JPS60101233A - Air-fuel ratio control device - Google Patents

Air-fuel ratio control device

Info

Publication number
JPS60101233A
JPS60101233A JP20734683A JP20734683A JPS60101233A JP S60101233 A JPS60101233 A JP S60101233A JP 20734683 A JP20734683 A JP 20734683A JP 20734683 A JP20734683 A JP 20734683A JP S60101233 A JPS60101233 A JP S60101233A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
current
solenoid valve
proportional solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20734683A
Other languages
Japanese (ja)
Inventor
Takeshige Tabuchi
田渕 武重
Yukihide Niimi
幸秀 新見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP20734683A priority Critical patent/JPS60101233A/en
Publication of JPS60101233A publication Critical patent/JPS60101233A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/0007Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using electrical feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils

Abstract

PURPOSE:To make sure the operation of an air-fuel ratio control device with a simple structure, by directly controlling the energization time intervals of a proportional solenoid valve with the use of a CPU while monitoring the current of a drive transistor upon energization. CONSTITUTION:Upon energization of a transistor 4, a voltage between both terminals of a resistor 5 is monitored by means of an AD converter circuit 6, and by changing the energization time ratio of control pulses from the CPU the averaged current of a proportional solenoid valve 3 is made coincide with a desired value. However, dispersion in the resistance of the resistor 5 and so forth, cause the averaged value to be difficult to precisely coincide with the desired value, and therefore, the time rate of rich and lean signals from an air-fuel ratio sensor 1 is monitored so that a compensation is made to the desired current value of the proportional solenoid valve 3. With this arrangement, the structure of the circuit may be simplified to reduce the number of component parts, and as well the characteristics of the control system are made stable and sure.

Description

【発明の詳細な説明】 l」些仕m 本発明は自動車用内燃機関の空燃比制御装置に関する。[Detailed description of the invention] l” Minor work m The present invention relates to an air-fuel ratio control device for an internal combustion engine for an automobile.

従来技 と問題1、 空燃比はエンジンに吸入される混合気の空気/燃料の重
口比であって、例えば成る型式のガソリン・エンジンの
場合、その点火可能な空燃比は8〜20とされ、さらに
安全運転を考慮して10〜17ともいわれている。とに
角、空燃比は燃料の燃焼状態を左右する重要なファクタ
であって、エンジンの出力や燃費のみならず、排気ガス
の組成に対しても大ぎな影響を及ぼすものである。そこ
で、ガソリン・エンジンのすべての運転条件に適合する
空燃比のあり方、すなわち、所望の空燃比特性が維持さ
れるように制御する必要があり、このための制御方式と
して従来より種々の提案が行われ、かつ、実行されてぃ
ろ。づなりら、かかる従来技術の一つでは、例えば特開
昭57−69/IQ5号のように、マイクロコンピュー
タを含む中央処理装置CPUからの制御指令を目標?1
τ流に変換するための変換回路が設けられていjご。こ
こで、制御指令は例えばその指令値がパルス幅41どど
じて表わされたものであり、また変換回路は発振器、電
流検出回路、偏差積分回路及び比較回路イアどを含/υ
で構成されているので、装置全体と1、てかなり多数の
回路素子ないし構成部品を必要と1ノるため、イーの(
II1成の複雑化や製造コストの上昇を免れず、そして
、これら回路素子あるいは構成部品か多故に4rれば、
その特性にバラツキの生じる蓋然1’lかぞれた(〕大
きくなる故、必然的にこの制御系のf’l !11+の
(1f「実IIIに対して悪影響を及ぼすにいたる恐れ
かあった。
Prior Art and Problem 1: The air-fuel ratio is the weight ratio of air to fuel in the air-fuel mixture taken into the engine. , and is also said to be 10 to 17 in consideration of safe driving. In particular, the air-fuel ratio is an important factor that influences the combustion state of fuel, and it has a great influence not only on the output and fuel efficiency of the engine, but also on the composition of exhaust gas. Therefore, it is necessary to control the air-fuel ratio to suit all operating conditions of a gasoline engine, that is, to maintain the desired air-fuel ratio characteristics, and various control methods have been proposed in the past. I am and it is being carried out. In one such prior art, for example, as in Japanese Patent Laid-Open No. 57-69/IQ5, the goal is to receive control commands from a central processing unit (CPU) that includes a microcomputer. 1
A conversion circuit is provided to convert to the τ flow. Here, the control command is, for example, a command value expressed as a pulse width 41, and the conversion circuit includes an oscillator, a current detection circuit, a deviation integration circuit, a comparison circuit, etc.
Since it consists of 1, the entire device requires a fairly large number of circuit elements or components,
However, if these circuit elements or components are 4r,
There is a possibility that variations in the characteristics will occur (1'l has increased), so the f'l of this control system will inevitably have a negative effect on the real III (1f). .

g明の1−1的 かくして本発明は従来技術における上述の問題点の解決
に指向してなされたもので、その目的とするどころは、
曲中!r AM成でもってシステム構成部品等の1z目
)1のバラツキを吸収しつつ、確実に作動してきわめて
良好な空燃比制御特性を具現することのできる、新規な
空燃比制御方式を提供するにある。
Accordingly, the present invention has been made with the aim of solving the above-mentioned problems in the prior art, and its purpose is to:
During the song! r To provide a new air-fuel ratio control method that can operate reliably and realize extremely good air-fuel ratio control characteristics while absorbing variations in system component parts, etc. be.

