JPS60101967A - Differential type sensor device - Google Patents

Differential type sensor device

Info

Publication number
JPS60101967A
JPS60101967A JP58209559A JP20955983A JPS60101967A JP S60101967 A JPS60101967 A JP S60101967A JP 58209559 A JP58209559 A JP 58209559A JP 20955983 A JP20955983 A JP 20955983A JP S60101967 A JPS60101967 A JP S60101967A
Authority
JP
Japan
Prior art keywords
light
charge
photoelectric conversion
light source
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58209559A
Other languages
Japanese (ja)
Inventor
Tokuichi Tsunekawa
恒川 十九一
Yuichi Sato
雄一 佐藤
Takashi Kawabata
隆 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58209559A priority Critical patent/JPS60101967A/en
Priority to US06/667,012 priority patent/US4672189A/en
Publication of JPS60101967A publication Critical patent/JPS60101967A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve an S/N, and to enhance the capacitance of distance measurement by obtaining focus adjusting informations by using a storage type photoelectric conversion element and through arithmetic operation in a differential type sensor device. CONSTITUTION:When an LED emits light and a photoelectric spot PS is image- formed on photoelectric conversion sections SA1, SA2, SB1, SB2, an image is converted by the photoelectric conversion section in a zone A and a zone B in a photoelectric manner, and charges in the sum of beam projection and peripheral beams are stored in charge storage sections TA1, TA2, TB1, TB2, and transferred to charge transfer sections CA1, CB2. When the LED is put out, only the informations of peripheral beams are transmitted over the conversion sections SA1-SB2, and stored in the storage sections TA1-TB2. Optical informations generated in a beam projection section and optical informations generated in a non-beam projection section are transferred and stored simultaneously into circulation type storage sections M1-M4 in succession. These stored informations are read and arithmetically operated through floating gate means FG1, FG2, and the difference of intrinsic beam-projection signals each generated in the zone A and the zone B is obtained.

Description

【発明の詳細な説明】 本発明は差動型センサー装置に関し、特に被写体に光を
投光し、被写体からの反射光を受光手段により受光して
該受光手段からの信号を用いて被写体までの距離を検出
する距離検出に用いるときに有効な差動型センサ装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a differential sensor device, and more particularly, to a differential sensor device, which projects light onto a subject, receives reflected light from the subject by a light receiving means, and uses a signal from the light receiving means to transmit light to the subject. The present invention relates to a differential sensor device that is effective when used for distance detection.

従来、距離検出用の光電変換素子としてはシリコンフォ
トダイオード等の非蓄j74をの光電変換素子が使用さ
れているが、これらの光電変換素子より生ずる出力信号
は非常に小さいので、増幅時に回路雑音の影婦が大きく
、なかなか良好なるS/Nを得ることが出来なく、又測
距できる検知距離も短かかった。
Conventionally, non-storage photoelectric conversion elements such as silicon photodiodes have been used as photoelectric conversion elements for distance detection, but since the output signals generated by these photoelectric conversion elements are very small, circuit noise is generated during amplification. The shadow area was large, making it difficult to obtain a good signal-to-noise ratio, and the detection distance that could be measured was also short.

本発明は信号の読み出し特性が良く、しかもS/N比の
高い信号が得られる差動型センサ装置の提供を目的とし
、史なる目的は距晴検出系に用いたときK111寸しい
信号出力の得られる差ftj+をセンサ装置の扮供を目
的とする。
The purpose of the present invention is to provide a differential sensor device that has good signal readout characteristics and can obtain signals with a high S/N ratio. The obtained difference ftj+ is intended to serve as a sensor device.

本発明の目的を達成する為の差動型センナ装置の主なる
%徴は被写体偵へ投光する為の光源と、被写体からの反
射光を受光する為の少々ぐとも2つの光電変換部8A1
 、SB1を有する光電変換手段と、前記2つの光電変
換部SA1 、SB1で生ずる電荷を各々蓄積する2つ
の電荷蓄積部TA1 。
The main features of the differential sensor device for achieving the purpose of the present invention are a light source for projecting light onto the subject and at least two photoelectric conversion units 8A1 for receiving reflected light from the subject.
, SB1, and two charge storage sections TA1 that accumulate charges generated in the two photoelectric conversion sections SA1 and SB1, respectively.

