JPS60104631A - Automation system of cast finishing operation - Google Patents

Automation system of cast finishing operation

Info

Publication number
JPS60104631A
JPS60104631A JP58209342A JP20934283A JPS60104631A JP S60104631 A JPS60104631 A JP S60104631A JP 58209342 A JP58209342 A JP 58209342A JP 20934283 A JP20934283 A JP 20934283A JP S60104631 A JPS60104631 A JP S60104631A
Authority
JP
Japan
Prior art keywords
data
arm
machining
work
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58209342A
Other languages
Japanese (ja)
Inventor
Goro Tsuda
津田 五郎
Osamu Mizuguchi
修 水口
Takeo Kojima
小島 建夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP58209342A priority Critical patent/JPS60104631A/en
Publication of JPS60104631A publication Critical patent/JPS60104631A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • G05B19/4202Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine preparation of the programme medium using a drawing, a model
    • G05B19/4207Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine preparation of the programme medium using a drawing, a model in which a model is traced or scanned and corresponding data recorded
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50063Probe, measure, verify workpiece, feedback measured values
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50071Store actual surface in memory before machining, compare with reference surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To automate the cast finishing operation, stabilize quality, and attain labor-saving by superimposing the measured work cross section profile over the cross section profile based on design data on a CRT screen to determine the deviation and calculating the machining action locus. CONSTITUTION:In the measuring operation of the first blade, the measurement point desired by an operator is manually indicated via the operation of a pendant operation panel 8 and is stored in the memory unit 12 of a graphic processing unit 5 as basic data. After the time when the second blade is approached and the copying measurement is to be performed, the object copying action is performed, and the measured data are transferred to the graphic processing unit 5. Next, the measured data are traced on the CRT screen per optional cross section and are superimposed over the design size data already inputted, and the excess thickness quantity in the normal direction of a work is calculated. In addition, the machining data to automatically operate a machining unit 4 are calculated and are transferred to the machining unit 4, thereby the machining operation is performed automatically. Accordingly, a complicated three-dimensional curved surface can be machined automatically.

Description

【発明の詳細な説明】 鋳造、鍛造技術を駆使した三次元曲面の加工は、近年の
工作機械(NC,MC)等の発達により可なりの工程が
機械化されてきているが、最終製品に仕上げるための仕
上げ工程ば、未だ人手による手工業で行われている。
[Detailed Description of the Invention] With the recent development of machine tools (NC, MC), etc., many of the processes for processing three-dimensional curved surfaces using casting and forging techniques have been mechanized, but it is difficult to finish the final product. The finishing process is still done manually.

特に複雑な三次元曲面の鋳造製品では、機械化されて胎
゛らず製造工程の過半数以上を占める鋳仕上げ作業では
、計測−荒加工−計測−仕上げ加ニー最終検査計測が繰
り返し実施され、人手作業によるチェック・レビコ、が
當に行われて製品を創生じている。
Particularly for cast products with complex three-dimensional curved surfaces, the finishing work, which accounts for more than half of the manufacturing process, is not mechanized, but measurement, rough machining, measurement, finishing, and final inspection and measurement are repeatedly carried out manually. The product is created by checking and revising the product.

例えば複雑な三次元曲面よりなる流体ta械では三次元
曲面の形状そのものが製品を左右する重要なファクタに
なり、設計寸法通りの製品を創生ずることが重要である
For example, in a fluid pressure machine consisting of a complex three-dimensional curved surface, the shape of the three-dimensional curved surface itself is an important factor that influences the product, and it is important to create a product that matches the designed dimensions.

本発明は、上記のような三次元曲面ワークの鋳什」−げ
作業工程を+1ボ・ノドを中心とした多機能t【自動化
システムで構す゛ることにより、従来の人手作業を自動
化、及々機械化することで製品品7iの安定化、省力化
、コストダウン、工程の短縮化ひいては作業者の1ll
(環境下からの解放を図ることを目的とした鋳仕−にげ
作業自動化システムである。
The present invention is capable of automating the conventional manual labor by constructing a multi-functional automation system centered on the above-mentioned three-dimensional curved workpiece casting work process. Mechanization stabilizes the product 7i, saves labor, reduces costs, shortens the process, and saves 1ll of workers.
(This is an automation system for casting and casting work aimed at liberating people from the environment.

従って本発明の要旨とする処は、三次元曲面ワークを載
置する無段階位置決めターンテーブルと、上記ワークの
形状を非接触で計測する寸法計測装置と、寸法計測デー
タあるいは設計データの表示9図形化及び加工用データ
の作成を行うグラフィ・ツタコンピュータと、設計寸法
許容公差内にワークを自動′加工する為の加工装置とを
備え、上記寸法計測装置により計測されたワーク断面形
状と、設計データによる同じ部分の断面形状とをグラフ
ィックコンピュータのCRT画面上に形成し、両者の重
ね合わせ処理によってその偏差量をめ、この偏差量を目
安として加工装置の動作軌跡を演算処理してめる点にあ
る。
Therefore, the gist of the present invention is to provide a stepless positioning turntable on which a three-dimensional curved work is placed, a dimension measuring device that measures the shape of the work in a non-contact manner, and nine figures for displaying dimension measurement data or design data. It is equipped with a graphics computer that creates data for digitization and processing, and a processing device that automatically processes the workpiece within the allowable design dimensional tolerances. The cross-sectional shape of the same part is formed on the CRT screen of a graphic computer, the amount of deviation is determined by superimposing the two, and the operating trajectory of the processing equipment is calculated using this amount of deviation as a guide. be.

