JPS60104097A - Purification of dna - Google Patents
Purification of dnaInfo
- Publication number
- JPS60104097A JPS60104097A JP58209506A JP20950683A JPS60104097A JP S60104097 A JPS60104097 A JP S60104097A JP 58209506 A JP58209506 A JP 58209506A JP 20950683 A JP20950683 A JP 20950683A JP S60104097 A JPS60104097 A JP S60104097A
- Authority
- JP
- Japan
- Prior art keywords
- dna
- aqueous solution
- adsorbent
- solution containing
- stationary phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1003—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
- C12N15/1006—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
- C12N15/101—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by chromatography, e.g. electrophoresis, ion-exchange, reverse phase
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Wood Science & Technology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Saccharide Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はDNAの精製方法に関するものであり、さらに
詳しくはDNAとモノヌクレオチドを含む溶液から吸着
剤を用いてDNAを精製する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for purifying DNA, and more particularly to a method for purifying DNA from a solution containing DNA and mononucleotides using an adsorbent.
近年遺伝子組み換え技術が発展するにつれ、化学合成等
で得られるDNAの有用性が高まっている。′:50−
プやづライマーとして、またうOt−ター等の改良のた
め、さらにまた数百数千塩基に及ぶ構造遺伝子−LP″
5ラスミド遺伝子の合成単位としてのDNAが重要な動
きをするようになった。As genetic recombination technology has developed in recent years, the usefulness of DNA obtained through chemical synthesis and the like has increased. ':50-
As a primer, for the improvement of overlapping Otter, etc., we have further developed a structural gene of several hundred and thousands of bases - LP''.
5 DNA, which serves as the synthetic unit of the lasmid gene, has started to play an important role.
このようなりNAはその調製の際または実際の使用の際
にアデノシシ三すシ酸等のモノヌクレオチドとの混合溶
液となることが多い。例えば実際にこのようなりNAを
使用する場合には、その5′末端を標識されたまたは標
識されていないアデノシシ三すシ酸(以下ATPと略記
する)を用いて酵素的にリン酸エステル化することが多
い。このリン酸エステル化には通常過剰量のATPを用
いるが、反応後過剰のATPおよび反応で生じたアヂノ
シンニリシ酸(以下ADPと略記する)等から目的のリ
ン酸エステル化されたDNAを分離精製する必要がある
。また反応に使用されたポリスクレオチド士ナーゼは次
段の反応を阻害することが多いので、除去することが望
ましい。鎚ってDNAをtノヌクレオチドを含む溶液か
ら効率よく分離精製することは重要な課題である。Such NA often becomes a mixed solution with a mononucleotide such as adenosysinosic acid during its preparation or actual use. For example, when such NA is actually used, its 5' end is enzymatically phosphorylated using labeled or unlabeled adenosysyltrisic acid (hereinafter abbreviated as ATP). There are many things. Usually, an excess amount of ATP is used for this phosphoric acid esterification, but after the reaction, the target phosphoric acid esterified DNA is separated and purified from the excess ATP and the adinosine dirisic acid (hereinafter abbreviated as ADP) generated in the reaction. There is a need. Furthermore, since the polystyrenease used in the reaction often inhibits the next reaction, it is desirable to remove it. It is an important issue to efficiently separate and purify DNA from a solution containing t-nonucleotides.
ATP 9 ADPの除去は、一般的にはゲル濾過、透
析、イオシ交換、エタノール沈殿が用いられている。特
に少量のDNAの処理にはエタノール沈殿が主として用
いられている。また酵素の除去にはフェノール処理法が
主として行われている。しかし、これらの方法は繁雑で
しかも長時間を要する。特にDNAオリjマーの場合に
は十ヤリャーとして多量のt−RNA等を用いる必要が
あり、また除蛋白後のフェノールの除去が面倒であつ7
こ。Gel filtration, dialysis, iosiexchange, and ethanol precipitation are generally used to remove ATP 9 ADP. Ethanol precipitation is mainly used especially for processing small amounts of DNA. Furthermore, phenol treatment is mainly used to remove enzymes. However, these methods are complicated and take a long time. In particular, in the case of DNA oligomers, it is necessary to use a large amount of t-RNA, etc., and removal of phenol after deproteinization is troublesome.
child.
一方、5′末端がリン酸エステル化されたDNAを水溶
液中から親油性固定相を有する粒子の親油性固定相に捕
捉させて脱塩することができることは公知である。しか
しこのような操作は、これまではいずれも七ノヌクレオ
チドであるATPやADPを除去した後に行われており
、5′末端のリン酸エステル化されたDNAとATP
Jp ADPが共存した場合の各ヌクレオチドの挙動に
ついては知られていなかった。On the other hand, it is known that DNA whose 5' end has been phosphated can be captured from an aqueous solution on a lipophilic stationary phase of particles having a lipophilic stationary phase and desalted. However, such operations have so far been performed after removing ATP and ADP, which are heptanonucleotides, and the 5' end of the DNA has been phosphorylated and ATP has been removed.
The behavior of each nucleotide in the presence of Jp ADP was not known.
