JPS60101979A - Photovoltaic element - Google Patents

Photovoltaic element

Info

Publication number
JPS60101979A
JPS60101979A JP58209639A JP20963983A JPS60101979A JP S60101979 A JPS60101979 A JP S60101979A JP 58209639 A JP58209639 A JP 58209639A JP 20963983 A JP20963983 A JP 20963983A JP S60101979 A JPS60101979 A JP S60101979A
Authority
JP
Japan
Prior art keywords
type
silicon
semiconductor layer
amorphous
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58209639A
Other languages
Japanese (ja)
Inventor
Masahiko Nozawa
野澤 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Osaka Transformer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp, Osaka Transformer Co Ltd filed Critical Daihen Corp
Priority to JP58209639A priority Critical patent/JPS60101979A/en
Publication of JPS60101979A publication Critical patent/JPS60101979A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To improve photoelectric conversion efficiency by connecting amorphous Si thin-films in a multilayer shape while mixing crystallite Si to the amorphous Si thin-film most separate from the beam incident side. CONSTITUTION:A transparent electrode 200 is formed on a glass substrate 100. P type, I-type and N type each semiconductor layer 300A, 400A and 500A consisting of amorphous Si are shaped on the electrode 200 in succession, thus forming a first Si thin-films A. P type, I-type and N type each semiconductor layer 300B, 400B and 500B composed of amorphous Si are formed on the layer 500A. Crystallite Si is mixed to each of these layers 300B, 400B and 500B, thus forming second Si thin-films B. Accordingly, the absorption wavelength range of solar rays can be increased, and photoelectric conversion efficiency can be improved largely.

Description

【発明の詳細な説明】 本発明は基板上に成長さぜたシリコン薄膜によって光電
変換を行う光起電力素子に関し、特に入射光の利用効率
を高めて光電変換効率を大幅に向上させることを目的と
したものである。
[Detailed Description of the Invention] The present invention relates to a photovoltaic device that performs photoelectric conversion using a silicon thin film grown on a substrate, and particularly aims to significantly improve the photoelectric conversion efficiency by increasing the efficiency of using incident light. That is.

一般にシリコンを材料とする太陽電池のことき光起電力
素子は、主として結晶(単結晶、多た非晶質形起電力素
子とがある。この結晶形光起電力素子は光の吸収波長が
主として可視光線域及び可視光線域より長波長域のもの
が発電に寄与し、一方の非晶質形光起電力素子は前記結
晶形の吸収波長域に比べ、主として短波長側、即ち可視
光線域のものが発電に最も寄与することが知られている
。第1図は従来のカラスを基板とした類セル型非晶質光
起電力素子の構造を示す概念的断面図であって、1はガ
ラス基板、2は透明導電膜、3は非晶質からなるP型半
導体層、4及び5は非晶質からなる■型及びN型半導体
層−であり、基板に順次P、I、Nの各半導体層314
 + 5が積層されている。更にそのN型半導体層5の
上面には、例えばアルミニウムの蒸着膜のような不透明
な金属電極6を被着させて光起電力素子が構成されてい
る。このような光起電力素子は半導体層が非晶質である
ため光の吸収及び電子の拡散距離等を考慮して全体とし
て2000〜6000Aの厚さとなっており、この光起
電力素子の光電変換効率は2〜6%にとどまり、l′型
型置導体層炭化けい素(SiC)を混入したヘテロ型に
おいても現状では7〜8%程度が限度とされている。ま
たこの先起zh力累子が発電に寄与する光の波長域が、
可視光線域が殆んどで、螢光灯が発光する光の波長とは
適合しており室内照明を利用する卓上型電子計算機等の
電源ζこは適している。したがって、波長範囲が、広い
太陽光線により光電変換する光起電力素子としては、太
陽光線の部分的な波長範囲の光を利用するにすきず効果
的な光電変換をさせることができない。
In general, photovoltaic elements, which refer to solar cells made of silicon, are mainly crystalline (single crystal, multi-crystalline, and amorphous elements). Visible light and wavelengths longer than the visible light contribute to power generation, while amorphous photovoltaic elements mainly absorb energy in the shorter wavelength region, i.e. in the visible light, compared to the absorption wavelength of the crystalline type. It is known that glass contributes the most to power generation. Figure 1 is a conceptual cross-sectional view showing the structure of a conventional cell-like amorphous photovoltaic device using glass as a substrate. The substrate, 2 is a transparent conductive film, 3 is an amorphous P-type semiconductor layer, 4 and 5 are amorphous ■-type and N-type semiconductor layers. semiconductor layer 314
+5 are stacked. Further, on the upper surface of the N-type semiconductor layer 5, an opaque metal electrode 6 such as a vapor-deposited film of aluminum is deposited to form a photovoltaic element. Since the semiconductor layer of such a photovoltaic element is amorphous, it has a total thickness of 2000 to 6000 A in consideration of light absorption and electron diffusion distance, and the photoelectric conversion of this photovoltaic element The efficiency remains at 2 to 6%, and even in the case of a hetero type in which silicon carbide (SiC) is mixed in the l' type conductor layer, the current limit is about 7 to 8%. In addition, the wavelength range of light in which this pre-originated zh force element contributes to power generation is
Most of the light is in the visible light range, which matches the wavelength of the light emitted by fluorescent lamps, making it suitable as a power source for desk-top computers and the like that use indoor lighting. Therefore, as a photovoltaic element that performs photoelectric conversion using sunlight having a wide wavelength range, it is not possible to perform effective photoelectric conversion using light within a partial wavelength range of sunlight.