続いて、添付図面を参照しつつ本発明を水車ランナに適
用した具体例を以下に述べる。勿論この発明は、同種の
他の製品への応用も可能である。
Next, a specific example in which the present invention is applied to a water turbine runner will be described below with reference to the accompanying drawings. Of course, this invention can also be applied to other products of the same type.

第1図に自動化システム全体の構成を示す。し1におい
て1はワーク(水車ランナ)、2は無段階位)61決め
ターンテーブル、3ば寸法計測装置、4は加工装置、5
は図形処理装置、6はターンテーブル制御装置、7はへ
」法計測制御装置、8は寸法計測ペンダント操作パネル
、9ば加工装置制御装置、IOは加工装置ペンダント操
作パネルである。
Figure 1 shows the overall configuration of the automated system. In 1, 1 is a workpiece (water wheel runner), 2 is a stepless position) 61 determining turntable, 3 is a dimension measuring device, 4 is a processing device, 5
6 is a graphic processing device, 6 is a turntable control device, 7 is a method measurement control device, 8 is a dimension measurement pendant operation panel, 9 is a processing device control device, and IO is a processing device pendant operation panel.

寸法計測装置3は、多関節形のr:Iポットであり、ア
ーム先端に静電容量検出型等の公知の非接触変位センサ
を持ち、このセンサをワークに倣いながら移動させて・
断面プロフィール(形状)の計測を実行する。
The dimension measuring device 3 is an articulated r:I pot, and has a known non-contact displacement sensor such as a capacitance detection type at the tip of the arm, and moves this sensor while following the workpiece.
Measure the cross-sectional profile (shape).

第2図を用いてこのような水中ランナの計測を行う為の
横型多関節ロボット全体の構造について説明する。
The overall structure of a horizontal articulated robot for measuring such underwater runners will be explained using FIG. 2.

図に於いて、第1軸11を軸受28によって水平方向に
旋回可能に支持する基台29は、水平基台30の上面3
1上に該水平基台30の軸方向に摺動可能に支持された
垂直基台32の垂直側面33に沿って垂直方向に摺りJ
可能に支持されていることにより、水平方向及び垂直方
向に対して自在に位置決めされる。前記第1軸11に固
定されたアーム34の先端に設けた支点35と、基台2
9−上の支点36とは両支点に対して揺動自在に取りイ
」けた第1位iv1決め手段J、によって連結されてい
る。この第1位置決め手段J、及び後記する第2及び第
3の位置決め手段J2.J3ば、夫々油圧シリンダ、ボ
ールネジ、その他の伸縮可能で、且つその伸縮量が正確
に制御されるアクチュエータやモータ等によって構成さ
れている。従って第1位置決め手段J、の伸縮により第
1軸11が任意の旋回角度分だけ旋回され、これに連結
された第1アーム13及び第2アーム15が全体として
第1軸1■の回まわりに矢印θ1の方向に旋回する。
In the figure, the base 29 that supports the first shaft 11 horizontally by a bearing 28 is connected to the upper surface 3 of the horizontal base 30.
1, the vertical base 32 is slidably supported in the axial direction of the horizontal base 30.
Since it is supported, it can be freely positioned horizontally and vertically. A fulcrum 35 provided at the tip of an arm 34 fixed to the first shaft 11 and a base 2
9- is connected to the upper fulcrum 36 by a first position iv1 determining means J which is swingably attached to both fulcrums. This first positioning means J, and second and third positioning means J2, which will be described later. J3 is each composed of a hydraulic cylinder, a ball screw, and other actuators and motors that can be expanded and contracted, and whose amount of expansion and contraction is precisely controlled. Therefore, as the first positioning means J expands and contracts, the first shaft 11 is turned by an arbitrary turning angle, and the first arm 13 and second arm 15 connected thereto are rotated as a whole around the first shaft 1. Turn in the direction of arrow θ1.

第1軸11の端部に該第1軸11に対して一定角度傾斜
した状態で固着された回転円板37上には、第1軸11
に対して直行するように支軸12が回動可能に取り付け
られている。該支軸12には、該支軸12を中心として
揺動可能の第1アーム13の末端が固着されており、該
第1アーム13の他端に旋回可能で且つ前記支軸12に
平行に取り付けた支軸14に揺動自在に取り付けた三筒
連鎖を構成する第1リンク20の先端部に設けた支点2
1と、前記回転円板;37に固定された支点18とは、
前記した第1アーム13に平行なリンク22によって連
結されており、支軸12の軸芯と第1軸11の軸芯との
交点23と、前記支点18とを結ぶ線分が第1リンク2
0に平行で、且つリンク22と第1アーム13とが平行
となるような平行リンクが形成されている。更に第1ア
ーム13の中間に設けた支点17と回転円板37に固定
された支点16とは、前記したようなホールネジ等より
なる第2位1〆(決め手段J2によ−って連結され、第
2位置決めゴ一段、Jユの(11す、IN動作によ−、
て第1アーム13が第14i11111に対して矢印0
2の方向に揺動する。
The first shaft 11 is mounted on a rotating disk 37 fixed to the end of the first shaft 11 while being inclined at a certain angle with respect to the first shaft 11.
A support shaft 12 is rotatably attached so as to be perpendicular to the shaft. An end of a first arm 13 that is swingable about the support shaft 12 is fixed to the support shaft 12, and a first arm 13 that is pivotable and parallel to the support shaft 12 is fixed to the other end of the first arm 13. A fulcrum 2 provided at the tip of a first link 20 constituting a three-tube chain that is swingably attached to an attached support shaft 14
1 and the fulcrum 18 fixed to the rotating disk; 37,
It is connected by a link 22 parallel to the first arm 13 described above, and the line segment connecting the intersection 23 between the axis of the support shaft 12 and the axis of the first shaft 11 and the fulcrum 18 is the first link 2.
A parallel link is formed such that the link 22 and the first arm 13 are parallel to each other. Furthermore, the fulcrum 17 provided in the middle of the first arm 13 and the fulcrum 16 fixed to the rotary disk 37 are connected by a second bolt 1 (determining means J2) made of a hole screw or the like as described above. , second positioning stage 1, Jyu's (11th, IN operation),
, the first arm 13 points to the arrow 0 with respect to the 14i11111.
It swings in two directions.