TBlを有する電荷蓄積手段と、前記光源の投光時と非
投光時に各々前記電荷蓄積部TA1に蓄えられた2つの
電荷QALI I QADIと前記光源の投光時と非投
光時に各々前aatar、荷蓄積4TB1に蓄えられた
2つの電荷QBLI ”BDIの合計4つの電荷量L1
゜QADI I QBLI I QBDIを順次転送す
るための電荷転送手段CABと、 前記電荷転送手段CABから転送されてくる4っの電荷
を所定の電荷蓄積部下・1.を介して順次蓄積する為の
前記電荷蓄積部M、を含んで循環型に構成した4つの電
荷蓄積部MI r M21 ”31 ’4と、前記4つ
の電荷蓄積部MI + 4 r MS r ]V’4へ
の電荷の蓄積を前記光源の投光と非投光の周期に対応さ
せて、循環的に順次転送させながら蓄積させる電荷循環
手段と、 前記4つの電荷蓄積部”I wJ + MS r M4
に蓄積されている電荷に応じた信号を発生する読み出し
手段とを有していることである。
charge accumulating means having TBl, two charges QALI I QADI stored in the charge accumulating section TA1 when the light source emits light and when the light source does not emit light; , the two charges QBLI and BDI stored in the load storage 4TB1, the total of four charges L1
゜A charge transfer means CAB for sequentially transferring QADI I QBLI I QBDI, and 4 charges transferred from the charge transfer means CAB to a predetermined charge storage section 1. The four charge storage sections MI r M21 ``31 '4, which are configured in a circular manner, including the charge storage section M for sequentially storing the charge via the charge storage section M, and the four charge storage sections MI + 4 r MS r ]V. charge circulation means for accumulating charges in the four charge storage sections "IwJ+MSr" while cyclically and sequentially transferring them in correspondence with periods of light emission and non-light emission of the light source; M4
and a readout means for generating a signal corresponding to the charge stored in the memory.

前記電荷循環手段は必ずしも必要ではないが電荷を電荷
蓄積部に効率良く転送し、かつ蓄積するのに好ましい。
Although the charge circulation means is not necessarily required, it is preferable for efficiently transferring and storing charges to the charge storage section.

そして本発明の目的をより良好に達成する為には前記読
み出し手段に、フロルティングゲート手段を設はフロー
ティングゲート手段を制御して、前記光電変換部SAI
の前記光源の投光時と非投光時に生じた電荷量の差に応
じた投光信号をsl、前記光1.変換部SB1において
前記光源の投光時と非投光時に生じた電荷量の差に応じ
た投光信号を82としたとき前記投光信号S1と前記投
光信号S2との差及び和の信号を演算すゐことである。
In order to better achieve the object of the present invention, floating gate means may be provided in the reading means, and the floating gate means may be controlled so that the photoelectric conversion unit SAI
A light emitting signal sl corresponding to the difference in the amount of charge generated when the light source emits light and when it does not emit light, When the light emission signal corresponding to the difference in the amount of charge generated when the light source emits light and when it does not emit light in the conversion unit SB1 is 82, a signal of the difference and sum of the light emission signal S1 and the light emission signal S2. It is to calculate.

そして本発明の目的を達成する為に更に好オしくはフロ
ーティングゲート手段により前記投光信号S1と前記投
光信号S2との和が一定値に達したか否かを検出する検
出手段を設け、前記検出手段の信号に基づいて前記投光
信号s1と前記投光信号82との差の信号を出力するよ
うにしたことである。
In order to achieve the object of the present invention, it is further preferable to provide a detection means for detecting whether the sum of the light projection signal S1 and the light projection signal S2 has reached a certain value by means of a floating gate means, A signal representing the difference between the light projection signal s1 and the light projection signal 82 is output based on the signal of the detection means.

次に本発明の実施例を各図を用いて説明する。Next, embodiments of the present invention will be described using the respective figures.

@1図は被写体に光を投光し、被写体からの反射光を利
用して被写体距離を検出する距離検出の1072図であ
る。パルスφTlICよりバッファBPを介してレーザ
ー、発光ダイオード等の光源LBが変調発光し、投光レ
ンズLN1により被写体OB上に光が投光される。被写
体からの反射光は受光レンズLN2で光電変換手段の一
部である光電変換素子SD上に投光スポット像psとし
て結で象する。
Figure @1 is a 1072 diagram of distance detection in which light is projected onto a subject and the distance to the subject is detected using reflected light from the subject. A light source LB such as a laser or a light emitting diode modulates and emits light from the pulse φTlIC via the buffer BP, and the light is projected onto the object OB by the projection lens LN1. The reflected light from the object is visualized by the light receiving lens LN2 as a projected spot image ps on the photoelectric conversion element SD, which is a part of the photoelectric conversion means.

光電変換素子SD上の投光スポット像の位置を検知する
ことによって被写体までの距離を検出する。
The distance to the subject is detected by detecting the position of the projected light spot image on the photoelectric conversion element SD.

光電変換素子SD上には投光によるスポット像以外にも
被写体からの光情報が重畳きれておシ、この被写体から
の光情報(周囲光の情@)を効率良く除去することが距
離検出の精度を高める為重要となる。
In addition to the spot image from the projected light, light information from the subject is superimposed on the photoelectric conversion element SD. Efficiently removing this light information from the subject (information about ambient light) is essential for distance detection. This is important to improve accuracy.

