JPS60102850A - Rotor structure of rotary electric machine - Google Patents

Rotor structure of rotary electric machine

Info

Publication number
JPS60102850A
JPS60102850A JP58209094A JP20909483A JPS60102850A JP S60102850 A JPS60102850 A JP S60102850A JP 58209094 A JP58209094 A JP 58209094A JP 20909483 A JP20909483 A JP 20909483A JP S60102850 A JPS60102850 A JP S60102850A
Authority
JP
Japan
Prior art keywords
rotor
carbon fiber
magnet material
tensile strength
rotor structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58209094A
Other languages
Japanese (ja)
Inventor
Junko Seki
純子 関
Takahiko Ito
孝彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yukigaya Institute Co Ltd
Original Assignee
Yukigaya Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yukigaya Institute Co Ltd filed Critical Yukigaya Institute Co Ltd
Priority to JP58209094A priority Critical patent/JPS60102850A/en
Publication of JPS60102850A publication Critical patent/JPS60102850A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • H02K1/2733Annular magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To prevent a magnet material from jumping or damaging at superhigh speed rotation time by closely winding carbon fiber on the outer periphery of the material of a rotor. CONSTITUTION:Flanges 3a, 3b are press-fitted to both ends of a magnet material 2 made, for example, of rare earth cobalt magnet material having excellent magnetic property so as to take the weight balance of a rotor and to treat the terminal of a reinforcing system. Since the material 2 has relatively small tensile strength such as 10-20kg/mm.<2>, reinforcing yarns 4 such as carbon fiber is closely wound on the periphery. The carbon fiber has extremely high tensile strength such as 250-450kg/mm.<2>, and the damage or deformation of the material can be prevented at the superhigh speed rotation time by winding the yarns by applying tension in advance in case of closely winding the fiber.

Description

【発明の詳細な説明】 本発明は超高速で回転可能な電動機または発電機などの
回転機の回転子構造tこ関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotor structure of a rotating machine such as an electric motor or a generator capable of rotating at ultra-high speed.

電動機や発電機などのような磁束の変化を利用して軸出
力を発生したり電圧を誘起する回転機では、巻線の数や
磁極の数など他の条件が同じであれば回転数が大きくな
るほど軸出力や誘起電圧が増大することは一般に知られ
ている。
In rotating machines such as motors and generators that use changes in magnetic flux to generate shaft output or induce voltage, the number of rotations will be large if other conditions such as the number of windings and number of magnetic poles are the same. Indeed, it is generally known that the shaft output and induced voltage increase.

ところが回転機の回転数が増すと遠心力が増大し回転子
に働く応力が大きくなって回転子の構成部品が破損する
おそれがある。この点につき理論的に分析し試算してみ
ると次のようになる。
However, as the rotational speed of the rotating machine increases, the centrifugal force increases and the stress acting on the rotor increases, potentially damaging the components of the rotor. A theoretical analysis and calculation of this point yields the following.

回転子の質量をm (g )、半径をr(cm)。The mass of the rotor is m (g) and the radius is r (cm).

周速度をv (cm/秒)とすると、遠心力Fは次の式
で表わされる。
When the circumferential velocity is v (cm/sec), the centrifugal force F is expressed by the following formula.

ここで回転子の回転数を毎秒nとすると、v= 2π’
=fn ・・す・・ (2)(1) 、 (2)式から となる。従って、この加速度の重力加速度に対する比R
をめると、 g そこで、r−r2cmとしていくつかの回転数nに対す
る遠心力の対重力加速度比Rを試算してみると、 N(rpm) R 150050,4 5000559,5 1000022,38X102 20000 89.52XI♂ 50000 s5.9sxxd3 100000 22.38Xl o4 このように回転数が10000のオーダーを越える超高
速回転では対重力加速度が相当大きくなるため、超高速
回転の回転機では回転子の直径を小さくして対重力加速
度をできるだけ低く抑えるようにして実用化することが
考えられている(たとえば歯科医で用いる研磨用モータ
)。
Here, if the rotation speed of the rotor is n per second, v = 2π'
=fn... (2) (1) and (2). Therefore, the ratio R of this acceleration to the gravitational acceleration
Then, if we calculate the ratio R of centrifugal force to gravitational acceleration for several rotational speeds n as r-r2cm, we get: N (rpm) R 150050,4 5000559,5 1000022,38X102 20000 89 0.52 It is being considered to put this into practical use by keeping the acceleration relative to gravity as low as possible (for example, in polishing motors used by dentists).

