JPS60105931A - Leakage detecting apparatus for gas piping and gas appliance - Google Patents

Leakage detecting apparatus for gas piping and gas appliance

Info

Publication number
JPS60105931A
JPS60105931A JP21382983A JP21382983A JPS60105931A JP S60105931 A JPS60105931 A JP S60105931A JP 21382983 A JP21382983 A JP 21382983A JP 21382983 A JP21382983 A JP 21382983A JP S60105931 A JPS60105931 A JP S60105931A
Authority
JP
Japan
Prior art keywords
gas
leakage
ultrasonic
piping
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21382983A
Other languages
Japanese (ja)
Inventor
Hiroaki Tanaka
弘明 田中
Masayuki Matsuura
松浦 正行
Takashi Ueki
植木 孝
Fujitaka Taguchi
藤孝 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP21382983A priority Critical patent/JPS60105931A/en
Publication of JPS60105931A publication Critical patent/JPS60105931A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes

Abstract

PURPOSE:To enable the instantaneous detection of a gas leakage, by generating a predetermined signal by processing the signal from ultrasonic sensors arranged along gas pipings and gas appliances at appropriate intervals. CONSTITUTION:Ultrasonic sensors 3... are arranged along a gas pipings 1 of gas and gas appliances 2 at appropriate intervals and connected to a corresponding signal generating apparatus 4 arranged at a proper place in a room. By this mechanism, the ultrasonic wave due to the gas leakage generated in the pipe 1 is received by the sensors 3... and an alarm signal can be generated in a sound form by the apparatus 4.

Description

【発明の詳細な説明】 本発明は都市ガス等の可燃性ガスや有毒ガス等を移送す
る配管並びに各種ガス機器からのガスの漏洩を検知して
所定の対応信号、即ち警報や緊急遮断弁の遮断信号等を
発生させる漏洩検知装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention detects gas leakage from piping that transfers flammable gas such as city gas, toxic gas, etc. and from various gas appliances, and issues predetermined response signals, such as alarms and emergency shutoff valves. This invention relates to a leakage detection device that generates a cutoff signal and the like.

従来、都市ガス等に於けるガス漏洩の監視には、濃度検
出方式の可燃性ガス検知器が用いられている。ところが
この方式では漏洩が生じてから検知器のセンサ設置個所
付近のガス濃度が検知レベルに到達するまでに一定の時
間を要することから、漏洩の検知に時間遅れが伴い、こ
れは漏洩個所とセンサ設置個所との距離が長い程、著し
い。第6図は漏洩が生じた場合の室内ガス濃度の時間的
変化の一例を示すもので、図中Aは爆発下限界、Bは可
燃性ガス検知器の検知レベルを示すものである。かかる
図により、漏洩量がQ、 1Nm” / hの場合には
、漏洩が生じてから長時間後に濃度が検知器の検知レベ
ルに到達するが、爆発下限界には到達せず、また3、5
 Nm” / hの場合には検知レベルに到達してから
長時間後に爆発下限界に到達することがわかる。この程
度の漏洩量の場合には、漏洩の検知に時間遅れがあって
も、爆発下限界に到達する時間と、検知レベルに到達す
る時間との差が大きいため余裕がある。しかしながら漏
洩量が5 Nm3/ hになると、約20分で爆発下限
界に到達するが、この漏洩を検知するのに約5分の時間
を要し、漏洩を検知してから爆発下限界に到達するまで
の時間が短かいことがわかる。ところで第6図は漏洩し
たガスが瞬時に、しかも均一に混合すると仮定してめた
ものであって、実際には検知器での5分間にも局所的に
爆鳴気が発生する。
BACKGROUND ART Conventionally, a concentration detection type combustible gas detector has been used to monitor gas leaks in city gas and the like. However, with this method, after a leak occurs, it takes a certain amount of time for the gas concentration near the sensor installation point of the detector to reach the detection level, so there is a time delay in detecting the leak. The longer the distance from the installation location, the more significant it is. FIG. 6 shows an example of a temporal change in the indoor gas concentration when a leak occurs, where A indicates the lower explosion limit and B indicates the detection level of the combustible gas detector. According to this figure, when the leakage amount is Q, 1Nm"/h, the concentration reaches the detection level of the detector after a long time after the leakage occurs, but does not reach the lower explosive limit, and 3. 5
In the case of Nm”/h, it can be seen that the lower explosive limit is reached a long time after reaching the detection level.In the case of a leak of this magnitude, even if there is a time delay in detecting the leak, an explosion will not occur. There is some margin because there is a large difference between the time it takes to reach the lower limit and the time it takes to reach the detection level. However, if the leakage amount is 5 Nm3/h, the lower explosion limit will be reached in about 20 minutes, but it is necessary to prevent this leakage. It takes about 5 minutes to detect the leak, which shows that the time from detecting the leak to reaching the lower explosive limit is short.By the way, Figure 6 shows that the leaked gas is released instantly and uniformly. This is based on the assumption that they will mix, but in reality, explosive air is locally generated within 5 minutes at the detector.