本発明ではこの周囲光の情報を効率良く除去している。In the present invention, this ambient light information is efficiently removed.

第2図(aL(1))、(Q)は本発明に係る差動型セ
ンサ装置で用いている蓄積型の光シー変換手段の模式的
な説明図である。
FIGS. 2(aL(1)) and (Q) are schematic explanatory diagrams of the accumulation type light sea conversion means used in the differential type sensor device according to the present invention.

第2図(a)は光源からの投光時、投光による被写体か
らの反射光により光電変換部AI+131に生じる電荷
tA、Bと投光を停止したときに、周囲光により生ずる
電荷t AOt BOを概念的に示したものであり各々
の電荷量の和A+Ao、B+B。
Figure 2 (a) shows the charges tA and B generated in the photoelectric converter AI+131 by the reflected light from the subject when the light is emitted from the light source, and the charge t AOt BO generated by the ambient light when the light emission is stopped. This is a conceptual representation of the sum of each charge amount A+Ao, B+B.

が各々の光電変換部AI + Blから電荷蓄積部A、
is from each photoelectric conversion unit AI + Bl to charge storage unit A,
.

B!に各々蓄積され、非投光時、光電変換部A1゜B、
に生じる電荷Δ。、Boが電荷蓄積部A、 、 B、に
各々蓄積される。これらの蓄積電荷は差動回路で差が取
られることにより第1図(b)に示す如く、投光による
反射光成分の電荷fRA、Bのみが検出さh、この結果
第1図(C)の如く電荷量A、BがA=Bの時に、例え
ば距離検出系のレンズ系が合焦位黄と判断しA>Bの時
前ビン状態、AくBの簡抜ビン状態であると判断する。
B! When the light is not emitted, the photoelectric conversion parts A1゜B,
The charge Δ generated on , Bo are accumulated in the charge storage parts A, , B, respectively. By taking the difference between these accumulated charges in a differential circuit, only the charges fRA and B of the reflected light component due to the projection of light are detected, as shown in Fig. 1(b), and as a result, Fig. 1(C) When the electric charges A and B are A=B, for example, the lens system of the distance detection system determines that the in-focus point is yellow, and when A>B, it is determined that it is in the front bin state, and the simple extraction bin state is A × B. do.

又このとき電荷tA+Bの値を一定値に保つようにする
と、A−Bの合焦位置付近での傾きがほぼ一定になシ、
合焦精度全一定に保持出来る。
Also, if the value of the charge tA+B is kept constant at this time, the slope of A-B near the in-focus position will become almost constant.
Focusing accuracy can be maintained at a constant level.

哨3iJは本発明の差動型センサ装置の一実施例の説明
図である。SA1.EI81は第1、第20光電変換部
からなる光電変換手段であり、SA2゜SB2は距離検
出能力を向上させる為に補助的に設けた2つの光1f、
変W8部で、これらの光電変換部を2つ以上設けても良
い。こねらの光電変換部の機能は光電変換部SA1.8
1Nと同様である。
3iJ is an explanatory diagram of an embodiment of the differential type sensor device of the present invention. SA1. EI81 is a photoelectric conversion means consisting of a first and a 20th photoelectric conversion section, and SA2°SB2 is two lights 1f provided auxiliary to improve the distance detection ability.
Two or more of these photoelectric conversion units may be provided in the variable W8 section. The function of Konera's photoelectric conversion unit is photoelectric conversion unit SA1.8.
It is the same as 1N.

TAI 、TBlは光電変換部εA1.SB1で生ずる
光電変換情報を蓄積する第1.第2の電荷蓄積部、から
なる電荷蓄積手段であり、SA2.SB2は補助的に光
電変換部SA2.SB2を設けた場合それらに対応させ
て設ける電荷蓄積部である。
TAI and TBl are photoelectric conversion units εA1. The first SB1 stores photoelectric conversion information generated in SB1. SA2. SB2 auxiliary photoelectric conversion unit SA2. When SB2 is provided, this is a charge storage section provided correspondingly.

本実施例のように光電変換部を横方向に4つ並べて設け
ねば、投光スポット頭P Sが大きぐズしてもいずれか
の光電変換部の一部に結像させることが容易となり、こ
の結果非合焦状態が太きくなっても投光スポット像ps
の位置を正確に検出することができるので距離検出能力
を同上させることができるので好ましい。
By arranging four photoelectric conversion units in the horizontal direction as in this embodiment, even if the projected light spot head PS shifts significantly, it is easy to form an image on a part of any of the photoelectric conversion units. As a result, even if the out-of-focus state becomes thicker, the projected spot image ps
This is preferable because the position of the object can be detected accurately, and the distance detection ability can be improved.