本発明者等は親油性固定相上でのヌクレオチドの挙動を
深く検討した結果、5′末端のリン酸エステル化された
DNAは水溶液から親油性固定相上へ捕捉されるが、八
TPやADP等の七ノスクレオチドは慈外にもこれに捕
捉されないこと、及び5′末端リン酸エステル化に使用
した酵素蛋白質は親油性固定相上へ捕捉されるがDNA
溶出の際に親油性固定相から脱着されないことを見出し
て本発明を完成した。As a result of a deep study on the behavior of nucleotides on a lipophilic stationary phase, the present inventors found that 5'-terminally phosphoric acid esterified DNA is captured from an aqueous solution onto a lipophilic stationary phase, but 8TP and ADP Surprisingly, heptanoscleotides such as E. coli were not captured by this, and the enzyme protein used for 5'-terminal phosphorylation was captured on the lipophilic stationary phase, but DNA
The present invention was completed by discovering that it is not desorbed from a lipophilic stationary phase during elution.
即ち本発明はDNAと七ノヌクレオチドを含む水性溶液
を、表面に親油性固定相を持つあらかじめ膨部させた吸
着剤と接触させてLINAを親油性固定相に吸フイさせ
、このDNAを吸着させた吸着剤をしノヌクレオチドを
含む水性溶液と分離し、さらにこれをメタノールから成
る溶出液又は極性有機溶媒倉含む水性溶出液と接触させ
てDNA fこの水性溶出液中に溶出させることを特徴
とするDNAの精製方法を提供するものである。That is, in the present invention, an aqueous solution containing DNA and heptanonucleotides is brought into contact with a pre-swelled adsorbent having a lipophilic stationary phase on the surface, and LINA is absorbed into the lipophilic stationary phase, and this DNA is adsorbed. The method is characterized in that the adsorbent is used to separate an aqueous solution containing the nonucleotides, and the DNA is further contacted with an eluate consisting of methanol or an aqueous eluate containing a polar organic solvent to elute the DNA into the aqueous eluate. The present invention provides a method for purifying DNA.
本発明は5′末端のリシばエステル化された1)tlA
を積#1−る場合に好ましく適用される。The present invention provides 1) tlA in which the 5' end is esterified.
It is preferably applied when the product #1-.
本発明で精製することのできる5′禾端のリン酸エステ
ル化きれたDNAは当然ジスクレオチド以上のオリコメ
クレオチドまたはホリヌクレオチドであり、好ましくは
テトラヌクレオチド以上である。また上限に格別の限定
はない。その塩基成分としてはアデニン(Aと略記)、
チミ、、7(Tと略記)、タアニ、7(Gと略記)及び
シトシシ(Cと略記)のいずれであってもよい。The 5'-end phosphoric acid esterified DNA that can be purified in the present invention is of course an oligonucleotide or polynucleotide having a dinucleotide or more, preferably a tetranucleotide or more. Moreover, there is no particular limitation on the upper limit. Its base components are adenine (abbreviated as A),
It may be any of Chimi, 7 (abbreviated as T), Taani, 7 (abbreviated as G), and Shitoshishi (abbreviated as C).
また5′末端のリン酸のリシは32p等で標識されてい
てもよい。共存する七ノヌクVオチドも〔γ−32P)
ATPのように標識されたものであってもよい。精製
処理さるべき水性溶液中のこれらの成分の濃1現につい
ては格別の限定はす< 、I)NAの5′末端をポリス
クレオチド+ナーゼ等の酵素の存在下でATPでり、ニ
ア酸エステル化した後の状態であってよいが、必要に応
じて希釈又は濃縮した状態であってよい。Further, the phosphoric acid at the 5' end may be labeled with 32p or the like. The coexisting seven nonuku V otide also [γ-32P]
It may be labeled like ATP. There are no special restrictions regarding the concentration of these components in the aqueous solution to be purified.I) The 5' end of NA is converted to ATP in the presence of polyscleotide + an enzyme such as niacetyl ester. It may be in a diluted or concentrated state as required.
精製処理さるべき水性溶液中の塩類等の濃度についても
格別の限定はなく、上述のリン酸エステル化を行う際の
緩衝液全構成する程度の濃度であってよい。しかしまた
、より低い塩濃度や塩類不存在の場合でもよく、より高
い塩濃度、例えば数七ル程度であってもよい。その液性
は精製さるべきDNAの変性を起こさぬ範囲内である必
要があるが、上述のリン酸エステル化を行つpHであっ
てよい。通常pH約5ないし約9程度、好ましくはpH
7前後である。There is no particular limitation on the concentration of salts or the like in the aqueous solution to be purified, and the concentration may be sufficient to make up the entire buffer solution when performing the above-mentioned phosphoric acid esterification. However, it may also be possible to have a lower salt concentration or the absence of salts, or a higher salt concentration, for example on the order of several seven salts. The pH of the liquid needs to be within a range that does not cause denaturation of the DNA to be purified, but it may be at a pH that allows for the above-mentioned phosphoric acid esterification. Usually about pH 5 to about 9, preferably pH
It is around 7.
精製処理さるべき水性溶液中には、ポリスクレオチド+
ナー七等の酵素蛋白質を含んでいてもよい。In the aqueous solution to be purified, polyscleotide +
It may also contain an enzyme protein such as N-7.
本発明の方法で用いる表面に親油性固定相を持つ吸着剤
としては、架橋されたブンブン、アクリル系重合体、ス
チレン系重合体等の架橋有機高分子及び固体ケイ酸等の
無機高分子の粒子表面に炭化水素基のような疎水性基を
有するもの、所謂逆相クロマトクラフイ用担体と言われ
る吸着剤を例示1−ることかできる。The adsorbent having a lipophilic stationary phase on its surface used in the method of the present invention includes particles of cross-linked organic polymers such as cross-linked bunbun, acrylic polymers, and styrene polymers, and particles of inorganic polymers such as solid silicic acid. An example of an adsorbent having a hydrophobic group such as a hydrocarbon group on the surface, which is a so-called carrier for reversed phase chromatography, can be mentioned.