それ故、前述した問題を解決するために第2図に示す如
く光電変換のためのシリコン薄膜が二重連結された順セ
ルタンデム型光起電力素子が提案されている。第2図は
ガラスを基板としたIIIセルタンデム型光起電力素子
の構造を示す概念的断面図であって、10はガラス基板
、2゜は透明導電膜、30,40.50は非晶質のシリ
コンからなる第1のP、I、N型半導体層、31.41
.51は前記第1の半導体層よりもエネ/L/ −f 
−キャップの狭い、非晶質のゲルマニウム等からなる第
2のP、1.N型半導体層、60は金属電極であり、こ
れらにより順セルタンテム型光起電力素子を構成してい
る。このタンデム型光起電力素子はP、I、N型半導体
層30.40.50により短波長の可視光線域の光を吸
収し得るようにし、もう1つのP、I。
Therefore, in order to solve the above-mentioned problems, a forward cell tandem type photovoltaic device in which silicon thin films for photoelectric conversion are double-connected as shown in FIG. 2 has been proposed. FIG. 2 is a conceptual cross-sectional view showing the structure of a III cell tandem type photovoltaic device using glass as a substrate, where 10 is a glass substrate, 2° is a transparent conductive film, and 30, 40.50 are amorphous. a first P, I, N type semiconductor layer made of silicon, 31.41
.. 51 is higher energy/L/−f than the first semiconductor layer.
- a second P made of amorphous germanium or the like with a narrow cap; 1. The N-type semiconductor layer 60 is a metal electrode, and these constitute a forward cell tandem photovoltaic device. This tandem type photovoltaic element is made to be able to absorb light in the short wavelength visible light range by P, I, and N type semiconductor layers 30, 40, and 50, and another P, I type semiconductor layer 30, 40, and 50.

N型半導体層31,41.51により第1の半導体層で
吸収されないより長波長の光を吸収し得るようにしてお
り、入射した可視光線域の光をP 、 I 、 N)−
(+J半導体層30,40.50及び31.41+51
で広い波長範囲にわたって吸収して光電変換さぜ、っま
り光電変換効率を高めている。しかし乍ら、この種のタ
ンデム型光起電力素子は薄膜を生成させるに当りシリコ
ン以外の、例えはゲルマニウム、錫等を主成分とする4
!l゛殊なガスを併用する必要があって、薄膜生成装置
や41,1.i造材料、ガス供給の点で煩雑となり、且
つこれらの特殊ガスは安全衛生上も危険で取扱いが容易
でなく、しかも極めて高価である等実用上程々の問題が
ある。
The N-type semiconductor layers 31, 41, 51 can absorb light with a longer wavelength than is absorbed by the first semiconductor layer, and the incident light in the visible light range is converted into P, I, N)-
(+J semiconductor layer 30, 40.50 and 31.41+51
It absorbs light over a wide wavelength range, greatly increasing photoelectric conversion efficiency. However, this type of tandem photovoltaic device uses materials other than silicon, such as germanium, tin, etc., as the main component to produce the thin film.
! It is necessary to use a special gas in combination with a thin film generating device or 41.1. In addition, these special gases are dangerous in terms of health and safety, are not easy to handle, and are extremely expensive, which poses some practical problems.