光電変換部が4つある場合は例えば2つの光電変換部S
Ai 、SA2から生ずる電荷を1つのものと考えて後
の処理を行えばよい。
If there are four photoelectric conversion units, for example, two photoelectric conversion units S
The charges generated from Ai and SA2 may be considered as one in the subsequent processing.

又投光スポット像PSが2つの光電変換部SAI 、B
Blの範囲内にあることを出力電荷farを検知して、
知り他の2つの光電変換部SA2.SB2の動作を中正
させればS/N比を同上はせることができ好ネしい。
In addition, the projected spot image PS is composed of two photoelectric conversion units SAI and B.
Detecting that the output charge far is within the range of Bl,
I know of two other photoelectric conversion units SA2. It is preferable that the S/N ratio can be increased by correcting the operation of SB2.

(CGはパルスφIOGが高レベルの時光電変換部Sへ
1.SA2; 8B1.SB2より生ずる電荷をクリア
するための積分クリアゲート、SHlけ電荷移送ゲート
でありφE11(1が高レベルの時電荷蓄積部TA1 
、TA2 ;TBj 、Ta2に蓄積されている電荷を
CCDアナログシフトレジスタを有する電荷転送部OA
I 、GBlへ移送する電荷移送ゲートである。電荷転
送部OA4 、OBlに移送された電荷は順次転送され
他の電荷転送部GA、GBを介してMl、M2.M5゜
M4の電荷蓄積部とG1 、G2.G5.G4の電荷を
一時蓄積した後側の電荷蓄積部へ電荷を循環させる為の
電荷循環手段とを有する蓄積手段へ転送され蓄積さり、
る。
(CG is an integral clear gate for clearing the charge generated from 1.SA2; 8B1.SB2 to the photoelectric conversion unit S when the pulse φIOG is at a high level, and a charge transfer gate for SH1; Accumulation section TA1
, TA2; TBj, the charge accumulated in Ta2 is transferred to the charge transfer unit OA having a CCD analog shift register.
I is a charge transfer gate that transfers to GBL. The charges transferred to charge transfer units OA4 and OBl are sequentially transferred to Ml, M2 . . . via other charge transfer units GA and GB. M5°M4 charge storage section and G1, G2. G5. The charge of G4 is transferred to and accumulated in a storage means having a charge circulation means for temporarily storing the charge and circulating the charge to the rear charge storage section,
Ru.

FGl、Fe2は70−ティグゲート手段でありφF’
Gが胚レベルの時基準電圧、VFGにリセットされる。
FGl and Fe2 are 70-Tig gate means and φF'
When G is at the embryonic level, it is reset to the reference voltage, VFG.

フローティングゲートの出力は、電界効果型トランジス
タFTi〜FT3、抵抗R1,R2、コンデンサC1、
非反転入力端子に基準電圧vR1Fが印加さり、帰饋路
にグー) FT3が配設されている演算増幅器OP1か
ら成る出力回路を介し−て出力され、必要方情報がサン
プルパルスφHに同期してサンプルホールド回路S/H
でサンプルホールドされ出力される。
The output of the floating gate is field effect transistors FTi to FT3, resistors R1 and R2, capacitor C1,
A reference voltage vR1F is applied to the non-inverting input terminal, and the output signal is outputted via an output circuit consisting of an operational amplifier OP1 in which an FT3 is installed, and necessary information is synchronized with the sample pulse φH. Sample hold circuit S/H
The sample is held and output.

工OM1 、TOM2は電荷転送部GA、電荷蓄積部M
3のクリアゲートである。
OM1 and TOM2 are charge transfer section GA and charge storage section M.
This is the 3rd clear gate.

また01〜()4.M1〜M4に印加されるノくルスφ
G1〜φG4.φM1〜φM4により蓄積電荷の循環転
送が制御されるように構成されている。
Also 01~()4. Nox φ applied to M1 to M4
G1~φG4. The configuration is such that cyclic transfer of accumulated charges is controlled by φM1 to φM4.

第4図は、第3図の主要部のタイミングチャート図及び
出力のタイミングチャート図である。
FIG. 4 is a timing chart of the main parts of FIG. 3 and a timing chart of output.

時刻t。K於いてφIOGが低レベルに反転すると、光
電変換部SA1 、SA7!;SB4.8B2で発生し
た電荷が電荷蓄積部TA4 、TA2;TBl 、Ta
2でsMRされる。
Time t. When φIOG is inverted to low level at K, photoelectric conversion units SA1, SA7! ;The charges generated in SB4.8B2 are transferred to the charge storage parts TA4, TA2; TBl, Ta
sMR is performed at 2.