本発明はこのような吸着剤を膨潤させて用いる。この膨
潤は慣用の方法で行ってよく、例えばこのような吸着剤
をメタノール等の親水性有機溶剤に浸漬することにより
、またはこれらの吸着剤を充填したカラムにこのような
溶剤を通過させることにより容易に行うことができる。In the present invention, such an adsorbent is used in a swollen state. This swelling may be carried out in a conventional manner, for example by soaking such adsorbents in a hydrophilic organic solvent such as methanol, or by passing such a solvent through a column packed with these adsorbents. It can be done easily.
5′末端のリン酸エステル化されたDliAおよび七ノ
ヌクレオナドを含む水性溶液と、これらの吸着剤との接
触は慣用の方法に従ってバッチ法によってもよく、また
カラム法で行ってもよい。The aqueous solution containing 5'-terminally phosphoric acid-esterified DliA and heptadonucleonade may be brought into contact with these adsorbents by a batch method or a column method according to a conventional method.
5′末端のリン酸エステル化されたDNAを吸着させた
吸着剤を、モノヌクレオチドを含む水性溶液から分離す
ることは、この吸着剤を水または水性溶液で洗浄し、洗
浄液を分離することによって達成することができる。こ
の除用いる水性溶液は液性がpH約5ないし約9、好ま
しくはpH約7前後、緩衝剤濃度Oないし約IM、好ま
しくは約0.01 M程度である。用いる緩衝剤として
はトリエチルアミジアセテート(以下TEAAと略記す
る)、トリエチルアミシバイカ−ボネート(以下TEA
Bと略記する)等の揮発性の緩衝剤が特に好ましい。Separation of the adsorbent adsorbed with 5'-terminally phosphoric acid esterified DNA from the aqueous solution containing the mononucleotide is achieved by washing the adsorbent with water or an aqueous solution and separating the washing solution. can do. The aqueous solution used for removal has a pH of about 5 to about 9, preferably about 7, and a buffer concentration of O to about IM, preferably about 0.01M. The buffers used are triethylamide diacetate (hereinafter abbreviated as TEAA) and triethylamishiba carbonate (hereinafter abbreviated as TEA).
Particularly preferred are volatile buffers such as B).
こうしてモノヌクしオチドを宮む水性溶液から分離され
たこの吸着剤はさらにメタノールからなる溶出液又は極
性有機溶媒を含む水性溶出液と接触させる。この溶出液
を、構成する極性有機溶媒としてはメタノール、エタノ
ール、エチレシタリコーン等の低級アルコール類、テト
ラしドロフラン、エチレシタリコール七ツメチルエーテ
ル等の親水性エーテル類、アセトシ等のケトン類、ア゛
ヒトジトリル等のその他の非プロトシ性極性有機溶媒を
例示することができる。The adsorbent thus separated from the aqueous solution containing mononucleates is further contacted with an eluate consisting of methanol or an aqueous eluate containing a polar organic solvent. The polar organic solvents constituting this eluate include lower alcohols such as methanol, ethanol, and ethyrecitalicon, hydrophilic ethers such as tetrahydrofuran and ethyrecitlycol 7-methyl ether, ketones such as acetyl alcohol, etc. Other non-protocytic polar organic solvents such as human ditolyl may be exemplified.
これらの親水性有機溶媒は水との混合溶液の形で用いる
。水と親水性有機溶媒の混合比は親水性有機溶媒の種類
によって変り得る。例えば比較的極性の強いメタノール
の場合ではメタノール100%から水1重量部に対して
メタノール約1重量部程度まで、比較的極性の弱いアー
Cトシトリルで水1重敗部に対して前者約0.15重量
部ないし約0.6重量部程度である。These hydrophilic organic solvents are used in the form of a mixed solution with water. The mixing ratio of water and hydrophilic organic solvent may vary depending on the type of hydrophilic organic solvent. For example, in the case of methanol, which has relatively strong polarity, it ranges from 100% methanol to about 1 part by weight of methanol per 1 part by weight of water, and with arc-tocitrile, which has relatively weak polarity, it ranges from about 0% methanol to 1 part by weight of water. The amount is about 15 parts by weight to about 0.6 parts by weight.
この水性溶出液はさらに緩衝剤を含むものが好ましい。This aqueous eluate preferably further contains a buffer.
緩衝剤としては慣用のものでよいが、後に共沸によつ−
C除去可能な緩働削、例えばTEAA、 TEAB等が
特に好ましい。その濃度、液性等もこの技術の分野で使
用される1俄用の条件でよく、吸着剤の洗浄に用いる水
性溶液のそれらと同様であってよい。用いる溶出液の量
は芥歇比で膨鯛吸崩削量の約2倍献程度以上、好ましく
は約3倍量程度以上である。上限に格別の限定はない。Any conventional buffering agent may be used, but it may be added later by azeotropy.
C-removable slow machining, such as TEAA, TEAB, etc., is particularly preferred. Its concentration, liquid properties, etc. may be the same as those for a single batch used in this technical field, and may be similar to those of an aqueous solution used for washing the adsorbent. The amount of the eluate used is about twice or more, preferably about three times or more, the amount of smoked sea bream in terms of ratio. There is no particular limit on the upper limit.