前記第1アーム13の先端には、該第1アームに対して
回転可能に取りイ蒐1りた前記支軸14を中心として揺
動自在の第2′r−ム15(支持腕)が取り付けられて
おり、この第2アーJい15内4:斜;1第2アーム1
5の中間の固定支点(不図示)とnii記第1リンク2
0に対して位置を固定された三筒連鎖の構成要素である
第2リンクの先ηjAIの支点とを連結するボールネジ
等よりなる第3位置決め手段J、(不図示)が内蔵され
、この第3−位置決め手段J3の伸縮動作によって第2
アーム15が前記第1 ’l!ill l 1及び第1
アーム13を含む第1平面内に於いて矢印θ3の方向に
揺動運動する。前記第2リンクの角度は前記平行リンク
22の存在により、第1リンク20が第17−ム13の
揺動角度によらず常に第1軸11に対して一定の角度に
保持されるので、第3位置決め手段J3の伸縮量に応じ
て第2アーム15の第1軸11に対する揺動角度が一義
的に決定される。第2アーム15内Gこは、史にその先
端に設けた、非接触変位センサSを有する手首部38を
第2アーム15の軸芯まわりにhi回連動を起こさせる
旋回駆動機構(不図示)が内蔵され、更に手首g++3
aを曲げ方向に即動させる機構が第2アーム15内に設
けられている。
A second arm 15 (support arm) is attached to the tip of the first arm 13 and is swingable about the support shaft 14, which is rotatably mounted relative to the first arm. and this second arm J15 inside 4: diagonal;
5 and the intermediate fixed fulcrum (not shown) and the first link 2
A third positioning means J (not shown) consisting of a ball screw or the like is built in to connect the fulcrum of the tip ηjAI of the second link, which is a component of the three-cylinder chain whose position is fixed with respect to 0, and - The second
Arm 15 is the first 'l! ill l 1 and 1st
It swings in the direction of arrow θ3 in the first plane including arm 13. Due to the existence of the parallel link 22, the angle of the second link is always maintained at a constant angle with respect to the first axis 11 regardless of the swing angle of the 17th arm 13. The swing angle of the second arm 15 with respect to the first shaft 11 is uniquely determined according to the amount of expansion and contraction of the third positioning means J3. Inside the second arm 15, there is a turning drive mechanism (not shown) that causes the wrist part 38, which is provided at the tip thereof and has a non-contact displacement sensor S, to interlock hi times around the axis of the second arm 15. is built-in, and the wrist g++3
A mechanism for immediately moving a in the bending direction is provided within the second arm 15.

尚、第2図に示した50,51.52は夫々基台29に
対する第1軸11の旋回角度を検出する角度検出器1回
転円扱37に対する第1アーム13の揺動角度を検出す
る角度検出器、第17−ム13に対する第2)′−J=
15の1■)勅角度を検出する角度検出器である。
Incidentally, 50, 51, and 52 shown in FIG. 2 are angles for detecting the swing angle of the first arm 13 with respect to the one rotation circle 37 of the angle detector that detects the turning angle of the first shaft 11 with respect to the base 29, respectively. Detector, 2nd)'-J= for 17th-mu 13
15-1■) It is an angle detector that detects the angle.

以上、の構造の計測lコボノI・を用いてワーク■の断
面形状を計測し、計測点をにiii算する為の座標計算
は、第3図に示す方法により行われる。
As described above, the cross-sectional shape of the work piece (2) is measured using the structure measurement unit (1), and the coordinate calculation for calculating the measurement point is performed by the method shown in FIG.

uIJちF記多関節ロボットよりなる寸法計測装置3を
駆動してセンサSをワークlの所定基準断面における表
面から一定距離だけ隔った軌跡をたどらせると共に、そ
の11!jの各関節角度を角度検出器50.51.52
からの出力により検出ずろ。こうして得られた関fit
”1角度0.,0... θ3を用いて拮4!!断面の
位置)!11標(X、Y、Z)が次式〇こより寸法計測
装置3の制fall装置7を用いて6ii算される。
The dimension measuring device 3 consisting of an articulated robot uIJF is driven to cause the sensor S to follow a trajectory separated by a certain distance from the surface of the work l in a predetermined reference cross section, and 11! Angle detector 50.51.52 calculates each joint angle of j.
Detection error due to output from. Seki fit obtained in this way
``1 angle 0.,0... Using θ3, the position of the cross section)!11 marks (X, Y, Z) are the following formula〇 From this, using the control fall device 7 of the dimension measuring device 3, 6ii calculated.