φT′Rが高レベルのLlの間は光源としての発光ダイ
オード1.には発光し、光電変換部上に投光スポットP
Sを結像し、第1(入ゾーン)と第2(Bゾーン)の光
電変換部で光電変換され投光と周囲光の和の電荷QkL
1.QBLIが電荷蓄積部TAi 、TA2;TBI 
、Ta2に蓄積されφSH1が高レベルになると電荷転
送部OA4.OBiに移送される。
During Ll when φT'R is at a high level, the light emitting diode 1. emits light, and a light spot P is projected onto the photoelectric conversion unit.
S is imaged and photoelectrically converted by the first (entering zone) and second (B zone) photoelectric conversion parts, and the charge QkL is the sum of the projected light and ambient light.
1. QBLI is charge storage part TAi, TA2; TBI
, Ta2 and when φSH1 becomes high level, the charge transfer unit OA4. Transferred to OBi.

時刻t、に於いて、φ工Rが低レベルになると発光ダイ
オードLEは消灯し、光電変換部上に生じた光情報Q、
BD1が電荷転送fi CBi 、GB、GAを介して
循環型の電荷蓄積部M1に蓄積力;膠6始される。電荷
蓄積部114 、M′5.M2.Mlに蓄積されている
光情報QAL1 、Q、BLl 、QADl 、QBD
Iを電荷蓄積部M1゜M4 、M3 、M2に転送する
と光に時刻t、に於いて投光区間L2の間にAゾーンの
光電変換部に生じた光情報Q、AL2が派1 、GAを
介して電荷蓄積部M1に蓄積されるので電荷蓄積部M1
には光情報QAL1とQAL2の和の情報が蓄えられる
。同様に光情%Q、BLIとQ、BT、2の和、光情報
Q、AD1とQA[2の和、光情# QBDIとQ、B
D2の和、・・・・・カ;順次循環蓄積される。
At time t, the light emitting diode LE turns off when φwork R becomes a low level, and the optical information Q generated on the photoelectric conversion section
BD1 is transferred to a circulating charge storage section M1 via charge transfer fi CBi, GB, and GA. Charge storage section 114, M'5. M2. Optical information stored in Ml QAL1, Q, BLl, QADl, QBD
When I is transferred to the charge storage parts M1, M4, M3, and M2, the light information Q, AL2 generated in the photoelectric conversion part of the A zone during the light projection period L2 at time t becomes the light information Q, AL2, which is divided into groups 1 and GA. Since the charge is stored in the charge storage section M1 through the charge storage section M1
The sum of optical information QAL1 and QAL2 is stored in . Similarly, optical information %Q, BLI and Q, BT, sum of 2, optical information Q, AD1 and QA [sum of 2, optical information # QBDI and Q, B
The sum of D2, . . ., is sequentially accumulated cyclically.

これらの蓄積情報はフローティングゲート手段FG1.
FG2を介して次の如く読み出される。
These accumulated information are stored in floating gate means FG1.
It is read out via FG2 as follows.

例えばφF煉1)、φT(1)の如くリセット/くルス
を発生すると()2.G1の電荷Q、ALIとQBLl
の和の電圧vAL++vBLIと基準電圧vRFの差に
対応する電圧がコンデンサC1に蓄えられ出力vouT
(1)はVvtvに固定される。次に時刻t、〜t10
の時はG1゜G2の電荷は転送りリアされているのでV
。uT(1)ld VRF + VAp+ +VBL+
になる□次に時刻tto〜t4のff1lはG2.G1
に電荷Q、BL1とQAI)1が入るのでVOuT(1
)はVouT(1)=Vny+vAy、++Vnz+ 
−VBIII−VADI=VRP+VQ、ALI−vQ
AIN 同様にして時刻t4〜tttの間は、 VOIIT(1)= vR1’+vAI++ −VAD
 I+VBL l+VAD I= ’VRF+VAL 
I+VBL 1時刻tII〜〜の量線 VouT(1)=VuyトWAL++VnII+−WA
D +−VBD I=’Any)(Vxr、+−’VA
DI )+(V[1I−VBD I )即ち基準電圧v
1げを基準にしてAゾーンに生ずる真の投光信号とBゾ
ーンに生ずる真の投光信号の和の信号を得ることが出来
る。更にこの真の投光信号の和が一定レベルに達した時
にφFG(2)φ(T)、φTOMの如くパルスを発生
し、410Mが高レベルの時には、[0M1ゲートを介
して、GAに転送されて来た情報をクリアするように構
成することにより真の投光信号の差戻の如く検出する仁
とが出来る。
For example, when a reset/curse occurs as in φF(1) and φT(1)()2. Charge Q of G1, ALI and QBLl
A voltage corresponding to the difference between the sum voltage vAL++vBLI and the reference voltage vRF is stored in the capacitor C1, and the output vouT
(1) is fixed to Vvtv. Next, time t, ~t10
When G1゜G2 charges are transferred and rearranged, V
. uT(1)ld VRF + VAp+ +VBL+
□Next, ff1l from time tto to t4 is G2. G1
Since the charge Q, BL1 and QAI)1 enters, VOut(1
) is VouT(1)=Vny+vAy, ++Vnz+
-VBIII-VADI=VRP+VQ, ALI-vQ
AIN Similarly, between time t4 and ttt, VOIIT(1) = vR1'+vAI++ -VAD
I+VBL l+VAD I='VRF+VAL
I+VBL 1 time tII~ dose line VouT(1)=VuytoWAL++VnII+-WA
D +-VBD I='Any) (Vxr, +-'VA
DI ) + (V[1I-VBD I ), that is, the reference voltage v
It is possible to obtain a signal that is the sum of the true light projection signal generated in the A zone and the true light projection signal generated in the B zone with reference to 1. Furthermore, when the sum of the true light emitting signals reaches a certain level, pulses are generated such as φFG(2)φ(T) and φTOM, and when 410M is at a high level, the pulses are transferred to the GA via the 0M1 gate. By configuring the device to clear the information that has been transmitted, it is possible to detect the true light emitting signal as if it were returned.