吸着剤中に残っている洗浄液のために溶出に遅れがある
のでフラクショシコレクターを用いて必要な両分を採取
することによって精製されたDNAをかなり高いa度で
得ることができる。溶出液中のDNAの濃度はDNAの
溶解度の許す範囲、例えば通常2重程度まで可能である
。Since there is a delay in elution due to the washing solution remaining in the adsorbent, purified DNA can be obtained at a considerably high a degree by collecting both necessary fractions using a fraction collector. The concentration of DNA in the eluate can be within a range allowed by the solubility of DNA, for example, usually up to about 2 times.
以上述べた各工程での処理?m fLについては目的D
NA等の変性、溶媒の沸騰、凍結等を起こさない限り格
別の限定はないが、すべて室温で行って何ら支障はない
。Processing in each process mentioned above? Objective D for m fL
There are no particular limitations as long as denaturation of NA, etc., boiling of the solvent, freezing, etc. are not caused, but all the steps can be carried out at room temperature without causing any problems.
本発明の方法によればDNAをモノヌクレオチドから分
離できるだけでなく、夾雑する蛋白質からも分離できる
。例えば本発明の方法は、DNAの5′末端をポリヌク
しオチド+ナーゼの存在下心安に応じてγ位のリン酸を
標識したATPによってリン酸エステル化した後、リン
酸エステル化されたDNAをATP等から分離精製する
場合に特に適当であるが、このような場合ポリヌクレオ
チド+ナーゼはDNAと共に親油性固定相に捕捉され、
矢の溶出工程で溶出されない。According to the method of the present invention, DNA can be separated not only from mononucleotides but also from contaminating proteins. For example, in the method of the present invention, the 5' end of the DNA is polynucleotide, the phosphoric acid at the γ-position is phosphorylated with labeled ATP in the presence of otide+nase, and then the phosphorylated DNA is It is particularly suitable for separation and purification from ATP, etc. In such cases, polynucleotide + enzyme is captured together with DNA on a lipophilic stationary phase,
Not eluted during the arrow elution process.
本発明の方法ではまたDNA0脱塩をも同時に達成する
ことができる。即ちDNAと七ノスクレオチドを含む緩
衝溶液を本発明の方法に従って処理し、揮発性緩衝剤を
含む溶出剤で溶出し、溶出液から揮発性緩衝剤を蒸留に
よって除去すれは、容易に塩類不含のDNAが得られる
。The method of the present invention can also simultaneously achieve zero desalting of DNA. That is, by treating a buffer solution containing DNA and heptanoscleotide according to the method of the present invention, eluating it with an eluent containing a volatile buffer, and removing the volatile buffer from the eluate by distillation, it is easy to obtain a salt-free solution. DNA is obtained.
以上述べたことから明らかなように本発明の方法によれ
ばリシ酸ニスデル化もれたDI仏を、ゲル濾過、透析、
イオン父換、エタノール沈殿などの面倒な工程なしに七
ノヌクレオチド、蛋白質、塩類等から容易に分離精製す
めことができる。As is clear from the above description, according to the method of the present invention, DI particles that have leaked Nisdell ricin acid can be removed by gel filtration, dialysis,
It can be easily separated and purified from heptanonucleotides, proteins, salts, etc. without complicated steps such as ion father exchange and ethanol precipitation.
以下本発明を実施例によって更に詳しく祝明する。The present invention will now be celebrated in more detail by way of examples.
実施例1
5′HO才りjマー(15mer、 Ho(JTAAA
GTGTCCGAG”’)0、12 ptを含む水溶成
約tμz、[r −32P) ATP10マイクロ+ユ
リ−(ATP量0.5X10 七ル)を含む水溶成約■
μLおよびT4−ポリスクレオナド士ナーt!(タカラ
酒造株式会社製)3ユニツトを含む水沼液約1μLを2
507のトリス(ヒトO+ジメチル)アミノメタン、5
0m1の塩化マグネシウム、10′rrMLのスペルミ
ン、50rrMiのジチオスレイトールおよび0.5M
の塩化カリを含むpH9,6の緩衝溶液lμtと混合し
、水を加えて5μHc希釈した。Example 1 5'HO old jmer (15mer, Ho(JTAAA)
GTGTCCGAG"') Aqueous solution containing 0,12 pt μz, [r -32P) Aqueous solution containing ATP10 micro + Yuri (ATP amount 0.5X10 7L)
μL and T4-polyscleonate agent! (Manufactured by Takara Shuzo Co., Ltd.) Approximately 1 μL of Mizunuma liquid containing 3 units
507 tris(human O+dimethyl)aminomethane, 5
0ml magnesium chloride, 10'rrML spermine, 50rrMi dithiothreitol and 0.5M
It was mixed with 1 μt of a pH 9.6 buffer solution containing potassium chloride, and diluted to 5 μHc by adding water.
この溶液を37℃で1時間保持して5’ HOオリづマ
ーのカイネーションを行った。このカイネーション反応
の後、この反応液を水で希釈して50μLとした。This solution was maintained at 37° C. for 1 hour to perform caination of the 5′ HO oligomer. After the caination reaction, the reaction solution was diluted with water to make 50 μL.