本発明は前述した問題に鑑み、光電変換のための非晶質
シリコン薄膜を多重連結するとともに、光入射側から最
も離れた非晶質シリコン薄膜に微結晶シリコンを混在さ
せることにより、入射光を広い波長範囲にわたって吸収
させるようにして光電変換効率を大幅に向上させ得る光
起電力素子を提案したものである。
In view of the above-mentioned problems, the present invention combines amorphous silicon thin films for photoelectric conversion in multiple ways and mixes microcrystalline silicon in the amorphous silicon thin film furthest from the light incident side, thereby reducing incident light. The present invention proposes a photovoltaic element that can significantly improve photoelectric conversion efficiency by absorbing light over a wide wavelength range.

以下図面に示した実施例を参照して本発明を詳述する。The present invention will be described in detail below with reference to embodiments shown in the drawings.

第3図は本発明に係る光起電力素子の構造を示した概念
的断面図である。第3図において、100はガラスから
なる基板、200は基板100の上面に生成された透明
導電膜、300Aは透明導電膜200の上面に生成され
た非晶質のシリコンからなるP型半導体層、400Aは
P型土導体層300Aの上面に生成された非晶質のシリ
コンからなるJ型゛16導体ハ【1.500AはI型半
導体層400Aの上面に生成された非晶質のシリコンか
らなるN型半導体層であり、これらが積層されたP型、
I型、N型半導体層300A、400.A、500Aに
J:す、光電変換される第1のシリコン薄膜Aが形成さ
れている。300Bは第1の半導体層AのN型半導体層
の土面に生成された非晶質のシリコンからなる1″21
′421′4半導0BはP型半導体層300 Bの上面
に生成された非晶質のシリコンからなる1型半導体層、
500Bはl型半導体層400 Isの」二面に生成さ
れた非晶質のシリコンからなるN !KJ半導体層であ
る。そして、これらの積層されたP型、I型、N型半導
体層300B、4001S、500Bの夫々ニは粒径が
略20〜30oXであり体積比で5〜98%におよぶ微
結晶シリコンを混在させていて、光電変換される第2の
シリコン薄膜Bが形成されている。600は第2のシリ
コン薄膜BON型)h導体層50 (l Bの上面にア
ルミニウムを蒸着させた不透明の金属電極であり、これ
らによって本発明に係る光起電力素子が構成されている
FIG. 3 is a conceptual cross-sectional view showing the structure of a photovoltaic device according to the present invention. In FIG. 3, 100 is a substrate made of glass, 200 is a transparent conductive film formed on the top surface of the substrate 100, 300A is a P-type semiconductor layer made of amorphous silicon formed on the top surface of the transparent conductive film 200, 400A is a J-type conductor made of amorphous silicon formed on the top surface of the P-type soil conductor layer 300A. 1.500A is made of amorphous silicon formed on the top surface of the I-type semiconductor layer 400A It is an N-type semiconductor layer, and a P-type layer in which these are stacked,
I-type and N-type semiconductor layers 300A, 400. A, a first silicon thin film A to be photoelectrically converted is formed at 500A. 300B is a 1″21 layer made of amorphous silicon formed on the surface of the N-type semiconductor layer of the first semiconductor layer A.
'421'4 semiconductor 0B is a type 1 semiconductor layer made of amorphous silicon formed on the upper surface of the P-type semiconductor layer 300B;
500B is made of amorphous silicon formed on two surfaces of the l-type semiconductor layer 400Is. This is a KJ semiconductor layer. Each of these laminated P-type, I-type, and N-type semiconductor layers 300B, 4001S, and 500B has a grain size of about 20 to 30oX and contains microcrystalline silicon in a volume ratio of 5 to 98%. A second silicon thin film B to be photoelectrically converted is formed. Reference numeral 600 denotes an opaque metal electrode in which aluminum is deposited on the upper surface of the second silicon thin film BON type conductor layer 50 (lB), and these constitute the photovoltaic element according to the present invention.

前述した第1及び第2のシリコン薄膜は、公知であるプ
ラズマCVD法によって生成させる。
The first and second silicon thin films described above are produced by a known plasma CVD method.