一方、超高速回転機ではスリップリングにより回転子磁
極を励磁することが技術的に困難になるため永久磁石を
用いた界磁極を用いる構造が採用されている。ところが
従来磁気特性のすぐれた磁気材料(たとえば希土類コ具
ルト磁石)は引張強度がそれほど大きくなく、せいぜい
10〜20kg/m−である。このために、たとえば直
径2cmの鋼製回転軸にこのような磁石材料(比重は約
8)を厚さ1crhで筒状Qこ巻き付けて回転子を構成
した場合、超高速回転時の対重力加速度の限界は80程
度となり、回転数は約19001mが限界になる。実際
にはさらにディレーティングして考えるとこの数値はず
っと小さくなると考えられる。
On the other hand, in ultra-high-speed rotating machines, it is technically difficult to excite rotor magnetic poles using slip rings, so a structure using field poles using permanent magnets is adopted. However, conventional magnetic materials with excellent magnetic properties (such as rare earth Kolt magnets) do not have a very high tensile strength, at most 10 to 20 kg/m. For this purpose, for example, if a rotor is constructed by wrapping such magnetic material (with a specific gravity of about 8) around a steel rotating shaft with a diameter of 2 cm in a cylindrical shape with a thickness of 1 crh, the acceleration due to gravity during ultra-high speed rotation will be The limit is about 80, and the rotation speed is about 19001m. In reality, this number is likely to become much smaller if further derating is considered.

そこでそれ以上の超高速回転で回転させるには磁気特性
を多少犠牲にして引張強度の大きい磁石材料を用いて回
転子を構成するか、回転子の周囲に金属製のパイプをか
ぶせて磁石材料の飛出しを抑える方法がとられている。
Therefore, in order to rotate at ultra-high speeds, the rotor must be made of a magnetic material with high tensile strength, at the cost of sacrificing some of its magnetic properties, or a metal pipe can be placed around the rotor to create a rotor made of magnetic material. Measures are being taken to prevent it from popping out.

しかし、磁気特性の低下は回転機出力の低下につながる
し、このような方法でも回転速度に限界がある。
However, a decrease in the magnetic properties leads to a decrease in the output of the rotating machine, and even with this method there is a limit to the rotation speed.

本発明は上記の点にかんがみなされたもので、希土類コ
バルト磁石に代表されるような磁石材料は保磁力が大き
いとともに残留磁束密度も高いために回転子に用いた場
合、回転子と固定子との間に大きな間隙をとることがで
き、間隙をこのように大きくしても出力はほとんど低下
しないという特徴がある。本発明はこの点に着目し且つ
最近新素拐として注目されている炭素繊維の著しい引張
強度に着目し、回転子の磁石材科料の外周に炭素繊維を
密巻きにして超高速回転時における磁石材料の飛出しや
破損を防止して超高速回転を可能にしたものである。
The present invention was made in consideration of the above points, and since magnet materials such as rare earth cobalt magnets have a large coercive force and a high residual magnetic flux density, when used in a rotor, the rotor and stator are A large gap can be provided between the two, and even if the gap is made this large, the output will hardly decrease. The present invention focuses on this point and the remarkable tensile strength of carbon fiber, which has recently been attracting attention as a new material.The present invention has focused on the remarkable tensile strength of carbon fiber, which has recently been attracting attention as a new material. This prevents materials from flying out or breaking, and enables ultra-high speed rotation.