かかる局所的な爆鳴気の発生は漏洩量が少ない場合にも
同様である。
The same local explosion occurs even when the amount of leakage is small.

以上の様に従来の濃度検出方式の可燃性ガス検知器は、
漏洩の検知に時間遅れを伴うため、検知前に爆鳴気が発
生する危険性が高く、高度な安全性を確保し得ないとい
う欠点を有しており、かかる時間遅れのできるたけ短か
い漏洩検知装置が要求されている。更に以上の従来方式
ではセンサの設置に際してガスの比重を考慮しなければ
ならないという欠点がある。
As mentioned above, conventional concentration detection type combustible gas detectors are
Since there is a time delay in detecting a leak, there is a high risk that explosive gas will occur before detection, and a high level of safety cannot be ensured. Detection equipment is required. Furthermore, the conventional method described above has the disadvantage that the specific gravity of the gas must be taken into consideration when installing the sensor.

本発明はガスが微小孔から噴出する際には超音波を発生
するという知見に基づき為されたもので、即ちかかる超
音波をセンサによって受信して、警報や、緊急遮断弁の
遮断信号等の対応信号を発生させるようにすることによ
り、従来の濃度検出方式の欠点を全く解決して、漏洩の
瞬時検知を可能とすると共に、センサの設置個所の自由
度を高めたものである。さらに、一般的な環境下では超
音波領域のノイズはきわめて少ないため、確実な作動が
得られる。以下本発明を実施例に基づいて詳細に説明す
ると次の通りである。
The present invention was made based on the knowledge that when gas is ejected from a microscopic hole, it generates ultrasonic waves.In other words, the ultrasonic waves are received by a sensor and can be used to issue alarms, shut-off signals for emergency shut-off valves, etc. By generating a corresponding signal, the drawbacks of the conventional concentration detection method are completely solved, and leakage can be detected instantaneously, and the degree of freedom in the installation location of the sensor is increased. Furthermore, under normal circumstances, noise in the ultrasonic range is extremely low, ensuring reliable operation. The present invention will be described in detail below based on examples.

第1図において符号1は都市ガス等の可燃性ガスや有毒
ガス等を移送するガス配管、2は各種ガス機器であり、
該ガス配管1、ガス機器2に沿って適宜間隔毎に超音波
センサ3,3.・・・を設置する。該超音波センサ3,
3.・・・は室内等の適所に設置した対応信号発生装置
4に接続する。該対応信号発生装置4は前記超音波セン
サ3,3.・・・からの信号を適宜処理して所定の対応
信号、例えば警報信号や、緊急遮断弁の遮断信号等を発
生する構成とする。
In Fig. 1, reference numeral 1 indicates gas piping that transfers flammable gas such as city gas, toxic gas, etc., and 2 indicates various gas equipment.
Ultrasonic sensors 3, 3 . ... will be installed. the ultrasonic sensor 3,
3. . . . is connected to a corresponding signal generator 4 installed at an appropriate location such as indoors. The corresponding signal generating device 4 is connected to the ultrasonic sensors 3, 3 . . . . to generate a predetermined corresponding signal, such as an alarm signal or a shutoff signal for an emergency shutoff valve.