時刻tto−t□の間は、 Vour(1) = VRF+VBLI+VAD +時
刻t□〜t□間は VouT(1)= VRF+VBII I+VAD +
 −VAD I −VBD I”” VRF+VBLI
−VBDI 時刻ttt ”” ttsの間は VouT(1)= Vny+Vnr、+−VBDI+V
ADI+VBD1=VR7+VBLI+VAD+ 時刻上118 ””’ t!4の間は時刻ttt 〜t
tsの間φTOMが高レベルのためL工区間の光情報Q
、LA2はクリアされているので VouT(1)=Vny+VBIl++VAD+−VA
LI−VBDI= VRy+CVBL+−VBDI )
−(VALI−VADI )即ち、基準電圧VRFを基
準にして、Aゾーンに生ずる真の投光信号とBゾーンに
生ずる真の投光信号の差の信号を得ることが出来る。
Between time tto and t□, Vour(1) = VRF+VBLI+VAD + between time t□ and t□, VouT(1)=VRF+VBII I+VAD +
-VAD I -VBD I"" VRF+VBLI
-VBDI During time ttt "" tts, Vout(1)=Vny+Vnr, +-VBDI+V
ADI+VBD1=VR7+VBLI+VAD+ Time 118 ``”' t! 4 is from time ttt to t
Since φTOM is at a high level during ts, the optical information Q in the L section
, LA2 is cleared, so VouT(1)=Vny+VBIl++VAD+-VA
LI-VBDI= VRy+CVBL+-VBDI)
-(VALI-VADI) That is, it is possible to obtain a signal representing the difference between the true light projection signal occurring in the A zone and the true light projection signal occurring in the B zone, with reference to the reference voltage VRF.

この真の投光信号の差の情報がサンプルホールドパルス
φHによりサンプルホールド回路S/Hでサンプルホー
ルドされ次に差情報が発生するまで保持される。
Information on the difference between the true light projection signals is sampled and held in the sample and hold circuit S/H by the sample and hold pulse φH, and held until the next generation of difference information.

この真の投光(G4号の差が零になるように撮影レンズ
を駆動することにより自動焦点調節を行うことが出来る
。寸た真の投光信号の差信号がS/Hでサンプルホール
ドされた後クリアゲートTOM2を高レベルにして循環
型の電荷蓄積部を1循環して不必要電荷をクリアするよ
うに構成する必要がある。
Automatic focus adjustment can be performed by driving the photographing lens so that the difference between this true light emission signal (G4) becomes zero.The difference signal between the true light emission signal is sampled and held by S/H. After that, it is necessary to set the clear gate TOM2 to a high level and clear the unnecessary charges by circulating the cyclic charge storage section once.

その後時刻t。と同じく系をクリア状態に戻し、繰り返
し焦点調節清報を得ることが出来る。
Then time t. In the same way, you can return the system to a clear state and repeatedly obtain focus adjustment information.

以上の如く本発明を使用すると他の演算処理回路を用い
ないで差動型センサ装置内部で演算して焦点調節情報を
得ることが出来るので雑音の影響が少な(S/Nを同上
させる事が出来、測Vn n’Q力を著しく向上させる
ことが出来る著しい特徴がある。
As described above, when the present invention is used, focus adjustment information can be obtained by calculating within the differential sensor device without using any other arithmetic processing circuit, so the influence of noise is small (S/N does not increase as above). There are significant features that can significantly improve the measured Vn'Q force.