以下図面に基づいて本発明を説明する。The present invention will be explained below based on the drawings.

第1図は本発明による回転機の回転子の一実施例の斜視
図であり、lは鋼製回転軸、2は回転軸lの周囲なこ圧
入して固定したすぐれた磁気特性の磁石材料で、焼結し
たまたは樹脂結合したサマリウムコバルト、4磁石など
の希土類コバルト磁石が好ましい。この磁石材料の両端
に回転子の重量バランスをとるためと後述する補強系の
端末処理のためをこフランジ3a 、3bを圧入する。
FIG. 1 is a perspective view of an embodiment of the rotor of a rotating machine according to the present invention, where l is a steel rotating shaft, and 2 is a magnetic material with excellent magnetic properties that is press-fitted and fixed around the rotating shaft l. Rare earth cobalt magnets such as , sintered or resin bonded samarium cobalt, 4 magnets are preferred. Flanges 3a and 3b are press-fitted into both ends of this magnet material in order to balance the weight of the rotor and to process the ends of the reinforcing system, which will be described later.

磁石材料2は引張強度がlO〜20kg/ rrm”−
で比較的小さいために、その周囲に炭素繊維などの補強
糸4を密巻きする。次組繊維は引張強度が250〜.4
50 kg/ff1m2で極めて大きく、密巻きする際
予め張力を加えて巻くことにより超高速回転時における
磁石材料の破損や変形を加減して防止することができる
。炭素繊維は密巻きした後マトリクス材を含浸硬化させ
ることにより繊維相互を固定し硬化させると、磁石材料
は一層強固に保持される。補強糸4の端末は磁石材料2
の両端に固定したフランジの溝Mに埋め込んで処理する
。この場合マl−、lJクス材を付着しながら炭素繊維
を巻き付けてもよい。
Magnet material 2 has a tensile strength of lO~20kg/rrm"-
Since it is relatively small, a reinforcing thread 4 such as carbon fiber is tightly wound around it. The next pair of fibers has a tensile strength of 250~. 4
It is extremely large at 50 kg/ff1m2, and by applying tension in advance when tightly wound, it is possible to adjust and prevent damage and deformation of the magnet material during ultra-high speed rotation. When the carbon fibers are closely wound and then impregnated with a matrix material and hardened to fix the fibers to each other and harden, the magnetic material is held even more firmly. The end of the reinforcing thread 4 is the magnetic material 2
It is processed by embedding it in the groove M of the flange fixed to both ends of the flange. In this case, the carbon fibers may be wound around the carbon fibers while adhering the maru- or lj-x material.

ここで直径2cmの鋼製回転軸にPJさl cmの磁石
材料(比重8.5)を固定し、その周囲に炭素繊維を0
.2 Cmの厚さで密巻きして直径4.4 cmの回転
子を構成し、表1mに3巻いた炭素繊維を圧力容器と考
え1、且つ磁石材料の引張応力をOと仮定するとA =
 6375 X 10−4 Rの近似式が成立するので
、−この式に基づいて各回転数に対する対重力加速度比
Rおよび回転子表面に働く応力Aを試算すると次のよう
になる。
Here, a magnet material (specific gravity 8.5) of PJ cm is fixed to a steel rotating shaft with a diameter of 2 cm, and carbon fiber is placed around it.
.. Assuming that a rotor with a diameter of 4.4 cm is constructed by tightly winding the carbon fiber with a thickness of 2 cm, and that the carbon fiber wound three times in Table 1 m is considered to be a pressure vessel1, and that the tensile stress of the magnet material is O, then A =
Since the approximate expression 6375 x 10-4 R holds true, - based on this expression, the ratio of acceleration to gravity R and the stress A acting on the rotor surface for each rotation speed are estimated as follows.