かかる構成に於いて、亀裂やピンホール、フランジ・ね
じ部の緩み等により配管1あるいは各種機器2にガス漏
洩が生じると、同時に超音波が発生するので、かかる超
音波を超音波センサ3,3゜・・・により受信して、対
応信号発生装置4によシ音や光等の形での警報信号や緊
急遮断弁の遮断信号を発生することにより、ガス漏洩を
原因とする事故を未然に防止することができる。本発明
はこのようにガス漏洩に伴って発生する超音波によって
、その漏洩を検知するものであるから、第6図に示すよ
うに漏洩を瞬時に検知して対応することができ、高度の
安全性を達成することができる。
In such a configuration, when gas leakage occurs in the piping 1 or various devices 2 due to cracks, pinholes, loosening of flanges or screws, etc., ultrasonic waves are generated at the same time.゜... and generates a warning signal in the form of a sound, light, etc. or a shutoff signal for an emergency shutoff valve to the corresponding signal generator 4, thereby preventing accidents caused by gas leakage. It can be prevented. Since the present invention detects gas leaks using the ultrasonic waves generated when the gas leaks, it is possible to instantly detect and respond to leaks, as shown in Figure 6, thereby achieving a high degree of safety. can achieve sexuality.

第4図はガス漏洩に伴って発生する音、即ち漏洩音のス
ペクトラムの一例を示すもので、かかる図から漏洩音は
、漏洩量によって全体の形は変化するものの、漏洩のな
い状態(暗騒音)に比較して超音波領域での音圧レベル
が高く、従って適宜の周波数範囲、例えば実施例に於い
て60〜40kHzの超音波に着目して、その有無を検
知することにより、漏洩の有無を良好に検知1できるこ
とがわかる。第5図は漏洩量の大小に対する、60〜4
3 kHzの周波数範囲の超音波の音圧レベルの変化を
示すもので、かかる図から例えばQ、iNm”/h程度
の漏洩があれば約4 Q dBの超音波漏洩音が発生す
ることがわかる。第5図に示す超音波漏洩音の音圧レベ
ルは音源から1m離れた地点での測定値であり、音圧レ
ベルは距離が2倍離れる毎に6 dBずつ低下するから
、音源から夫々2m、4m、13m、・・・離れた地点
での1圧レベルは夫々64 dB、 28 dB、 2
2 dB、・・となる。図中Cは本発明検知装置の実施
例に於ける最小検知音圧レベル(約22 dB)を示す
もので、この場合には最長検知距離は前述より、約8m
となる。ところで漏洩音の音圧レベルは、配管1内のガ
ス圧がより高いと、同じ漏洩量でもより高くなるため、
前記最長検知距離が長くなる。
Figure 4 shows an example of the spectrum of the sound generated by gas leakage, that is, the leakage sound. From this figure, it can be seen that although the overall shape of leakage sound changes depending on the amount of leakage, ), the sound pressure level in the ultrasonic range is higher than that in the ultrasonic range. Therefore, by focusing on ultrasonic waves in an appropriate frequency range, for example, 60 to 40 kHz in the example, and detecting the presence or absence of ultrasonic waves, it is possible to detect the presence or absence of leakage. It can be seen that it is possible to detect 1 well. Figure 5 shows the relationship between 60 and 4 depending on the size of the leakage amount.
It shows the change in the sound pressure level of ultrasonic waves in the frequency range of 3 kHz, and from this figure, it can be seen that if there is a leakage of about Q, iNm''/h, an ultrasonic leakage sound of about 4 Q dB will be generated. The sound pressure level of the ultrasonic leak sound shown in Fig. 5 is a value measured at a point 1 m away from the sound source, and the sound pressure level decreases by 6 dB for each doubling of the distance. , 4m, 13m...The 1 pressure level at distant points is 64 dB, 28 dB, 2, respectively.
2 dB,... C in the figure shows the minimum detection sound pressure level (approximately 22 dB) in the embodiment of the detection device of the present invention, and in this case, the maximum detection distance is approximately 8 m as described above.
becomes. By the way, the sound pressure level of the leakage sound will be higher if the gas pressure inside the pipe 1 is higher, even if the amount of leakage is the same.
The maximum detection distance becomes longer.