X =La −CO5θ2+ Lb−COSe+ + 
LxY =(La −sine2 +Lb−sinO3
)・cosel−LyZ −(La−sinθz+Lb
−sine:+)+ 5inQ+ 十Lz−Ltここに
第3図に示すようにLtはターンテーブル1及び介物の
高さ Laは第1アーム13の回転半径 Lbは第2アーム15の回転中心15 からセンサSの測定点までの距離である。
X = La −CO5θ2+ Lb−COSe+ +
LxY = (La −sine2 +Lb−sinO3
)・cosel−LyZ −(La−sinθz+Lb
-sine:+)+5inQ+ 10Lz-LtHere, as shown in FIG. It is the distance from to the measurement point of sensor S.

次に第4図を用いて水車ランナの研削を行う為の411
1型多関節ロホソトよりなる加工装置4全体の(11?
造について説明する。このような加工装置4と、寸法計
測装置3とは、演算処理の簡略化、ワークと装置との干
渉を防ぐ為にセンサ及び工具の部分を除いてまったく同
一形状にすることが望ましい。
Next, use 411 to grind the water turbine runner using Fig. 4.
The entire processing device 4 (11?
I will explain the structure. It is desirable that the machining device 4 and the dimension measuring device 3 have exactly the same shape except for the sensor and tool portions in order to simplify calculation processing and prevent interference between the workpiece and the device.

図に於いて第1幀61を軸受62によって水平方向に旋
回可能に支持する基台63は、水平基台64の上面65
」二に該水平基台64の軸方向に摺動可能に支持された
垂直基台66の垂直側面67に沿って垂直方向に摺動可
能に支持されていることにより、水平方向及び垂直方向
に対して自在に位’jirf /lめされる。前記第1
軸61に固定されたアーム68の先端に設けた支点69
と、基台63上の支点70とは両支点に対して揺動自在
に取り付LJだ第1位置決め手段J 、 /によって連
結されている。この第1位;?1°決め手段J1′及び
後記する第2及び第3の位j+J“11決め手段J2’
、J:l’は、夫々油圧シリンダ、ボールネジ、その他
の伸縮可能で、且つその伸縮Paが正確に制御されるア
クチュエータやモータ等によって構成されている。従ゲ
ζ第1位置決め手段、J、/の伸縮により第1i!11
1161が任意の旋回角度分たり旋回され、これに連結
された第1アーム71及び第27−ム72が全体として
第1軸61の回りに矢印θ1の方向に旋回する。
In the figure, the base 63 that supports the first fence 61 horizontally by a bearing 62 is connected to the upper surface 65 of the horizontal base 64.
``Secondly, the horizontal base 64 is supported so as to be slidable in the vertical direction along the vertical side surface 67 of the vertical base 66, which is supported so as to be slidable in the axial direction. It can be freely ranked against the enemy. Said first
A fulcrum 69 provided at the tip of an arm 68 fixed to the shaft 61
and a fulcrum 70 on the base 63 are connected to each other by first positioning means LJ, which is swingably attached to both fulcrums. This number one;? 1° determining means J1' and second and third positions j+J"11 determining means J2' to be described later
, J:l' are each constituted by a hydraulic cylinder, a ball screw, or other actuator or motor that can be expanded and contracted and whose expansion and contraction Pa is precisely controlled. Due to the expansion and contraction of the follower gear ζ first positioning means, J, /, the first i! 11
1161 is rotated by an arbitrary rotation angle, and the first arm 71 and the 27th arm 72 connected thereto are rotated as a whole around the first shaft 61 in the direction of arrow θ1.

第1軸61の&j:1部に該第1軸61に対して一定角
度傾斜した状態で固着された回転円板731.二は、第
1軸61に対して直行するように支軸74が回動可能に
取り付けられている。該支軸744.1は、該支軸74
を中心として1:1)動可能の第1アーム71の末端が
固着されており、該第1アーJλ71の他端に旋回可能
で且つi’+ii記支tli+l174に平行Gこ取り
付けた支軸75に揺・190′」在に取り付けた五節連
鎖を構成する第1リンク76の先端部に設けた支点77
と、前記回転円板7;3に固定された支点78とは、前
記した第1アーム71に平行なリンク79によって連結
されており、支軸74の軸芯と第111i+l+ 11
の軸芯との交点80と、前記支点78とを結ぶ線分が第
1リンク76に平行で且つリンク79と第1アーム71
とが平行となるような平行リンクが形成されている。更
に第17−ム71の中間に設けた支点81と回転円板7
3に固定された支点82とは、前記したようなボニルネ
ジ等よりなる第2位置決め手段J2/によって連結され
、第2位置決め手段J2/の伸縮動作によって第1アー
ム71が第1軸61に対して矢印θ。
A rotary disk 731 is fixed to the &j:1 portion of the first shaft 61 so as to be inclined at a constant angle with respect to the first shaft 61. Second, a support shaft 74 is rotatably attached so as to be perpendicular to the first shaft 61 . The support shaft 744.1 is connected to the support shaft 74.
The end of a first arm 71 that can move 1:1) around the center is fixed, and a support shaft 75 is attached to the other end of the first arm Jλ71 and is rotatable and parallel to the i'+ii support tli+l174. A fulcrum 77 provided at the tip of the first link 76 constituting the five-bar chain attached at the 190'
and a fulcrum 78 fixed to the rotary disk 7; 3 are connected by a link 79 parallel to the first arm 71, and the axis of the support shaft 74 and the 111i+l+ 11
A line segment connecting the fulcrum 78 and the intersection 80 with the axis of the link 79 is parallel to the first link 76 and
Parallel links are formed such that these are parallel to each other. Further, a fulcrum 81 provided in the middle of the 17th arm 71 and a rotating disk 7
3 is connected to the fulcrum 82 by a second positioning means J2/ made of a Bonyl screw as described above, and the first arm 71 is moved relative to the first shaft 61 by the expansion and contraction movement of the second positioning means J2/. Arrow θ.