N(rpm) 、 RA(kg/1n2)IX104 
z、24xtoa 1.4285X104 55.9 
X103 35.646X104 80.6 X103
 51.387X104 109.7X103 69.
938X104 143.3X]0” 91.3510
X104 223.8Xl(15142,67]5X]
O’ 503.55XlO” 321.020X104
 895.20X103 570.7市販の炭素繊維の
引張強度は約250〜430kg1mρであるから、こ
れを用いれば、L記試算例から約15 X l 04(
rpm)以上の超高速回転に耐えられる回転子が実現で
きることがわ力する。
N (rpm), RA (kg/1n2) IX104
z, 24xtoa 1.4285X104 55.9
X103 35.646X104 80.6 X103
51.387X104 109.7X103 69.
938X104 143.3X]0" 91.3510
X104 223.8Xl (15142,67]5X]
O'503.55XlO" 321.020X104
895.20X103 570.7 The tensile strength of commercially available carbon fiber is approximately 250 to 430 kg 1 mρ, so if this is used, approximately 15 X l 04 (
It is impressive that a rotor that can withstand ultra-high-speed rotation (rpm) or higher can be realized.

このように磁石材料の破損を防止するための補強は引張
強度の大きい炭素繊維のような補強糸ヲ単に巻くだけで
よいから従来のようニ補強用金属パイプを加工したり回
転軸に固定したりするのに比べて補強のための作業性が
極めてすぐれている。また補強糸に引張強度の太き(・
繊維を用いるので巻回時に予め張力を加えることをこよ
り高速回転時での磁石材料の安定性を強化することがで
きる。
In this way, reinforcement to prevent damage to the magnet material can be achieved by simply wrapping a reinforcing thread such as carbon fiber, which has high tensile strength. The workability for reinforcing is extremely superior compared to the conventional method. In addition, the reinforcing yarn has a thick tensile strength (・
Since fibers are used, the stability of the magnet material during high-speed rotation can be strengthened by applying tension in advance during winding.

本発明で用いる補強糸の代りに引張強度の大きい繊維で
編んだ細い平布を用いてもよい。
Instead of the reinforcing yarn used in the present invention, a thin plain cloth knitted from fibers with high tensile strength may be used.

以上説明したように、本発明においては1回転軸に磁気
特性のすぐれた磁石材料を固定し、その磁石材料の外周
に引張強度の大きい補強糸または補強布を密巻きしたの
で、超高速回転時にも磁石材料の破損や飛出しを防止す
ることができ、超高速回転に耐えられる回転子を有する
回転機が実現できる。
As explained above, in the present invention, a magnet material with excellent magnetic properties is fixed to the rotating shaft, and reinforcing thread or reinforcing cloth with high tensile strength is tightly wound around the outer periphery of the magnet material. It is also possible to prevent the magnet material from breaking or flying out, and it is possible to realize a rotating machine with a rotor that can withstand ultra-high speed rotation.

なj6、不発明による回転子構造を低速回転の回転機に
適用した場合、低速機では周波数が比較的低くなるため
に損失が少なくなり、その結果磁束密度を高くすること
ができる。すなわち回転機の回転子と固定子との間隙を
狭くすることができるため瘉こ(補強糸の巻き付けが薄
くできる)、同転機の単位重量当りの出力を高めること
ができる。このことは、同じ出力を得るのに回転機自体
を小型化することができることを意味し、本発明は超高
速回転機のみならず低速回転機でもすぐれた作用効果が
得られる。
When the rotor structure according to the invention is applied to a rotary machine that rotates at a low speed, the frequency is relatively low in the low-speed machine, so loss is reduced, and as a result, the magnetic flux density can be increased. That is, since the gap between the rotor and stator of the rotating machine can be narrowed, the reinforcing thread can be wrapped thinner, and the output per unit weight of the rotating machine can be increased. This means that the rotating machine itself can be downsized while obtaining the same output, and the present invention can provide excellent effects not only on ultra-high-speed rotating machines but also on low-speed rotating machines.