以上の最長検知距離を勘案して前述した通り、ガス配管
1、ガス機器2に沿って適宜間隔毎に超した場合にも確
実に検知することができる。前記最長検知距離は、前記
超音波センサ3,3.・・・に例えば第2図に示すよう
な集音器5を設けることにより長くすることができ、か
かる実施態様の場合には、ガス配管10単位長さ当りの
超音波セン□サ3,3.・・・の数を減らすことができ
る。またかかる集音器5により超音波の受信に指向性を
もたせれば他所からの雑音に対して強くなり、超音波セ
ンサ3,3.・・・の近傍に超音波領域の雑音源が存在
する場合でもその影響を受けず誤動作を容易に防止する
ことができる。かかる他所からの雑音に対する誤動作の
防止対策としては、このように超音波センサ3,3.・
・・に指向性をもたせる方法の他、例えば超音波センサ
3,3.・・からの信号を、対応信号発生装置4に於い
てフィルターで処理して注目すべき周波数範囲を狭くし
たり、あるいはマイクロコンピュータ等により更に高度
な信号処理を行なう等、適宜の信号処理で行なうことが
できる。
As described above in consideration of the above longest detection distance, it is possible to reliably detect even if the distance is exceeded at appropriate intervals along the gas piping 1 and the gas equipment 2. The longest detection distance is the maximum detection distance between the ultrasonic sensors 3, 3 . For example, the length can be increased by installing a sound collector 5 as shown in FIG. .. It is possible to reduce the number of... Furthermore, if the sound collector 5 provides directivity to the reception of ultrasonic waves, the ultrasonic sensors 3, 3. Even if a noise source in the ultrasonic range exists in the vicinity of..., malfunctions can be easily prevented without being affected by the noise source. As a measure to prevent malfunction due to such noise from other places, the ultrasonic sensors 3, 3.・
In addition to the method of imparting directivity to the ultrasonic sensors 3, 3. ... is processed by a filter in the corresponding signal generator 4 to narrow the frequency range of interest, or by performing more advanced signal processing using a microcomputer, etc., as appropriate. be able to.

本発明は以上の通り、ガス漏洩に伴って発生ずる超音波
を、ガス配管、ガス機器に沿って適宜間隔毎に設置した
超音波センサによって検知して、その漏洩を検知するも
のであるから、従来用いられている濃度検出方式のよう
に漏洩の検知に時間遅れが生じず、瞬時に漏洩検知を行
なえ、そして警報や緊急遮断弁の遮断等の適切な対応手
段を施すことができるので、ガス漏洩を原因とする事故
を未然に確実に防止し得るという大きな特徴がある。ま
た、本発明は超音波センサをガス配管、ガス機器の外部
に設けるものであるから、既設のガス配管、ガス機器に
対しても容易に設置し得ると共に、複数本のガス配管や
複数のガス機器が並設されている場合等にはそれらを一
括して監視することもできるという特徴がある。更に本
発明は前述した通り超音波を検知するものであるから、
センサの設置に対象とするガスの比重を考慮する必要が
なく、設置の自由度が太きいという特徴がある。
As described above, the present invention detects the leakage by detecting the ultrasonic waves generated due to the gas leakage using the ultrasonic sensors installed at appropriate intervals along the gas piping and gas equipment. Unlike conventional concentration detection methods, there is no time delay in detecting leaks, and leaks can be detected instantly, and appropriate countermeasures can be taken, such as warnings and shutting off emergency shutoff valves. A major feature is that accidents caused by leaks can be reliably prevented. Furthermore, since the present invention provides an ultrasonic sensor outside gas piping and gas equipment, it can be easily installed on existing gas piping and gas equipment, and can also be installed on existing gas piping and gas equipment. A feature is that when devices are installed in parallel, they can be monitored all at once. Furthermore, since the present invention detects ultrasonic waves as described above,
There is no need to consider the specific gravity of the target gas when installing the sensor, and there is a large degree of freedom in installation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成の一実施例を示す説明は第2図(
a)、(b)、(C)は本発明の構成の他実雄側図、第
6図は動作説明図、第4図はガスの漏洩量のスペクトラ
ムの一例を示す説明図、第5図は漏洩量に対する音圧レ
ベルの変化を示す説明図、第6図はガス漏洩が生じた場
合の室内ガス濃度の時間的変化を示す説明図である。 符号1・・ガス配管、2・・・ガス機器、3,3.・・
・・・・・・超音波センサ、4・・・対応信号発生装置
、5・・・集音器。 L ・・ 、7ノ 第 3 図 経過時間→ 第 4 図
FIG. 1 shows an example of the configuration of the present invention. The explanation is shown in FIG.
a), (b), and (C) are actual side views of the configuration of the present invention, FIG. 6 is an explanatory diagram of the operation, FIG. 4 is an explanatory diagram showing an example of the spectrum of the amount of gas leakage, and FIG. FIG. 6 is an explanatory diagram showing changes in sound pressure level with respect to leakage amount. FIG. 6 is an explanatory diagram showing temporal changes in indoor gas concentration when gas leakage occurs. Code 1...Gas piping, 2...Gas equipment, 3,3.・・・
...Ultrasonic sensor, 4. Compatible signal generator, 5. Sound collector. L..., 7th Figure 3 Elapsed time → Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1) ガス配管、ガス機器に沿って適宜間隔毎に設置
した超音波センサと、該超音波センサがらの信号を適宜
処理して所定の対応信号を発生する対応信号発生装置と
を設けたことを特徴とするガス配管、ガス機器の漏洩検
知装置
(1) Ultrasonic sensors installed at appropriate intervals along gas piping and gas equipment, and a corresponding signal generating device that appropriately processes signals from the ultrasonic sensors and generates predetermined corresponding signals. Leak detection device for gas piping and gas equipment featuring
(2)超音波センサに集音器を設けたことを特徴とする
特許請求の範囲第1項記載のガス配管の漏洩検知装置
(2) A gas piping leak detection device according to claim 1, characterized in that the ultrasonic sensor is provided with a sound collector.
JP21382983A 1983-11-14 1983-11-14 Leakage detecting apparatus for gas piping and gas appliance Pending JPS60105931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21382983A JPS60105931A (en) 1983-11-14 1983-11-14 Leakage detecting apparatus for gas piping and gas appliance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21382983A JPS60105931A (en) 1983-11-14 1983-11-14 Leakage detecting apparatus for gas piping and gas appliance

