than 0.00% so that light output can be extracted from both end faces.

6ページ これらの結果かられかるように、本発明による半導体レ
ーザでは、従来の半導体レーザに比べて10〜30dB
の雑音低減が実現されている。
As can be seen from these results on page 6, the semiconductor laser according to the present invention has a power efficiency of 10 to 30 dB compared to the conventional semiconductor laser.
noise reduction has been achieved.

発明の効果 以上のように本発明の半導体レーザは二つの共振器端面
の反射率を半導体結晶材料自体の端面の反射率よりも高
く、かつ1o○パーセントの反射率よりも小さくなるよ
うにすることにより、安定な光出力で発振し低雑音動作
することができ、その工業的利用価値は犬なるものであ
る。
Effects of the Invention As described above, in the semiconductor laser of the present invention, the reflectance of the two cavity end faces is higher than the reflectance of the end face of the semiconductor crystal material itself, and is smaller than the reflectance of 10%. As a result, it is possible to oscillate with stable optical output and operate with low noise, and its industrial value is significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の半導体レーザの斜視図、第2図は、従
来の半導体レーザの電流−光出力特性および電流−雑音
強度特性を示す図、第3図は従来の半導体レーザのS/
Nの温度依存性を示す図、第4図は、本発明の実施例の
半導体レーザ装置の斜視図、第5図は、同半導体レーザ
装置のx−y断面図、第6図は、本発明の実施例の半導
体レーザ装置の電流−光出力特性および電流−雑音特性
を示す図、第7図は、同半導体レーザ装置におけ7ペー
ジ るS/Nの温度依存性を測定した結果を示す図である。 1−−−−−− n−GaAs層、2・・・・・・n−
Ga1−yAlyAS層、3−=−n−Ga1 、Al
xAs層、4 ・−・−p −Ga1−yAlyAS層
、6−=−・n −GaAs 、 6−・−T i /
Pt/Au電椅、7 m−Au−Ge−Ni電極、8・
・・・・・TR3型半導体レーザ、9・・・・・・Si
3N4.1o・・・・・・Si、11・・・・・・溝、
51・・・・・・Zn拡散領域。 代理人の氏名 弁理士 中 尾 敏 男 はか1名槻1
図 乙 / 1 第2図 Q 50 100 償ヒ′、;t C竺A)
FIG. 1 is a perspective view of a conventional semiconductor laser, FIG. 2 is a diagram showing current-optical output characteristics and current-noise intensity characteristics of a conventional semiconductor laser, and FIG. 3 is a diagram showing S/N of a conventional semiconductor laser.
FIG. 4 is a perspective view of a semiconductor laser device according to an embodiment of the present invention, FIG. 5 is an x-y sectional view of the same semiconductor laser device, and FIG. 6 is a diagram showing the temperature dependence of N. Figure 7 is a diagram showing the current-optical output characteristics and current-noise characteristics of the semiconductor laser device of the example, and Figure 7 is a diagram showing the results of measuring the temperature dependence of S/N in the same semiconductor laser device on page 7. It is. 1------ n-GaAs layer, 2... n-
Ga1-yAlyAS layer, 3-=-n-Ga1, Al
xAs layer, 4・-・-p-Ga1-yAlyAS layer, 6-=-・n-GaAs, 6-・-T i /
Pt/Au electric chair, 7 m-Au-Ge-Ni electrode, 8.
...TR3 type semiconductor laser, 9...Si
3N4.1o...Si, 11...groove,
51...Zn diffusion region. Name of agent: Patent attorney Toshi Nakao
Figure O / 1 Figure 2 Q 50 100 Atonement Hi';

Claims (1)

【特許請求の範囲】[Claims] 二つの共振器端面の発振波長における光の反射率を、レ
ーザ媒質と々っている半導体結晶材料自体の表面の反射
率よりも高く、かつ100パーセントの反射率よシも小
さくしたことを特徴とする半導体レーザ装置。
The reflectance of light at the oscillation wavelength of the two resonator end faces is higher than the reflectance of the surface of the semiconductor crystal material itself, which is the laser medium, and is also lower than 100% reflectance. Semiconductor laser equipment.
JP11765083A 1983-06-29 1983-06-29 Semiconductor laser device Pending JPS6010686A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11765083A JPS6010686A (en) 1983-06-29 1983-06-29 Semiconductor laser device
US06/948,393 US4731792A (en) 1983-06-29 1986-12-30 Semiconductor laser device with decreased light intensity noise

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11765083A JPS6010686A (en) 1983-06-29 1983-06-29 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6010686A true JPS6010686A (en) 1985-01-19

Family

ID=14716924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11765083A Pending JPS6010686A (en) 1983-06-29 1983-06-29 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6010686A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398674U (en) * 1986-12-18 1988-06-25
EP0298237A2 (en) * 1987-06-13 1989-01-11 Deutsche Aerospace AG Light barrier
US4833373A (en) * 1986-04-09 1989-05-23 Nissan Motor Company, Limited System for shaking water off windshield

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833373A (en) * 1986-04-09 1989-05-23 Nissan Motor Company, Limited System for shaking water off windshield
JPS6398674U (en) * 1986-12-18 1988-06-25
EP0298237A2 (en) * 1987-06-13 1989-01-11 Deutsche Aerospace AG Light barrier

Similar Documents

Publication Publication Date Title
JP2768940B2 (en) Single wavelength oscillation semiconductor laser device
JPS63205984A (en) Surface emitting type semiconductor laser
JP2008047692A (en) Self-induced oscillating semiconductor laser and manufacturing method therefor
US5914977A (en) Semiconductor laser having a high-reflectivity reflector on the laser facets thereof, an optical integrated device provided with the semiconductor laser, and a manufacturing method therefor
US4852112A (en) Semiconductor laser with facet protection film of selected reflectivity
JP2723045B2 (en) Flare structure semiconductor laser
JPS6010686A (en) Semiconductor laser device
JPS60149183A (en) Distributed feedback type semiconductor laser
JPS63280484A (en) Semiconductor device
JP2002141611A (en) Semiconductor light emitting element and its fabricating method
JP2009503887A (en) Injection laser
JPH0319292A (en) Semiconductor laser
JPS6010687A (en) Semiconductor laser device
JP2002031730A (en) Optical waveguide element and light emitting device
JP2967757B2 (en) Semiconductor laser device and method of manufacturing the same
JPH11163471A (en) External cavity type semiconductor laser
JPH03195076A (en) External resonator type variable wavelength semiconductor laser
JPH0750814B2 (en) Multi-point emission type semiconductor laser device
JPS5814590A (en) Semiconductor laser
JPH0513079U (en) Short cavity type semiconductor laser
JPS6295886A (en) Distribution feedback construction semiconductor laser
JPH0430759B2 (en)
JP2001320126A (en) Semiconductor laser device and laser light emitting device using it
JPS62260381A (en) Semiconductor laser device
JPH0824207B2 (en) Semiconductor laser device