の方向に揺動する。swing in the direction of.

前記第1アーム71の先端には、該第17−ム71に対
して回転可能に取り付けた前記支軸75を中心として揺
動自在の第2アーム72(支持腕)が取り付けられてお
り、この第2アーム72内には第2アーム72の中間の
固定支点(不図示)と前記第1リンク76に対して位置
を固定された三部連鎖の構成要素である第2リンクの先
端の支点とを連結するボールネジ等よりなる第3位置決
め・1一段J、′ (不図示)が内蔵され、この第3位
置決め手段’ 3 ’ 0)rllliiii動作によ
って第2アーム72が前記第111i+I+ 61及び
第1アーム71を含む第1平面内に於い゛C矢印θ、の
方向に1:i)動坤動する。前記第2リンクの角jαG
。L前記平行リンク79の存在により、第1リンク7(
jか第1アーム71のIR:切角度によら”」當に第1
輔fi 1にグlして一定の角度に保持されるので、第
3(1ン置決め手段JI′の伸縮量に応じて第27−ム
72の第1輔61に対する揺動角度が−・人的に決定さ
れる。
A second arm 72 (support arm) is attached to the tip of the first arm 71 and is swingable about the support shaft 75 rotatably attached to the seventeenth arm 71. The second arm 72 includes a fixed fulcrum (not shown) in the middle of the second arm 72 and a fulcrum at the tip of the second link, which is a component of a three-part chain whose position is fixed with respect to the first link 76. A third positioning/11 stage J,' (not shown) consisting of a ball screw or the like that connects the 111i+I+ 61 and the first arm is built-in, and the second arm 72 is moved to the 111i+I+ 61 and the first arm by the operation of this third positioning means 71 in the direction of the arrow θ. Angle jαG of the second link
. L Due to the existence of the parallel link 79, the first link 7 (
IR of the first arm 71: Depending on the cutting angle, the first
Since it is held at a constant angle by holding it at a constant angle, the swing angle of the 27th arm 72 with respect to the first leg 61 changes depending on the amount of expansion and contraction of the third positioning means JI'. Humanly determined.

第2アーム72内には更にその先Diitに設けたグラ
インダGを有する手首部84に第27−ム72の軸芯の
回りに旋回連動を起こさせる旋回駆qすJ機構(不図示
)が内蔵され、更に第2アーム72の先端部には、図示
せぬ比例リンク機構を有するグラインダGの揺すノ機構
が取り付けられている。第2アーム15の前記小値!’
jlI 31iとは反対側の末端部には、第1の11!
カバランス装置の一種であるカウンタウェー1−83が
固着され、このカウンタウエート83の重力によって第
2アーム72の第1アーム71の軸芯を中心とした左右
の重力バランスか達成される。
Built into the second arm 72 is a turning mechanism (not shown) that causes a wrist portion 84 having a grinder G provided at the tip of the second arm 72 to rotate around the axis of the second arm 72. Furthermore, a swinging mechanism for the grinder G having a proportional link mechanism (not shown) is attached to the tip of the second arm 72. The said small value of the second arm 15! '
At the end opposite to jlI 31i, the first 11!
A counterweight 1-83, which is a type of balance device, is fixed, and the gravity of the counterweight 83 achieves left and right gravity balance about the axis of the first arm 71 of the second arm 72.

85は第1アーム71及び第2アーム72全体の動きを
バランスさセる為のバランス装置である。
85 is a balance device for balancing the movement of the first arm 71 and the second arm 72 as a whole.

また50’、!l’、52’は夫々第1軸61゜第17
−ム71.第2アーム73の回動角度を検出する為のロ
ータリエンコーダ等よりなる角度検出器である。
50' again! l' and 52' are the first axis 61° and the 17th axis, respectively.
-mu71. This is an angle detector consisting of a rotary encoder or the like for detecting the rotation angle of the second arm 73.

以下に、本システムにおける寸法計測からイσFyX?
作業に至る手順について説明する。
Below, σFyX? from the dimension measurement using this system.
Explain the steps leading up to the work.