先ずガラス板からなる基板100を図示しない蒸着装置
に収容し、電子ビームでインジュームと錫との酸化物で
あるITO膜を基板loo上に蒸着させて透明導電膜2
00を形成させる。
First, a substrate 100 made of a glass plate is placed in a vapor deposition apparatus (not shown), and an ITO film, which is an oxide of indium and tin, is vapor-deposited on the substrate loo using an electron beam to form a transparent conductive film 2.
00 is formed.

続いて、蒸着装置から基板100を取り出して、グロー
放電により薄膜生成させる図示しない真空容器内に収容
し、この真空容器内に供給した所定のガスに高電圧を印
加してグロー放電させることにより透明導電膜200上
にlゝ型、N型。
Subsequently, the substrate 100 is taken out of the vapor deposition apparatus and placed in a vacuum container (not shown) in which a thin film is generated by glow discharge, and a high voltage is applied to a predetermined gas supplied into the vacuum container to cause glow discharge. L type and N type are formed on the conductive film 200.

N型の各半導電体層300A、40OA、500Aを順
次生成させ、第1のシリコン薄膜Aが形成される。P型
半導体層300A及びN型半導体l−の生成には、夫々
モノシラン(S+LI4)にジボラン(B2I−16)
あるいはホスフィン(1)■I3)を添加したものを用
い、N型半導体層の生成にはモノシラン(Sil−I4
)を用いる。このようにして生成された第1のシリコン
薄膜Aは太陽光線の短波長寄りの可視光線域を広範囲に
良く吸収することができる。
N-type semiconductor layers 300A, 40OA, and 500A are sequentially generated to form a first silicon thin film A. To generate the P-type semiconductor layer 300A and the N-type semiconductor l-, diborane (B2I-16) is added to monosilane (S+LI4), respectively.
Alternatively, monosilane (Sil-I4) can be used to form an N-type semiconductor layer by adding phosphine (1)■I3).
) is used. The first silicon thin film A produced in this manner is capable of absorbing visible light in the short wavelength range of sunlight well over a wide range.

一方、微結晶シリコンを混在させる第2のシリコン薄膜
Bは、第1のシリコン薄膜へを形成した状態で基板10
0を真空容器中に収容し、第1のシリコン薄膜Bを形成
した場合に対し、水素ガスで稀釈するとともにグロー放
電を発生させるための′電力を高くして低速度でP、1
゜Nの各半導体層を生成させる。例えば13.56MH
zの高周波宙、圧を放電電極に印加した場合、20Wの
電力で第1のシリコン薄膜Aを生成させたのに対し、モ
ノシランガスを水素ガスで稀釈して100Wの電力に高
め徐々に1)iJ記各半導体層を生成させることにより
各半導体層に粒径60〜70Aの微結晶シリコンを混在
させた状態が得られ、第1のシリコン薄膜Aの上にP型
On the other hand, the second silicon thin film B containing microcrystalline silicon is formed on the substrate 10 while being formed on the first silicon thin film.
0 is placed in a vacuum container and the first silicon thin film B is formed, P,
Each semiconductor layer of .degree.N is generated. For example 13.56MH
When high-frequency air pressure of z was applied to the discharge electrode, the first silicon thin film A was generated with a power of 20 W, whereas monosilane gas was diluted with hydrogen gas and the power was gradually increased to 100 W. By producing each of the semiconductor layers described above, a state in which microcrystalline silicon with a grain size of 60 to 70 A is mixed in each semiconductor layer is obtained, and a P-type silicon film is formed on the first silicon thin film A.

■型、N型の各半導体層300 B 、 400 B 
■ type and N type semiconductor layers 300B, 400B
.

500Bを順次生成させて第2のシリコン薄膜Bを生成
させる。またP型、■型、N型の各半導体層300 B
 、 400 B 、 500 Bの生成には、第1の
シリコン薄膜Aの各半導体層300A。
500B is sequentially produced to produce the second silicon thin film B. In addition, P type, ■ type, and N type semiconductor layers 300B
, 400B, and 500B, each semiconductor layer 300A of the first silicon thin film A.