一方、内径4綱、^さ4.5 cmのカラムの下端を脱
脂綿で綿栓し、これに無水ケイ酸慇※1〜粒子表面にc
igの炭化水素基を有する逆相りOマトタラフイ用担体
のゲル(粒径32−48μ、ウオタース社製、0−18
ゲル)を約1crnの高さに充填した。このカラムに1
mlのメタノールを流してゲルを膨潤させ、さらにこ
れにpH7,0のトリエチルアミン酢酸塩緩衝液(0,
1M)3mAを流してコンデイショニシクを行った。On the other hand, the bottom end of a column with an inner diameter of 4 wire and a diameter of 4.5 cm was plugged with absorbent cotton, and anhydrous silicic acid *1 ~ C was added to the particle surface.
ig hydrocarbon group-containing carrier gel for reverse-phase O matocorafish (particle size 32-48μ, manufactured by Waters, 0-18
gel) was filled to a height of approximately 1 crn. 1 in this column
ml of methanol to swell the gel, and then add triethylamine acetate buffer (pH 7.0,
Conditioning was performed by flowing 3 mA (1M).
こうして調製したカラムにさきのカイネーショシ反応で
得た希釈反応液40μtを流し、さらにpH7,0のト
リエチルア′E、シ酢酸塩緩衝液(0,1M)3−でカ
ラムを洗浄した。40 .mu.t of the diluted reaction solution obtained in the previous Kaineshoshi reaction was applied to the column thus prepared, and the column was further washed with triethyla'E and cyacetate buffer (0.1M) 3- of pH 7.0.
次いでカラムにpH7,0のトリエチルアミン酢酸塩緩
衝液(0,1M)7容量部とアセトニトリル3容敗部と
を混合してなる溶出液1ゴを通し、流出液を集めた。Next, an eluent prepared by mixing 7 parts by volume of a triethylamine acetate buffer (0.1 M) with a pH of 7.0 and 3 parts by volume of acetonitrile was passed through the column, and the effluent was collected.
こうして得た溶出液と希釈反応液を薄層り0マドグラフ
イで展開しく担体: DEAEセルO−ス、展開剤:t
−RNA分解ホ七三クスりュアー、7M尿素含有)、オ
ートラジオクラフイを行った。希釈反応生成液のりOマ
ドクラムは32p才リコ?−(15mer)、”2P−
ATP等に相当する強いスポットが観察されたが、溶出
液からは実質上32pオリづマー(15mer)に相当
づ−る強いスポットのみが観察された。なお浴出液から
は蛋白質は検出されなかった。The eluate and diluted reaction solution thus obtained were spread as a thin layer and developed using zero-magnetography.Carrier: DEAE cell O-su, developer: t
- RNA degradation H73xure (containing 7M urea) and autoradiolysis were performed. Is the diluted reaction product glue O madokram 32p years old Rico? -(15mer), "2P-
A strong spot corresponding to ATP etc. was observed, but only a strong spot corresponding to 32p oligomer (15mer) was observed from the eluate. No protein was detected in the bath fluid.
実施例2
5’HOオリj ? (20mer、 HoAATOG
GGOAl[’GGATTTCC1じ0”)0.6μV
を用いて実施例1と同様にしてカイネーション反応およ
びDNAの精製を行った。ただしpH7,0のトリエチ
ルアミン酢酸塩緩衝液(0,1M)に代えてpH7,0
のトリエチルアミシ炭酸水素塩(0,1M)を用いた。Example 2 5'HO ori j? (20mer, HoAATOG
GGOAl['GGATTTCC1ji0'')0.6μV
The caination reaction and DNA purification were carried out in the same manner as in Example 1 using the following. However, instead of pH 7.0 triethylamine acetate buffer (0.1M), pH 7.0
Triethylamici hydrogen carbonate (0.1M) was used.
得られた溶出液を減圧下で濃縮、乾燥し、さらに水10
0μtを加えて減圧乾燥を行い、これを水100μLに
溶解してほとんど純粋な5′−32Pオリjマー水溶液
を得た。5′HO才りjマー基準の回収率はほとんど定
量的であった。The obtained eluate was concentrated and dried under reduced pressure, and further diluted with water 10
0 .mu.t was added and dried under reduced pressure, and this was dissolved in 100 .mu.L of water to obtain an almost pure aqueous solution of 5'-32P oligomer. The recovery based on the 5'HO mer was almost quantitative.
実施例3
実施例205′HOオリうマーに代えて他の5′HOオ
リ:j ? −(20mer、”’GCTGGGCGA
AA需AAGACTG0H)を用い、〔γ−32P )
ATPに代えて無標識のATPO,5X 10=七ル
を用いて実施例2をくシ返えした。実施例2同様はとん
ど純粋な5′−Pオリゴマー(PGCキ弱のAAAGG
AAGAOTG” )水溶液を得た。Example 3 Example 20 Other 5'HO oligomer instead of 5'HO oligomer: j ? -(20mer,"'GCTGGGGCGA
Using AA demand AAGACTG0H), [γ-32P)
Example 2 was repeated using unlabeled ATPO, 5×10=73, in place of ATP. Similar to Example 2, almost pure 5'-P oligomer (AAAGG with weak PGC) was used.
An aqueous solution was obtained.
実施例4
pBR322づラスミドを制限酵素MboIによって切
断して得たサイズマーカー用DNA (8,11,12
,15,17,18,27,31,36,46,75,
77,91,105,207,258,272,317
,341,358,665および1374塩基対を含む
)0.1pFを含む水溶液を実施例1の5′HO才りj
マー0.12μVを含む水酬液に代えて用い、実施例1
と同様にしてカイネーションを行った。Example 4 Size marker DNA obtained by cutting pBR322 lasmid with restriction enzyme MboI (8, 11, 12
,15,17,18,27,31,36,46,75,
77, 91, 105, 207, 258, 272, 317
, 341, 358, 665 and 1374 base pairs) containing 0.1 pF was prepared from the 5'HO of Example 1.