なお、本発明は回転機の回転子のほかに直径の大きいフ
ライホイールの外周に磁極片を固定するような場合をこ
も適用することができる。
The present invention can be applied not only to the rotor of a rotating machine but also to cases where magnetic pole pieces are fixed to the outer periphery of a flywheel having a large diameter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による回転機の回転子の部分断面斜視図
である。 1・・・回転軸 2・・・磁石材料 3 a + 3 b・・・フランジ 4・・・補強糸特
許出願人 株式会社雪ケ谷制御研究所第1゛図 b 子糸ダ己ネ山jJ−E 1.’、x: 111(矛ll58イ1三 3月23日特許庁長官 若
 杉 和 犬 殿 1 、4Il;′l出願の表示 昭和58年特許願第209094号 2、発明の名称 回転機の回転子構造 3、補正をする者 事ヂ1との関係 特泊出願人 明細刃の発明の詳細な説明の11¥1 本願明細書を下記のとおり補正する。 (1)第5頁第5行から第6行の「炭素繊維」を「炭素
繊維や超高強力ポリエチレン#I!維や芳香族ポリアミ
ド#liaなど」と補正し、第7行の「炭素m維」を「
高張力繊維」と補正する。 (2)第8頁の第3行と第4行との間に[上記実施例で
は、回転子の回転軸と磁石材料の周囲に炭素繊維を巻く
ようにしたが、本発明はこれに限らす予じめ炭素繊維を
筒状に巻いた状態で作っておき、その筒状体の中に回転
軸と磁石材料とを一体にして挿入して固定するようにし
てもよい。また本実施例では炭素m維を用いたが、これ
に代えて超高強力ポリエチレン繊維や芳香族ポリアミド
繊維などの高張力繊維を用いてもよい。 」を加入する。
FIG. 1 is a partially sectional perspective view of a rotor of a rotating machine according to the present invention. 1...Rotating shaft 2...Magnetic material 3 a + 3 b...Flange 4...Reinforcement thread Patent applicant Yukigaya Control Laboratory Co., Ltd. Figure 1b Child thread Dakineyama jJ -E 1. ', x: 111 (March 23, Commissioner of the Japan Patent Office Kazu Inu Wakasugi 1, 4Il;'l Indication of application 1982 Patent Application No. 209094 2, Name of invention Rotor of rotating machine Structure 3, Relationship with Person Making the Amendment 1 11 yen of the detailed description of the invention of the applicant for special stay The specification of the present application is amended as follows: (1) Page 5, line 5 to page 5 Correct "carbon fiber" in the 6th line to "carbon fiber, ultra-high strength polyethylene #I! fiber, aromatic polyamide #lia, etc.", and "carbon fiber" in the 7th row to "carbon fiber"
Corrected with "high tensile strength fiber". (2) Between the 3rd and 4th lines on page 8 [In the above embodiment, carbon fiber is wound around the rotating shaft of the rotor and the magnet material, but the present invention is not limited to this. Alternatively, the carbon fiber may be wound into a cylindrical shape in advance, and the rotating shaft and the magnet material may be inserted and fixed together into the cylindrical body. Furthermore, although carbon m-fibers were used in this embodiment, high-tensile strength fibers such as ultra-high strength polyethylene fibers and aromatic polyamide fibers may be used instead. ” to join.

Claims (3)

【特許請求の範囲】[Claims] (1)回転軸に磁気特性のすぐれた磁石材料を固定し、
該磁石材料の外周に引張強度の大きい補強部材を巻いた
ことを特徴とする回転機の回転子構造。
(1) A magnet material with excellent magnetic properties is fixed to the rotating shaft,
A rotor structure for a rotating machine, characterized in that a reinforcing member with high tensile strength is wrapped around the outer periphery of the magnetic material.
(2)前記磁石材料が希土類コバルト磁石材料である特
許請求の範囲第1項に記載の回転子構造。
(2) The rotor structure according to claim 1, wherein the magnet material is a rare earth cobalt magnet material.
(3)前記補強部材が炭素繊維である特許請求の範囲第
1項または@2項に記載の回転子構造。
(3) The rotor structure according to claim 1 or @2, wherein the reinforcing member is carbon fiber.
JP58209094A 1983-11-09 1983-11-09 Rotor structure of rotary electric machine Pending JPS60102850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58209094A JPS60102850A (en) 1983-11-09 1983-11-09 Rotor structure of rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58209094A JPS60102850A (en) 1983-11-09 1983-11-09 Rotor structure of rotary electric machine