400A、500Aの夫々の生成に用いたモノシラン(
り+114)に多量の水素ガス(H2)を添加して稀釈
したものを用いる。更に微結晶シリコンの混入割合は薄
膜生成時間を適宜選択することにより所定1着で混在さ
せることができる。このようにして生成された微結晶シ
リコンが混在した第2のシリコン薄膜Bは太陽光線の赤
外線域寄りの長波長光を広い範囲で良く吸収することが
できる。また微結晶シリコンの混在により、金属電極で
反射した光は容易にこの薄膜内を通過し得るので、反射
光は再び微結晶シリコンを混在させたシリコン薄膜で吸
収され発電に寄与できる。更に微結晶シリコンが混在し
たことによりこのシリコン薄膜の内部抵抗が低下して薄
膜内部での電力損失が低下する。
Monosilane (
A large amount of hydrogen gas (H2) is added to dilute the H2+114). Further, the proportion of microcrystalline silicon can be mixed at a predetermined level by appropriately selecting the thin film formation time. The second silicon thin film B mixed with microcrystalline silicon produced in this way can absorb long-wavelength light near the infrared region of sunlight well over a wide range. Furthermore, due to the presence of microcrystalline silicon, the light reflected by the metal electrode can easily pass through this thin film, so that the reflected light is absorbed again by the silicon thin film containing microcrystalline silicon and can contribute to power generation. Furthermore, the presence of microcrystalline silicon reduces the internal resistance of this silicon thin film, thereby reducing power loss inside the thin film.

このようにして、第1のシリコン薄膜への光吸収波長領
域と第2のシリコン薄膜Bの光吸収波長領域とにより、
従来の狭い光吸収波長領域を大幅に増大させることがで
き、また内部抵抗の低下及び反射光の再吸収等の相乗効
果か得られて、本発明による光起電力素子の光電変換効
率を、従来の非晶質シリコンの光起電力素子の6%から
略9%程度まで上昇させることができる。
In this way, due to the light absorption wavelength range of the first silicon thin film and the light absorption wavelength range of the second silicon thin film B,
The conventional narrow light absorption wavelength range can be significantly increased, and synergistic effects such as reduction in internal resistance and reabsorption of reflected light can be obtained, and the photovoltaic device according to the present invention has a higher photoelectric conversion efficiency than the conventional one. This can be increased from 6% of an amorphous silicon photovoltaic element to about 9%.

なお、本実施例によれば、微結晶シリコンを生成するた
めにモノシランを水素ガスにより稀釈したため微結晶シ
リコンには水素を含んでいるが、弗素等の他のハロゲン
元素を含んでいる微結晶シリコンも用いることができる
。また、微結晶シリコンは光入射側から最も離れたシリ
コン声f膜の全体に混在させたが、少なくとも薄膜の1
つの゛ヒ導体層に混在させればよい。
According to this example, monosilane was diluted with hydrogen gas to generate microcrystalline silicon, so microcrystalline silicon contains hydrogen, but microcrystalline silicon contains other halogen elements such as fluorine. can also be used. In addition, microcrystalline silicon was mixed throughout the silicon film that was farthest from the light incident side, but at least one part of the thin film was mixed.
They may be mixed in one conductor layer.

されf・・ 史に、基板はガラス板に限定−一、ステンレススチール
等の金属板を使用することができ、ガラス板を用いた場
合と同様の効果が得られる。
Historically, the substrate is limited to a glass plate; however, a metal plate such as stainless steel can be used, and the same effect as when using a glass plate can be obtained.

史に、シリコン1ilj膜の連結は二重のみに限定され
るものではない。
Historically, the connection of silicon 1ilj films is not limited to only double connections.

本実施例における薄膜の構造は類タイプとしたが、逆タ
イプでも同様に実施できるのは勿論である。
Although the structure of the thin film in this embodiment is of a similar type, it is of course possible to use a reverse type.

以上詳述したように本発明の光起電力素子は、光電変換
のための非晶質シリコンの半導体層からなるシリコン1
j17膜を多重連結して、光入射側から最も離れたシリ
コン薄膜の少なくとも1つの半導体層に微結晶シリコン
を混在させたことにより、太陽光線の吸収波長域を増大
させることができる。また入射した太陽光線は光入射側
と反対側に設けた金属電極で反射して微結晶シリコンを
混在させたシリコン膜に再入射した太陽光線を再び吸収
して入射した太陽光線を完全に吸収し光電変換させるこ
とができる。更に微結晶シリコンを混在させたことによ
りシリコン薄膜の電気抵抗を低下させることができる。
As described in detail above, the photovoltaic device of the present invention comprises a silicon 1 semiconductor layer made of amorphous silicon for photoelectric conversion.
By multiplexing the J17 films and mixing microcrystalline silicon in at least one semiconductor layer of the silicon thin film furthest from the light incident side, it is possible to increase the absorption wavelength range of sunlight. In addition, the incident sunlight is reflected by the metal electrode provided on the side opposite to the light incident side, and the sunlight that re-enters the silicon film mixed with microcrystalline silicon is absorbed again, completely absorbing the incident sunlight. Photoelectric conversion can be performed. Furthermore, by mixing microcrystalline silicon, the electrical resistance of the silicon thin film can be lowered.