Example 1
Caination was performed in the same manner.
さらに実施例1に従ってDNAの精製を行った。Furthermore, DNA was purified according to Example 1.
但し反応生成液の希釈を行わず、その1μtを分取し゛
〔用い、また溶出液としてトリエチルアミン酢酸塩緩衝
液とアセトニトリルとの混合溶出液l−に代えてメタノ
ール1ゴを用いた。However, the reaction product solution was not diluted, and 1 .mu.t of it was collected and used, and methanol 1.mu.t was used as the eluent instead of the mixed eluent of triethylamine acetate buffer and acetonitrile.
こうして得た溶出液について実施例1と同様にして薄層
クロマトグラフィおよびオートラジオクラムイを行い、
これに〔γ−32P) ATPが実質上台まれていない
ことを確認した。The eluate thus obtained was subjected to thin layer chromatography and autoradiochemistry in the same manner as in Example 1,
It was confirmed that [γ-32P] ATP was not substantially trapped in this.
この溶出液を減圧下で濃縮、乾燥し、水酸化ナトリウム
lOm)i4、EDTA 1 mM、づロムチモールブ
ルー0.1%、および士シレンシアノール0.1%を含
む80%ホルムアミド水溶液(以下染料溶液という)5
0μtを加えて溶解し、これを6ptずつ分取した。分
取液を90℃に約2分間加熱後急冷して二本鎖DNAを
一本鎖とじ5これをカイネーション反応の反応生成液と
ともに20%アクリルア三アミ性ゲル(7M尿素水溶液
含有)上で電気流動を行い(泳動液:0.1M1−リス
(しドロ士ジメチル)アミノメタン、0.1Mホウ酸お
よび2 mM EDTAを含むpH8,0の水溶液。電
位勾配: 28 V/m )、オートラジオクラムイで
X線フィルム上に威光させた。This eluate was concentrated and dried under reduced pressure, and an 80% formamide aqueous solution (hereinafter referred to as dye (referred to as solution)5
0 μt was added and dissolved, and this was collected in 6 pt portions. The fractionated solution was heated to 90°C for about 2 minutes and then rapidly cooled to bind the double-stranded DNA into single-stranded DNA. Conduct electrophoresis (migration solution: pH 8.0 aqueous solution containing 0.1M 1-lis(hydro-dimethyl)aminomethane, 0.1M boric acid and 2mM EDTA. Potential gradient: 28 V/m), autoradio. It was displayed on X-ray film using Kuramui.
得られたオートラジオクラムのパターンを第1図(写真
で代用)に示す。実質上すべての32P DNAが回収
された。なお第1図AおよびA′のオートラジオクラム
は32P DNAの精製を行ったのちのもので、Bは比
較のための反応生成液についてのものである。反応生成
液中の〔γ−32P ) ATPは電気泳動において泳
動液中へ流出したので、オートラジオクラムには現れて
いない。The pattern of the obtained autoradioclam is shown in Figure 1 (a photograph is substituted). Virtually all 32P DNA was recovered. The autoradiograms shown in FIGS. 1A and A' were obtained after purification of 32P DNA, and the autoradiogram shown in FIG. 1 was obtained from the reaction product solution for comparison. [γ-32P) ATP in the reaction product solution leaked into the electrophoresis solution during electrophoresis, and therefore did not appear in the autoradioclum.
実施例5
実施例2と同様にして得た5’−32pオリjマーおよ
び実施例3と同様にして得た5’−Pオリづマー各約0
.6μ?ならびに5’−HOオリづマー(12mer、
HoAAGGACCGACCC0H)約4.0p?を
30mMMgGl−z 8 ptおよび100mMN−
2−しドロ士ジエチルじペラジシーN’−2エタンスル
ポジ酸8ILtからなる緩*液に溶解し、水を加えて2
4μtとした。Example 5 5'-32p oligomer obtained in the same manner as in Example 2 and 5'-P oligomer obtained in the same manner as in Example 3.
.. 6μ? and 5'-HO oligomer (12mer,
HoAAGGACCGACCC0H) Approximately 4.0p? 30mM MgGl-z8pt and 100mMN-
2-Diethyldihydride-N'-2-ethanesulfodiic acid 8ILt was dissolved in a slow* solution, and water was added to give 2.
It was set to 4μt.
この溶液を70℃に10分間加熱後室温に戻して2時間
放置し、1時間12℃に冷却した。これに207のAT
P水溶液1μt、3007のシナオスレイトール水溶液
1μtおよびT4DN八リカーe (% lユニット、
0.6ユニツトおよび0.3ユニツト)を加えて12℃
で一夜間反応させた。This solution was heated to 70°C for 10 minutes, returned to room temperature, left for 2 hours, and cooled to 12°C for 1 hour. This is 207 AT
P aqueous solution 1 μt, 3007 cinnaothreitol aqueous solution 1 μt and T4DN 8 liquor e (% l unit,
0.6 units and 0.3 units) and heated to 12°C.
The reaction was allowed to occur overnight.