また光電変換部SA1とSB1 ; SA2とEIB2
;、・、・で生ずる光情報を独立に電荷転送用アナログ
レジスタ[:!AI 、CB1に電荷移送する電荷移送
ゲートSHE、SR1、・・・・を設けることにより例
えば合焦状聾から非常に大六〈嗜れでいる場合、即ちA
ゾーンの真の投光信号とBゾーンの真の投光信号の差の
信号が大きい場合には全体の光電変換部からの光情報に
基づいて、合焦検知を行ない、A、Bゾーンの真の投光
信号の差が一定値より小さい場合には、中央部の光電変
換部BA1.881のみからの光情報に基づいて合焦検
知を行うように構成することにより不必要な周囲光によ
る影響を著しく減少し、非常に良好なる焦点検出情等)
により光電変換部の選択を行うことにより不必要な光情
報をカットし、焦点検出精度を向上させることが出来る
In addition, photoelectric conversion units SA1 and SB1; SA2 and EIB2
The optical information generated by ;,...,... is transferred to an analog register for charge transfer independently [:! By providing charge transfer gates SHE, SR1, .
If the signal difference between the true light emitting signal of the zone and the true light emitting signal of the B zone is large, focus detection is performed based on the light information from the entire photoelectric conversion unit, and the true light emitting signal of the A and B zones is detected. If the difference between the light emitting signals is smaller than a certain value, the configuration is configured so that focus detection is performed based on light information from only the central photoelectric converter BA1.881, thereby eliminating the influence of unnecessary ambient light. (remarkably reduced focus detection, very good focus detection information, etc.)
By selecting the photoelectric conversion unit according to the above, unnecessary optical information can be cut and focus detection accuracy can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の差動型センサ装置りを距離検出に適用
した場合のブロック図、 第2図(a)、(1)L(0)は本発明に係る差動型セ
ンサ装置の機能を模式的に示した説明図。 第3図は本発明の差動型センサ装置の信号処理過程を示
した説明図、 第4図は2g3図の主要部のタイミングチャート図であ
み。 図中、LKは光7厚、LNlは投光レンズ、LN2は受
光レンズ、SDは光電変換手段、OBは被写体、A、 
、 B1.SAi 、GA2.SB1 、SB2は光電
変換部、A 、 B 、 A、 、 B、け電荷量、T
Al 、TA2.TBl 、TB2 、M、 、 M2
゜トl、 、 M、 、 G1.G2 、G3.G4け
電荷蓄積部、SHlけ電荷転送ゲート、OAl 、OB
l 、GA、GBは電荷転送部である。 第2図(の 第2目小) 」 苧IC6 孕5HI °市
Fig. 1 is a block diagram when the differential type sensor device of the present invention is applied to distance detection. Fig. 2 (a) and (1) L(0) are the functions of the differential type sensor device according to the present invention. An explanatory diagram schematically showing. Fig. 3 is an explanatory diagram showing the signal processing process of the differential sensor device of the present invention, and Fig. 4 is a timing chart diagram of the main parts of Fig. 2g3. In the figure, LK is the light 7 thickness, LNl is the light emitting lens, LN2 is the light receiving lens, SD is the photoelectric conversion means, OB is the object, A,
, B1. SAi, GA2. SB1 and SB2 are photoelectric conversion parts, A, B, A, , B, charge amount, T
Al, TA2. TBl, TB2, M, , M2
゜Totl, , M, , G1. G2, G3. G4 charge storage section, SH1 charge transfer gate, OAl, OB
1, GA, and GB are charge transfer units. Figure 2 (2nd elementary school) ” 苧IC6 5HI ° City

Claims (1)