従って、入射した太陽光線の光電変換効率を大幅に上昇
させることが可能となり、また微結晶シリコンを混在さ
せたシリコン薄膜はその内部での電力損失を低減させ得
て光電変換効率をこの機能によっても高めることができ
る。更に製造に際しては安全衛生上で問題となる4へ1
°殊なガスを使用せずプラズマCVD法によるため生産
設備の大幅な改造を必要とせす安全で安価に光起電力素
子を生産できる等、産業上に寄与するところが大きい。
Therefore, it is possible to significantly increase the photoelectric conversion efficiency of incident sunlight, and the silicon thin film mixed with microcrystalline silicon can reduce internal power loss, and this function also increases the photoelectric conversion efficiency. can be increased. Furthermore, there are safety and health issues during manufacturing.
Since the plasma CVD method is used without using special gases, photovoltaic elements can be produced safely and at low cost, which would otherwise require major modification of production equipment, making it a great contribution to industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の光起電力素子の構造を示す概
念的1(11面図、第3図は本発明に係る光起電力素子
の4114造を示す概念的断面図である。 1.10,100・・・基板 2 、20 、200・
・・透明導電膜 3,30,31.30OA。 300B・・・P型半導体層 4.40.41゜40O
A、40013・・・【型半導体層 5.50゜51.
500Δ、500B・・・N型半導体層 6.・60 
、600 ・・・金属電極 A・・・第1のシリコン薄
膜 11・・・第2のシリコン薄膜代理人 弁理士 中
外 宏 第1F〕 第2凶 第8図 手前にネ山正¥;!、:(自発) 1、小暑の表示 昭和58年特許願第209639D 2、発明の名称 光起電力素子 3、補正づる者 事1!1どの関係 特許出願人 大阪市淀用区1111112丁目1番1゛1シ](02
G) 大阪変圧器株式会ン1 4、代理人 1.1 所 〒532 大阪市淀用区0.11112丁
目111i i iシ〕5、補正の対象 明細呂の発明
の詳細な説明の)閘G 、 ?+li il−の内容 明細謁を下記の通りΔ]’ IT−5する。 (1)第10頁第1 !:+ f−jの1−Cふノる。 」の゛)入に[Jた第′1のシリニ1シ博II!III
△と第2のシリ′:]ン薄11!413どが1萌接りる
棉稈面に金属の01)化10を介nさゼ(t)J−い。 」を追加りる。 以上
1 and 2 are conceptual 1 (11) views showing the structure of a conventional photovoltaic device, and FIG. 3 is a conceptual sectional view showing a 4114 structure of a photovoltaic device according to the present invention. 1.10,100...Substrate 2,20,200・
...Transparent conductive film 3,30,31.30OA. 300B...P-type semiconductor layer 4.40.41°40O
A, 40013... [type semiconductor layer 5.50°51.
500Δ, 500B...N-type semiconductor layer 6.・60
, 600...Metal electrode A...First silicon thin film 11...Second silicon thin film Agent Patent attorney Hiroshi Chugai 1st floor] Tadashi Neyama in front of 2nd figure 8;! , : (spontaneous) 1. Indication of slight heat 1982 Patent Application No. 209639D 2. Name of the invention Photovoltaic element 3. Persons making amendments 1!1 Which relationship Patent applicant 1-1, 1111112-chome, Yodoyo-ku, Osaka City゛1shi] (02
G) Osaka Transformer Co., Ltd. 1 4, Agent 1.1 Address: 0.11112-111i, Yodoyo-ku, Osaka 532, 5, Subject of amendment Detailed explanation of the invention of Sekiro) , ? +li il- contents detailed audience as follows Δ]' IT-5. (1) Page 10, No. 1! :+ 1-C funnel of f-j. ''s ゛) In [J's 1st Sirini 1st Expo II! III
△ and the second series': ] N thin 11! 413 is attached to the cotton culm surface through the metal 01) oxide 10 (t) J-. ” is added. that's all

Claims (1)