反応生成液について実施例1に準じてDNAの精製を行
ない、精製されたDNAを含む溶液を得た。この溶液は
実質的にATPおよびADPを含んでいなかった。得ら
れた精製DNA浴欣を減圧下で乾燥し、以下実施例4と
同様にして染料溶液に溶解し、電気泳動Fよびオートラ
ジオクラムイを行った。得られたオートラジオクラムの
パターンを第2図(写真で代用)に示す。第2図中A、
A’はマーカーとして実施例4で得た”2P DNA混
合物について行ったオートラジオクラムであり、B、C
およびDはそれぞれT4−リカー上1.0ユニツト、0
.6ユニツトおよび0.3ユニツトを用いた際のサシプ
ルのオートラジオクラムのパターンである。X線フィル
ム上の40煙基に相当するゲル部分を切出し、鴫析膜中
に入れ、0. I M トリス(しドロ士ジメチル)ア
ミノメタン、0.1Mホウ酸および2 mM EDTA
を含むpH8,0の緩衝液中で電気透析を行って抽出し
た。電気透析は50ボルトの電圧を一夜間印加、さらに
10分間逆に旅心したのち透析膜中の溶液を回収した。DNA was purified from the reaction product solution according to Example 1 to obtain a solution containing purified DNA. This solution was substantially free of ATP and ADP. The obtained purified DNA bath was dried under reduced pressure, dissolved in a dye solution in the same manner as in Example 4, and subjected to electrophoresis and autoradiochemistry. The pattern of the obtained autoradioclam is shown in Figure 2 (a photograph is substituted). A in Figure 2,
A' is an autoradiogram performed on the 2P DNA mixture obtained in Example 4 as a marker, B, C
and D are 1.0 units and 0 units on T4-liquor, respectively.
.. This is the autoradiocrum pattern of the sacsiple when using 6 units and 0.3 units. A gel portion corresponding to 40 smoke groups on the X-ray film was cut out, placed in a deposition film, and 0. IM tris(dimethyl)aminomethane, 0.1M boric acid and 2mM EDTA
Extraction was performed by electrodialysis in a pH 8.0 buffer containing . For electrodialysis, a voltage of 50 volts was applied overnight, and the solution in the dialysis membrane was collected after 10 minutes of reverse travel.
実施例1で用いたと同じ逆相り0マドグラフィ担体を実
施例1と四球にしてカラム中で膨潤、]シヂイショニシ
クを行い、これに得られた溶液を通過させた。以−ト実
施例1に準じて洗浄溶出を行い、得られた溶出液を減圧
下で濃縮、乾燥した。乾燥生成物に水を加えて減圧下で
濃縮、乾燥する操作を3回〈シ返えし、最後に生成物を
水に浴解して、はとんど夾雑物を含まない目的の5’−
32pオリj? −(20mer、 32P AATC
咲路CATGGATTTOCTGGCT−GGGCGA
AAC;GAAGAC;TG )の水溶液を得た。収率
はほぼ定量的であった。The same reversed-phase magnetic carrier used in Example 1 was used as a four-ball, swelled and squeezed in a column, and the obtained solution was passed through the column. Washing and elution was carried out in accordance with Example 1 below, and the obtained eluate was concentrated and dried under reduced pressure. The process of adding water to the dried product, concentrating it under reduced pressure, and drying it is repeated three times.Finally, the product is dissolved in water to obtain the desired 5' −
32p orij? -(20mer, 32P AATC
SakijiCATGGATTTOCTGGCT-GGGCGA
An aqueous solution of AAC; GAAGAC; TG) was obtained. The yield was almost quantitative.
第1図及び第2図は本発明の方法で精製したDNAのポ
リアクリルア三ド変性ゲル上での電気泳動パターンのオ
ートラジオグラムを示す図面代用の写真である。
手続補正書(方式)
昭和々7年8月幻ヨ
昭和’;’S−q:qν d1願第プo’7FD I−
号3 補正をする名
事イ′1との関係 出 願 人
住 +すi 東京都丁・代111区丸の内2丁16番2
号丸の内へ重洲ビル3305、 補正命令のIJイ・」
昭和1]年 ’Z、If zg 43
“ −1lr−ケが沖ケ紛−
7、補正の灯象
補 正 書
本願明細書中下記事項を補正いたj7ます。
記
1、第19頁9行目に
「オートラジオグラムを示す図面」とあるを「オートラ
ジオグラム(X線写真)を示す図面」と訂正する。FIGS. 1 and 2 are photographs substituted for drawings showing autoradiograms of the electrophoretic pattern of DNA purified by the method of the present invention on a polyacrylamide denaturing gel. Procedural amendment (method) August 1932, Showa';'S-q:qν d1 application No. 7FD I-
No. 3 Relationship with famous event A'1 to be amended Application Person residence + Sui 2-16-2 Marunouchi, 111-ku, Cho-dai, Tokyo
Shigesu Building 3305 within the No. Marunouchi, IJ I of the amendment order 1939 'Z, If zg 43 ' -1lr-ke ga oki-ke- 7, the image of the amendment The following matters in the specification of the present application In Note 1, page 19, line 9, the phrase ``Drawing showing an autoradiogram'' is corrected to ``Drawing showing an autoradiogram (X-ray photograph).''