Publications (1)

Publication Number Publication Date
JPS60105931A true JPS60105931A (en) 1985-06-11

Family

ID=16645713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21382983A Pending JPS60105931A (en) 1983-11-14 1983-11-14 Leakage detecting apparatus for gas piping and gas appliance

Country Status (1)

Country Link
JP (1) JPS60105931A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212542A (en) * 1986-03-14 1987-09-18 Tlv Co Ltd Apparatus for measuring leak quantity of steam
JP2002122507A (en) * 2000-10-13 2002-04-26 Tlv Co Ltd Ultrasonic leak quantity measuring device
KR102382535B1 (en) * 2020-11-12 2022-04-05 (주)삼광계전 Collection apparatus for gas detection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114181A (en) * 1977-03-15 1978-10-05 Shell Int Research Submarine equipped so as to inspect leakage of pipeline

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114181A (en) * 1977-03-15 1978-10-05 Shell Int Research Submarine equipped so as to inspect leakage of pipeline

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212542A (en) * 1986-03-14 1987-09-18 Tlv Co Ltd Apparatus for measuring leak quantity of steam
JPH0455260B2 (en) * 1986-03-14 1992-09-02 Tlv Co Ltd
JP2002122507A (en) * 2000-10-13 2002-04-26 Tlv Co Ltd Ultrasonic leak quantity measuring device
KR102382535B1 (en) * 2020-11-12 2022-04-05 (주)삼광계전 Collection apparatus for gas detection

Similar Documents

Publication Publication Date Title
US4736763A (en) Automatic device for the detection and shutoff of unwanted liquid flow in pipes
US7318335B2 (en) Ultrasonic gas leak detector including a detector testing device
US4012944A (en) Electronic fluid pipeline leak detector and method
JPH06129940A (en) Method and device for monitoring pipe line
US4144743A (en) Electronic fluid pipeline leak detector and method
JP2006320193A (en) Electric power shutdown system
US20100328067A1 (en) Method and device for determining a leak in a system component and/or for determining a state of a system component
US4091658A (en) Electronic fluid pipeline leak detector and method
EP0108556B1 (en) Apparatus for detecting leaks in steam raising boilers
EP3907484B1 (en) Detection of leakage in an aspirating fire detection system
JPS60105931A (en) Leakage detecting apparatus for gas piping and gas appliance
KR100387334B1 (en) leakage monitoring apparatus for valve
JP2576918B2 (en) Gas leak detection device
JPS60105932A (en) Leakage detecting apparatus of gas piping and gas appliance
JP3013274B2 (en) Gas leak position detection device
US20180275008A1 (en) System and method for the ultrasonic autonomous detection of leaks
JPS58100729A (en) Confirming method for normality of cooling material leakage detector
JP3273847B2 (en) Gas leak detection device
CN220017032U (en) Quick cutting device for gas leakage
JPH0644319B2 (en) Multi-level warning system for disaster prevention in clean room
JPS59150320A (en) Water leak detecting apparatus
Shimanskii et al. Acoustic method of leak detection using high-temperature microphones
JPS59188548A (en) Warning device for gas leak
JPH08226832A (en) Gas supply monitoring apparatus
JPH0441768B2 (en)