【特許請求の範囲】[Claims] 1、光電変換のための非晶質シリコン半導体層からなる
シリコン薄膜が多重連結されており、光入射側から最も
離れた前記シリコン研膜の少なくとも1つの半導体層に
微結晶シリコンが混在している光起電力素子。
1. Silicon thin films made of amorphous silicon semiconductor layers for photoelectric conversion are multiple-connected, and microcrystalline silicon is mixed in at least one semiconductor layer of the silicon polishing film furthest from the light incident side. Photovoltaic element.
JP58209639A 1983-11-07 1983-11-07 Photovoltaic element Pending JPS60101979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58209639A JPS60101979A (en) 1983-11-07 1983-11-07 Photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58209639A JPS60101979A (en) 1983-11-07 1983-11-07 Photovoltaic element

Publications (1)

Publication Number Publication Date
JPS60101979A true JPS60101979A (en) 1985-06-06

Family

ID=16576115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58209639A Pending JPS60101979A (en) 1983-11-07 1983-11-07 Photovoltaic element

Country Status (1)

Country Link
JP (1) JPS60101979A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189764A (en) * 1986-02-15 1987-08-19 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
US5479043A (en) * 1992-04-15 1995-12-26 Picogiga Societe Anonyme Multispectral photovoltaic component
WO2001057933A1 (en) * 2000-02-04 2001-08-09 Kaneka Corporation Hybrid thin-film photoelectric transducer and transparent laminate for the transducer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713778A (en) * 1980-06-20 1982-01-23 Ibm Photoelectric converter
JPS57187973A (en) * 1981-05-15 1982-11-18 Agency Of Ind Science & Technol Solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713778A (en) * 1980-06-20 1982-01-23 Ibm Photoelectric converter
JPS57187973A (en) * 1981-05-15 1982-11-18 Agency Of Ind Science & Technol Solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189764A (en) * 1986-02-15 1987-08-19 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
US5479043A (en) * 1992-04-15 1995-12-26 Picogiga Societe Anonyme Multispectral photovoltaic component
WO2001057933A1 (en) * 2000-02-04 2001-08-09 Kaneka Corporation Hybrid thin-film photoelectric transducer and transparent laminate for the transducer
JP2001217440A (en) * 2000-02-04 2001-08-10 Kanegafuchi Chem Ind Co Ltd Hybrid thin film photoelectric conversion device and translucent laminate used for the same
US6759645B2 (en) 2000-02-04 2004-07-06 Kaneka Corporation Hybrid thin-film photoelectric transducer and transparent laminate for the transducer

Similar Documents

Publication Publication Date Title
AU636677B2 (en) Semiconductor device
TWI438904B (en) Method for obtaining high performance thin film devices deposited on highly textured substrates
JPS59115574A (en) Manufacture of photoelectric converter
US20110259395A1 (en) Single Junction CIGS/CIS Solar Module
WO2021004525A1 (en) Heterojunction battery layerwise hydrogen passivation method and passivation device, battery, battery assembly, and solar power station
JPS6348197B2 (en)
JPWO2005011002A1 (en) Silicon-based thin film solar cell
WO2006057160A1 (en) Thin film photoelectric converter
JP2008181965A (en) Laminated optoelectric converter and its fabrication process
US5391893A (en) Nonsingle crystal semiconductor and a semiconductor device using such semiconductor
CN101237000A (en) Nano crystal silicon and non crystal germanium mixed absorption layer for multi-node light voltage part based on film silicon
TW201110379A (en) Tandem solar cell integrated in a double insulating glass window for building integrated photovoltaic applications
CN101640226B (en) Lamination structure and thin film solar cell with same
TW201308635A (en) Tandem solar cell with improved tunnel junction
JPS60101979A (en) Photovoltaic element
JPH0125235B2 (en)
JPH05251723A (en) Integrated solar battery module
JPH065765B2 (en) Photoelectric conversion device
JP2680579B2 (en) Photovoltaic device
KR101252815B1 (en) Down conversion oxide fluorescent composition for solar cell and method of fabrication of high efficiency solar cell using thereof
JPS62106670A (en) Semiconductor device
JPS60111478A (en) Photovoltaic device
JP7170817B1 (en) SOLAR CELL AND MANUFACTURING METHOD THEREOF, PHOTOVOLTAIC MODULE
JP5763411B2 (en) Stacked photoelectric conversion device
JPS6152992B2 (en)