【特許請求の範囲】 (リ 被写体側へ投光する為の光源と、被写体からの反
射光を受光する為の少なくとも2つの光電変換部SA1
 、SBIを有する光電変換手段と、前記2つの光電変
換部SA1 、SBIで生ずる電荷を各々蓄積する2つ
の電荷蓄積部TA1.TBiを有する電荷蓄積手段と、
前記光源の投光時と非投光時に各々前記′電荷蓄積部T
A1に蓄えられた2つの電荷QALI。 QADIと前記光源の投光時と非投光時に各々前記電荷
蓄積部TB1に蓄えられた2つの′電荷”BLI’ ”
BDIの合計4つの電荷QALII QADI I Q
BL、IQBD、tl−順次転送するための電荷転送手
段CADと、 前記電荷転送手段CABから転送されてくる4つの電荷
を所定の電荷蓄積部M、を介して順次蓄積する為の前記
電荷蓄積部M、を含んで循環型に構成し喪4つの電荷蓄
積部M1 +Mt + MR+M4と 前記4つの電荷蓄fit部M、 、 M、 、 M3.
 M、への電荷の蓄積を前記光源の投光と非投光の周期
に対応書せて循環的に順次転送させながら蓄積させる電
荷循環手段と 前記4つの電荷蓄積部M1 + Ml! + M!l 
+ M4に蓄積されている電荷に応じた信号を発生する
、読み出し手段とを有することを特徴とする差動型セン
サ装置。 (2) 前記読み出し手段はフローティングゲート手段
を有しておシ、前記フローティングゲート手段を制御し
て、前記光電変換部SAIの前記光源の投光時と非投光
時に生じた電荷量の差に応じた投光信号を81、前記光
電変換部8B1 において前記光源の投光時と非投光時
に生じた電荷量の差に応じた投光信号をS2としたとき
前記投光信号S1と前記投光信号S2との差及び和の信
号を演算することを特徴とする特許請求の範17′11
第1項記載の差動型センサ装置。 (3)前記フローティングゲート手段は前記投光記検出
手段の信号に基づいて前記投光信号S1と前記投光信号
S2との差の信号を出力することを特徴とする特許請求
の範囲第1項記載の差動型センサ装置。
[Claims] (Li) A light source for projecting light toward the subject and at least two photoelectric conversion units SA1 for receiving reflected light from the subject.
, a photoelectric conversion means having SBI, the two photoelectric conversion sections SA1, and two charge storage sections TA1. a charge storage means having TBi;
When the light source emits light and when the light source does not emit light, the charge accumulating portion T
Two charges QALI stored in A1. QADI and two 'charges "BLI" stored in the charge storage section TB1 when the light source emits light and when the light source does not emit light, respectively.
Total 4 charges of BDI QALII QADI I Q
BL, IQBD, tl - a charge transfer means CAD for sequentially transferring; and a charge accumulation section for sequentially accumulating the four charges transferred from the charge transfer means CAB through a predetermined charge accumulation section M. The four charge storage units M1 + Mt + MR + M4 and the four charge storage units M, , M, , M3 .
A charge circulation means for cyclically and sequentially transferring and accumulating charges in the four charge storage units M1 + Ml! in correspondence with periods of light emission and non-light emission of the light source; +M! l
A differential sensor device characterized by comprising + reading means for generating a signal according to the charge accumulated in M4. (2) The reading means has a floating gate means, and controls the floating gate means to compensate for the difference in the amount of charge generated when the light source of the photoelectric conversion unit SAI emits light and when the light source does not emit light. The light emission signal S1 and the light emission signal corresponding to the light emission signal S2 are 81 and the light emission signal corresponding to the difference in the amount of electric charge generated in the photoelectric converter 8B1 when the light source emits light and when the light source is not emitting light, respectively. Claim 17'11, characterized in that the difference and sum signals from the optical signal S2 are calculated.
The differential type sensor device according to item 1. (3) The floating gate means outputs a signal representing the difference between the light projection signal S1 and the light projection signal S2 based on the signal of the light projection record detection means. The differential type sensor device described.
JP58209559A 1983-11-04 1983-11-08 Differential type sensor device Pending JPS60101967A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58209559A JPS60101967A (en) 1983-11-08 1983-11-08 Differential type sensor device
US06/667,012 US4672189A (en) 1983-11-04 1984-11-01 Device for sensing light and providing electrical readout

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58209559A JPS60101967A (en) 1983-11-08 1983-11-08 Differential type sensor device

Publications (1)

Publication Number Publication Date
JPS60101967A true JPS60101967A (en) 1985-06-06

Family

ID=16574826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58209559A Pending JPS60101967A (en) 1983-11-04 1983-11-08 Differential type sensor device

Country Status (1)

Country Link
JP (1) JPS60101967A (en)

Similar Documents

Publication Publication Date Title
US20060126054A1 (en) Three-dimensional measurement device and three-dimensional measurement method
US7212278B2 (en) Method and device for recording a three-dimensional distance-measuring image
US6452666B1 (en) Optical range finder
GB2082010A (en) Automatic focus detecting devices for cameras
JP2809133B2 (en) Solid-state imaging device
CN111812664A (en) Laser ranging system for realizing long-distance and short-distance measurement
JPS587984A (en) Controlling system for signal storage time of signal storage type photoelectric transducer
GB2029153A (en) Focus detecting device
GB2040132A (en) Device for detecting the focus condition of an optical image
JPS60101967A (en) Differential type sensor device
JPH03102240A (en) Particle size measuring apparatus
JPH0522843B2 (en)
SU868341A1 (en) Device for contact-free measuring of distances
JPS6115404B2 (en)
US4672189A (en) Device for sensing light and providing electrical readout
JPH1123261A (en) Distance-measuring device
JP3142960B2 (en) Distance measuring device
JPH11153749A (en) Distance detector
JPH08304540A (en) Sensor for system for detecting image and distance
SU1076741A2 (en) Photoelectric automatic collimator for fixing object angular position
JPH01123110A (en) Distance measuring equipment
JPS6132324Y2 (en)
KR930008562B1 (en) Measurement device
JP3744294B2 (en) Photosensor IC
JP2895999B2 (en) Image sensor circuit