寸法計測装置3の手首先端の非接触変位センサSは、計
測作業中には、ワーク1の表面より数mm〜数10ml
11離れた位置をワーク1に倣いながら計測動作を行う
。本計測作業は1枚目の羽根についてはオペレータが希
望する計測点をペンダント操作パネル8の操作により手
動にて教示する。この1枚目の羽根データは、基本デー
タとして図形処理装置の記憶装置12に記憶される。2
枚目以後の羽根については、無段階ターンテーブル2ば
自4すJ的に「360°/羽根枚数」分回転され、計測
装置3ば1枚目のデータを参照して自動的に計/l!i
 W’)+作を実行する。即13、センサSがワーク1
の2枚目の羽根に接近する迄の経路においては計測装!
j、’、Lは1枚目の羽根へ接近し、1.、 ++;H
と同し7経路をたどるが2枚目の羽根に近づいて倣いt
it /ltl+を実行する時点からは、現物倣い動作
を行う。計測されたデータ(位置座標(X、Y、Z)は
、図形処理装置、y、j 5へデータ転送され、計測点
+−ig標の表示座標点のプロット、座標点間のスJ、
−スイング処理等が行われ、CRT画面状に任意11ノ
[面(jj″の図形化がijl能となる。又1ンI形処
理装置5内では、既に入力されている設計寸法データ(
設H’1寸法を数(i+’+とじて入力したり、図面か
らディジタイザ等によって入力する)と、前記計測装置
3により1j1渕された計測データとの重ね合わ・U処
理を行うごとにより (図形の平行シフトと及び回転)
、断面形状の設計寸?J、、データに対するワークの法
線方向の余肉h1.(偏差量)を算出することが可1j
ヒである。その地図形処理装置では、設計データと計1
djllデータから加工装置4を自動的に動作さ・lる
2:)の加工データ(加工hl)か演算処理され、加工
装置4ヘデータ転送することにより自動的に加工装置4
による加工作業か実行される。従って、加工装置4を動
作させる10のオペレータによるティーチング作業は不
要である。図形処理装置はグラフインクコンピュータ、
1ン1面データを入力するディジタイザ、メモリ。
The non-contact displacement sensor S at the tip of the wrist of the dimension measuring device 3 moves several mm to several tens of ml from the surface of the workpiece 1 during measurement work.
Measurement operation is performed while following the workpiece 1 at a position 11 away from the workpiece. In this measurement work, for the first blade, the operator manually instructs the desired measurement point by operating the pendant operation panel 8. This first blade data is stored in the storage device 12 of the graphic processing device as basic data. 2
For the blades after the first blade, the stepless turntable 2 rotates 360°/number of blades, and the measuring device 3 automatically measures /l by referring to the data of the first blade. ! i
Execute W') + operation. Immediately 13, sensor S is work 1
On the route to approach the second blade, there is a measuring device!
j,',L approaches the first blade, 1. , ++;H
It follows the same 7 routes, but approaches the second feather and imitates it.
From the time when it/ltl+ is executed, the actual copying operation is performed. The measured data (position coordinates (X, Y, Z) is transferred to the graphic processing device, y, j5, and plots the display coordinate points of the measurement point + - ig mark, the space between the coordinate points,
- Swing processing etc. are performed, and it becomes possible to graphically represent any 11 planes (jj'') on the CRT screen.In addition, in the 1-I shape processing device 5, the already input design dimension data (
By superimposing the design H'1 dimension (input as i+'+ or inputting it from the drawing using a digitizer, etc.) with the measurement data 1j1 by the measuring device 3 and performing U processing, parallel shift and rotation)
, the design dimensions of the cross-sectional shape? J,, extra thickness h1 in the normal direction of the workpiece to the data. It is possible to calculate (deviation amount)1j
It's Hi. The map processing device uses design data and a total of 1
The processing device 4 is automatically operated from the djll data.The processing data (processing HL) of 2:) is processed, and the data is transferred to the processing device 4, so that the processing device 4 is automatically operated.
Machining operations are carried out by Therefore, teaching work by ten operators who operate the processing device 4 is unnecessary. The graphics processing device is a graph ink computer.
Digitizer and memory for inputting 1-page data.

プし2ツタ、ハードコピー等から成る。It consists of two types of prints, hard copies, etc.

IZ(1ち設計データ(し1形あるいは数値データ)を
マスターデータとする一方、寸法計測装置3によるワー
クlの各部寸法計測処理後、図形処理装置5によるCR
T管面主面上マスターデータとワークデータとの重ね合
わせ処理を行い、芯出し、相差、偏差量をめる。この偏
差量を目安として加工装置4にはマスターデータに対す
るワーク1の余肉量を指定することにより、ワーク1を
マスク形状に相似的に無理なく段階的に加工するもので
ある。ここに加工時に必要な形状データはマスターデー
タでありワークデータはワーク1がターンテーブル2上
のどこに、どんな向きで、設置されているかということ
が明確になればよく、マスク座標系に基づく加工4i1
t !+Il、をTノーク+ノ+に標系に変換する1際
に用いるのみである。従っC・ノークデータ惜がマスタ
ーデータ(,1に1苅1で対応する必要はない。即ちワ
ークデータは、基71f−と)、、:る形状データ量を
確保すれば、図形処理によるjllね合わせ処理でマス
ターデータからの位i°ヒ4゛れ量(相差)がめられる
IZ (1 design data (1 shape or numerical data) is used as master data, and after dimension measurement processing of each part of work l by dimension measurement device 3, CR by graphic processing device 5
Overlay the master data and work data on the main surface of the T-tube surface to calculate centering, phase difference, and deviation amount. By using this amount of deviation as a guideline and specifying to the processing device 4 the amount of extra thickness of the workpiece 1 with respect to the master data, the workpiece 1 is processed step by step to resemble the mask shape without difficulty. The shape data required during machining is master data, and the workpiece data only needs to be clear where and in what direction the workpiece 1 is placed on the turntable 2. Machining based on the mask coordinate system 4i1
T! It is only used when converting +Il into the standard system Tnork+no+. Therefore, if you secure the amount of shape data such as C. Nork data and master data (, 1), it is not necessary to correspond to master data (, 1, 1). In the alignment process, the amount of position i° deviation (phase difference) from the master data is determined.