Publications (1)

Publication Number Publication Date
JPS60102850A true JPS60102850A (en) 1985-06-07

Family

ID=16567182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58209094A Pending JPS60102850A (en) 1983-11-09 1983-11-09 Rotor structure of rotary electric machine

Country Status (1)

Country Link
JP (1) JPS60102850A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123943A (en) * 1985-11-20 1987-06-05 ザ ギヤレツト コ−ポレ−シヨン Rotor device and its manufacture
EP0240514A1 (en) * 1985-10-16 1987-10-14 Sundstrand Corporation Permanent magnet rotor assembly with fibrous wrap
US7569961B2 (en) 2006-05-31 2009-08-04 Sanyo Denki Co., Ltd. Rotor for motors
JP2009239988A (en) * 2008-03-25 2009-10-15 Mitsubishi Electric Corp Permanent magnet type motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163255A (en) * 1982-03-24 1983-09-28 Okuma Mach Works Ltd Rotor for permanent magnet type synchronous motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163255A (en) * 1982-03-24 1983-09-28 Okuma Mach Works Ltd Rotor for permanent magnet type synchronous motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240514A1 (en) * 1985-10-16 1987-10-14 Sundstrand Corporation Permanent magnet rotor assembly with fibrous wrap
EP0240514A4 (en) * 1985-10-16 1988-02-15 Sundstrand Corp Permanent magnet rotor assembly with fibrous wrap.
JPS63501120A (en) * 1985-10-16 1988-04-21 サンドストランド・コ−ポレ−ション Permanent magnet rotor assembly
JPS62123943A (en) * 1985-11-20 1987-06-05 ザ ギヤレツト コ−ポレ−シヨン Rotor device and its manufacture
US7569961B2 (en) 2006-05-31 2009-08-04 Sanyo Denki Co., Ltd. Rotor for motors
JP2009239988A (en) * 2008-03-25 2009-10-15 Mitsubishi Electric Corp Permanent magnet type motor

Similar Documents

Publication Publication Date Title
US10312758B2 (en) Holding member, rotor of a rotating electrical machine comprising the same, and a rotating electrical machine comprising the rotor
TWI283506B (en) Rotary electric machine
JPH08242564A (en) Binder structure of rotary electric machine
JP3509304B2 (en) Rotor permanent magnet
JP6069693B2 (en) 3-axis active control type magnetic bearing
JP2002078259A (en) Permanent magnet rotor
US6833647B2 (en) Discoid machine
WO2004093298A1 (en) Permanent magnet type motor
CN102751801B (en) Motor, and rotor, and manufacturing method for the rotor, and a motor provided with the rotor
JP2010093906A (en) Permanent magnet type rotating machine
CN100530895C (en) Electric motor
JPS60102850A (en) Rotor structure of rotary electric machine
JP2002515720A (en) Synchronous magneto
CN110651417A (en) Rotating electrical machine
JP2002101585A (en) Rotor structure of synchronous motor
JPS6087639A (en) Ac generator for vehicle
JP2007037325A (en) Motor
JP2018014772A (en) Permanent magnet motor
JPH08163803A (en) Permanent magnet synchronous motor
JP2006238585A (en) Coil structure and its manufacturing method
JPS63194546A (en) Excitation switching reluctance motor
WO2021149699A1 (en) Magnetic geared rotating electrical machine
JP2001231200A (en) Protective structure of permanent magnet rotor
SU758409A1 (en) Voltage-to-frequency converter
WO2023190855A1 (en) Rotor and method for manufacturing rotor