Claims (1)
に親油性固定相を持つあらかじめ膨潤させた吸着剤と接
触させてDNAを固定相に吸着させ、DNAを吸着した
吸着剤をモノヌクレオチドを含む水性溶液から分離し、
さらにこれをメタノールから成る溶出液又は極性有機溶
媒を含む水性溶出液と接触させてDNAを溶出液中に溶
出させることを特徴とするDNAの精製方法。 2 DNAがその5′末端のリン酸エステル化されたD
NAであり、モノヌクレオチドがアデノシン三すシ酸及
び/又はアデノシシニリン酸である特許請求の範囲第1
項記載の精製方法。 3 D1’JAを吸着した吸着剤を水又は水性溶液で洗
浄することによって、この吸着剤をモノヌクレオチドを
含む水性溶液から分離する特許請求の範囲第1項又は第
2項記載の精製方法。[Claims] I. An aqueous solution containing DNA and mononucleotides is brought into contact with a pre-swollen adsorbent having a lipophilic stationary phase on its surface to adsorb the DNA to the stationary phase, and the adsorbent adsorbed with DNA is separated from an aqueous solution containing mononucleotides,
A method for purifying DNA, which further comprises contacting the DNA with an eluent comprising methanol or an aqueous eluent containing a polar organic solvent to elute the DNA into the eluate. 2 D where DNA is phosphorylated at its 5' end
NA, and the mononucleotide is adenosine trisic acid and/or adenosissinyl acid, Claim 1
Purification method described in section. 3. The purification method according to claim 1 or 2, wherein the adsorbent adsorbing D1'JA is separated from the aqueous solution containing the mononucleotide by washing the adsorbent with water or an aqueous solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58209506A JPS60104097A (en) | 1983-11-08 | 1983-11-08 | Purification of dna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58209506A JPS60104097A (en) | 1983-11-08 | 1983-11-08 | Purification of dna |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60104097A true JPS60104097A (en) | 1985-06-08 |
Family
ID=16573925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58209506A Pending JPS60104097A (en) | 1983-11-08 | 1983-11-08 | Purification of dna |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60104097A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019518759A (en) * | 2016-06-14 | 2019-07-04 | バイオジェン・エムエイ・インコーポレイテッドBiogen MA Inc. | Hydrophobic interaction chromatography for the purification of oligonucleotides |
-
1983
- 1983-11-08 JP JP58209506A patent/JPS60104097A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019518759A (en) * | 2016-06-14 | 2019-07-04 | バイオジェン・エムエイ・インコーポレイテッドBiogen MA Inc. | Hydrophobic interaction chromatography for the purification of oligonucleotides |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Staehelin | Studies on nucleotide sequences in ribonucleic acids: I. Separation of oligonucleotides on DEAE-cellulose | |
Tomlinson et al. | The effect of urea, formamide, and glycols on the secondary binding forces in the ion-exchange chromatography of polynucleotides on DEAE-cellulose | |
Ingram et al. | Chemical Studies on Amino Acid Acceptor Ribonucleic Acids.* I. Some Properties of Yeast Amino Acid Acceptor Ribonucleic Acid and Mapping of the Oligonucleotides Produced by Ribonuclease Digestion | |
StepHenson et al. | Purification of valine transfer ribonucleic acid by combined chromatographic and chemical procedures | |
Rammler et al. | Studies on Polynucleotides. XIX. 1 The Specific Synthesis of C3 ″-C5 ″Inter-ribonucleotidic Linkage. 2 A New Approach and its Use in the Synthesis of C3 ″-C5 ″-Linked Uridine Oligonucleotides 3 | |
US5801237A (en) | Method for the purification of short nucleic acids | |
US4168261A (en) | Method for the purification of interferon using porous glass beads | |
Muench et al. | Fractionation of transfer ribonucleic acid by gradient partition chromatography on Sephadex columns | |
Sakai | A ribonucleoprotein which catalyzes thiol-disulfide exchange in the sea urchin egg | |
Schaller et al. | Studies on Polynucleotides. XXVII. 1 The Stepwise Synthesis of Specific Deoxyribopolynucleotides (7). 1 The Synthesis of Polynucleotides Containing Deoxycytidine and Deoxyguanosine in Specific Sequences and of Homologous Deoxycytidine Polynucleotides Terminating in Thymidine 3 | |
Heilbronn | Purification of cholinesterase from horse serum | |
Swiderski et al. | Polystyrene reverse-phase ion-pair chromatography of chimeric ribozymes | |
JP2000146911A (en) | Method for separating nucleic acid | |
SU1600633A3 (en) | Method of purifying protein toxin of bordetella petrusis bacteria | |
EP3054008A1 (en) | Method for purifying double-stranded ribonucleic acid | |
JPS60104097A (en) | Purification of dna | |
Arghavani et al. | A method for the purification of oligonucleotides containing strong intra-or intermolecular interactions by reversed-phase high-performance liquid chromatography | |
Chirikjian et al. | Affinity chromatography of viral DNA polymerases on pyran-sepharose. | |
JPS62246575A (en) | Method for purifying pyrroloquinolinequinone | |
US5972611A (en) | Hybridization carrier and a process for preparing the same | |
SU638599A1 (en) | Method of obtaining nucleic acid fractions | |
Cannistraro et al. | Isolating and sequencing the predominant 5′-ends of a specific mRNA in cells. II. End-labeling and sequencing | |
GOTO | Studies on the Amino Acids Present in Yeast RNA in Bound Form: IV. The Amino Acids Bound to the Major Nucleotides and to the Minor Fractions from Yeast RNA | |
Tanaka | Fractionation of Ribonuclease-resistant Fraction on ECTEOLA-cellulose | |
Sutton et al. | Dialysis of pyrimidine oligodeoxynucleotides |