加工装置4による加」一方d、には、24・ILの方法
がある。1つは、寸法a1測装置3により計、l!il
l処理された領域面内での自動加工方法である。この領
域内では寸法計測装置3が何の1+<;害もなく動作制
御できたことを示し、寸法計測装置3と加工装置4とか
同一形状であることから加]二装ji’ニア 4も加工
幅ピッチをもって何のll、IL害もなく順次自動的に
1イil・・父内の面加工を行うことができる。他の1
つは、オペレータ介入によりワーク1に対して事前シこ
加工装置4の姿勢を指定し、この姿勢条件下で加工幅ピ
ッチによる1断i「11加工を可11ヒとする半自動加
工方法である。この方法では、ワークデータにない領1
・曳の加工を可能とし、更にターンテーブルの回転と組
合わせることにより斜め断面の加工等の独自な加工軌跡
の加工が行える。
On the other hand, there is a method of 24.IL for processing by the processing device 4. One is the dimension a1 measured by the measuring device 3, l! il
This is an automatic processing method within the plane of a processed area. In this area, the dimension measuring device 3 was able to control the operation without any 1+ It is possible to automatically perform surface machining in one step or another without causing any damage to the width pitch. other 1
The first is a semi-automatic machining method in which the posture of the pre-scraping device 4 is designated with respect to the workpiece 1 through operator intervention, and one cut i'11 machining is possible based on the machining width pitch under this posture condition. With this method, there are areas that are not in the work data.
- Enables pulling processing, and by combining it with the rotation of the turntable, it is possible to process unique processing trajectories such as processing diagonal cross sections.

本発明は以上述べた如く、三次元曲面ワークを載ii+
’、lする無段階位置決めターンテーブルと、上記ワー
クの形状を非接触で計測する寸法計測装置と、寸法計測
データあるいは設計データの表示1図形化及び加工用デ
ータの作成を行うグラフインクコンピュータと、設計寸
法許容公差内にワークを自動加工する為の加工装置とを
備え、上記寸法計測装置により計測されたワーク断面形
状と、設計データによる同じ部分の断面形状とをグラフ
インクコンピュータのCRT画面上に形成し、両者の重
ね合わせ処理によってその偏差量をめ、この偏差量を目
安として加工装置の動作軌跡を演算処理12求めること
を特徴とする鋳仕上げ作業自動化システムであるから、
寸法計測データに基づくワークの任意断面形状の作成1
重ね合わせ、偏差量算出及び加工装置の各種加工シュミ
レーションが可能となり、十分に事前検討を加えた後に
加工装jFを作動させて、三次元曲面の創成を行うこと
ができるので、失敗がZI:<、i(ミた複層(な三次
元曲面を自動的に加工しうる4)のである。
As described above, the present invention mounts a three-dimensional curved work ii+
a stepless positioning turntable for positioning; a dimension measuring device for non-contact measuring the shape of the work; a graph ink computer for displaying dimension measurement data or design data; Equipped with a processing device that automatically processes the workpiece within the allowable design dimension tolerances, the cross-sectional shape of the workpiece measured by the dimension measuring device and the cross-sectional shape of the same part according to the design data are displayed on the CRT screen of the GraphInk computer. This casting work automation system is characterized by forming a mold, determining the amount of deviation by superimposing the two, and calculating the operating trajectory of the processing device using this amount of deviation as a guideline.
Creation of arbitrary cross-sectional shape of workpiece based on dimensional measurement data 1
Overlay, deviation amount calculation, and various processing simulations of the processing equipment are possible, and after sufficient preliminary consideration, the processing equipment jF can be operated to create a three-dimensional curved surface, so failures can be avoided. , i (4), which can automatically process multilayer three-dimensional curved surfaces.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のく二体Jlft1成を示1゛ブロック
図、第2図は本発明の一実施例に使用することのできる
寸法計測装置の斜視図、第3図は同寸法計測装置の座標
計算原理を説明する為のもので、同図(a)は平面図、
同図(b)は側断面図、第4し1は同実施例に使用可f
iシの加工装置を示す2;1視図である。 (符号の説明) 1・・・ワーク 2・・・ターンテーブル3・・・寸法
計測装置 4・・・加工装置5・・・図形処理装置 6・・・ターンテーブル制御装置 7・・・寸法計測制御装置 8・・・寸法計測ペンダン+−Fjr:)作パネル9・
・・加工装置制御装置
Fig. 1 is a block diagram showing the structure of the double body Jlft1 of the present invention, Fig. 2 is a perspective view of a dimension measuring device that can be used in an embodiment of the present invention, and Fig. 3 is the same dimension measuring device. This figure is for explaining the principle of coordinate calculation of
Figure (b) is a side sectional view, and No. 4 (1) can be used in the same embodiment.
It is a 2:1 perspective view showing the processing device of i-shi. (Explanation of symbols) 1...Workpiece 2...Turntable 3...Dimension measurement device 4...Processing device 5...Graphic processing device 6...Turntable control device 7...Dimension measurement Control device 8...Dimension measurement pendant +-Fjr:) Operation panel 9.
・Processing equipment control device

Claims (1)

【特許請求の範囲】[Claims] 三次元曲面ワークを載置する無段階位置決めターンテー
ブルと、上記ワークの形状を非接触で計測する寸法計測
装置と、寸法計測データあるいは設計データの表示2図
形化及び加工用データの作成を行うグラフインクコンピ
ュータと、設計寸法許容公差内にワークを自動加工する
為の加工装置とを備え、上記寸法計測装置により計測さ
れたワーク断面形状と、設計データによる同じ部分の断
面形状とをグラフインクコンピュータのCRT画面上に
形成し、両者の重ね合わせ処理によってその偏差量をめ
、この偏差量を目安として加工装置の動作軌跡を演算処
理してめることを特徴とする鋳仕上げ作業自動化システ
ム。
A stepless positioning turntable on which a three-dimensional curved work is placed, a dimension measuring device that measures the shape of the work in a non-contact manner, and a graph that displays dimensional measurement data or design data (2) and creates graphics and processing data. Equipped with an ink computer and a processing device for automatically processing the workpiece within design dimensional tolerances, the graph ink computer calculates the cross-sectional shape of the workpiece measured by the dimension measuring device and the cross-sectional shape of the same part based on the design data. This casting work automation system is characterized in that it is formed on a CRT screen, the amount of deviation is determined by superimposing the two, and the operation trajectory of the processing equipment is calculated and determined using this amount of deviation as a guide.
JP58209342A 1983-11-07 1983-11-07 Automation system of cast finishing operation Pending JPS60104631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58209342A JPS60104631A (en) 1983-11-07 1983-11-07 Automation system of cast finishing operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58209342A JPS60104631A (en) 1983-11-07 1983-11-07 Automation system of cast finishing operation

Publications (1)

Publication Number Publication Date
JPS60104631A true JPS60104631A (en) 1985-06-10

Family

ID=16571357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58209342A Pending JPS60104631A (en) 1983-11-07 1983-11-07 Automation system of cast finishing operation

Country Status (1)

Country Link
JP (1) JPS60104631A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147506A (en) * 1985-12-23 1987-07-01 Niigata Eng Co Ltd Data producing device for numerically controlled processing device
JPS62212704A (en) * 1986-03-13 1987-09-18 Iida:Kk Automatic carving device
EP0321108A2 (en) * 1987-12-12 1989-06-21 Prvni Brnenska Strojirna Koncernovy Podnik Adaptive control of the trajectory of a working process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184654A (en) * 1981-05-11 1982-11-13 Toyota Motor Corp Processing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184654A (en) * 1981-05-11 1982-11-13 Toyota Motor Corp Processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147506A (en) * 1985-12-23 1987-07-01 Niigata Eng Co Ltd Data producing device for numerically controlled processing device
JPS62212704A (en) * 1986-03-13 1987-09-18 Iida:Kk Automatic carving device
EP0321108A2 (en) * 1987-12-12 1989-06-21 Prvni Brnenska Strojirna Koncernovy Podnik Adaptive control of the trajectory of a working process
EP0321108A3 (en) * 1987-12-12 1990-10-31 Prvni Brnenska Strojirna Koncernovy Podnik Adaptive control of the trajectory of a working process

Similar Documents

Publication Publication Date Title
JP4531023B2 (en) Crankshaft machining method, crankshaft machining apparatus, control apparatus, and program
He et al. A new error measurement method to identify all six error parameters of a rotational axis of a machine tool
US4988244A (en) Six-axis machine tool
US4042161A (en) Automatic welding apparatus
EP1787176B2 (en) Machine tool method
JP4198861B2 (en) Correction method of machine error at spindle head of multi-axis machine tool
GB2447455A (en) A support arrangement for a treatment device
WO2013089101A1 (en) Weld bead-shaping device and shaping method
Wirtz et al. From unambiguously defined geometry to the perfect quality control loop
US20020166220A1 (en) Process for repairing a structure
KR101199037B1 (en) Post Processing Method for Fine Machining of Drum Cam with Rotational Followers using 5-Axis CNC Machine
JPS60104631A (en) Automation system of cast finishing operation
KR101200171B1 (en) Post Processing Method for Rough Machining of Drum Cam with Rotational Followers using 5-Axis CNC Machine
US9008837B2 (en) Method for creating a robot model and industrial robot
CN104625314A (en) Portable pipe cutting device based on crawling mechanism
JP4616853B2 (en) Model processing method and model processing system
KR102460118B1 (en) Method of correcting spindle positions of head attachments for machining tools
CA2407002C (en) A process for contour control machining of metal blocks
JP3796207B2 (en) Machining method by 3D laser processing machine and NC program creation method for 3D laser processing
JP2019537105A (en) Apparatus with articulated arm and machine tool and corresponding machining method
JPH0146276B2 (en)
JPS6231366B2 (en)
Oysu Automation of welding face shaping process for tubular structures
JPS60114445A (en) Neumerical control machine tool
Nittel Numerically controlled machining of propeller blades