00 J゛ と・ 上記目的達成のため、本発明では、比例電磁弁の駆動用
トランジスタの導通時の電流、すなわち、その負荷抵抗
の端子電圧を特定のタイミングでAD変換回路を通して
モニタしながら、比例電磁弁の通電時間幅をCPUによ
って直接的に制御して、目標の平均電流を得る一方、さ
らには、空燃比センサよりのリッチ・リーン時間比率に
より、上記通電時間幅を補正することを特徴とする。
In order to achieve the above object, the present invention monitors the current when the driving transistor of the proportional solenoid valve is conductive, that is, the terminal voltage of the load resistor through an AD conversion circuit at a specific timing, and calculates the proportional The energization time width of the solenoid valve is directly controlled by the CPU to obtain a target average current, and the energization time width is further corrected based on the rich/lean time ratio from the air-fuel ratio sensor. do.

本発明の内燃機関における空燃比制御装置の一実施例を
第1図に示ず。第1図において、1は自動車用エンジン
の排気管に設置され、排気系の空燃比を検出する空燃比
センサ、2は前記空燃比センサ1の信号を所定の電圧と
比較する比較回路、3はエンジンの吸気系に設置され、
エンジンに供給される混合気の空燃比を制御するアクチ
コエータとしての比例電磁弁、4は前記比例電磁弁3を
駆動するトランジスタ、5は前記トランジスタ4のエミ
ッタに接続された抵抗である。6は少くとも前記レジス
タ5の両端電圧を入力信号とするアナログ/ディジタル
(以+狡A 10ど呼ぶ)コンバータ、7は主としてマ
イク[J]ンどコークを含んで成る中央処理装置すなわ
ちCI) Uで、メモリ、Iloは内蔵されている。8
はエンジンである。
An embodiment of the air-fuel ratio control device for an internal combustion engine according to the present invention is not shown in FIG. In FIG. 1, numeral 1 is an air-fuel ratio sensor that is installed in the exhaust pipe of an automobile engine and detects the air-fuel ratio of the exhaust system, 2 is a comparison circuit that compares the signal of the air-fuel ratio sensor 1 with a predetermined voltage, and 3 is a comparison circuit that compares the signal of the air-fuel ratio sensor 1 with a predetermined voltage. Installed in the engine intake system,
A proportional solenoid valve serves as an acticoator for controlling the air-fuel ratio of the air-fuel mixture supplied to the engine, 4 is a transistor that drives the proportional solenoid valve 3, and 5 is a resistor connected to the emitter of the transistor 4. 6 is an analog/digital (hereinafter referred to as 10) converter which receives at least the voltage across the register 5 as an input signal, and 7 is a central processing unit (CI) mainly comprising a microphone and a cork. The memory and Ilo are built-in. 8
is the engine.

第11¥1に示J実施例に基ぎ、以下本発明の詳細な説
明づる。比例電磁弁3は0N−OFF制紳型Oもの、つ
J、りそのON時間比により平均電流が制御される型式
のものである。ここで、ON時間比は、ON時間/9(
ON時間十OFF時間)を意味する。
The present invention will be described in detail below based on the embodiment shown in No. 11.1. The proportional solenoid valve 3 is of the 0N-OFF controlled type, and of the type in which the average current is controlled by the ON time ratio. Here, the ON time ratio is ON time/9 (
(ON time + OFF time).

このようイに比例電磁弁では、そのON −OF F 
flrlIm周期は200〜600Hzが一般的である
。今、比例電vtl弁3を駆動するパルス、即ちトラン
ジスタ4のON−OF Fのための制御パルスは直接C
PU7、j二り出力されてトランジスタ4に与えられ、
そのON II;Y #l化に対応した平均電流が比例
電磁弁3を流れる。しかしそれだけでは比例電磁弁3の
印加電圧や比例電磁弁3の直流抵抗等のばらつきにより
、上記平均電流が目標電流と一致しないという事態が生
じるので、作動の確実性ないし安定性において充分とは
いえない。モこで、このような不所望な事態の発生を未
然に防止覆るだめの対策どして、次の手段が採用される
。刀なわら、この実施例では、トランジスタ4のエミッ
タに抵抗5を接続し、トランジスタ4のON時の電流と
して、前記抵抗5の両端電圧をAD変換回路6を介して
モニタし、前記CPU7からの0N−OFF制御パルス
のON時間比を変えることによって、比例電磁弁3の平
均電流を目標電流に一致させる。なお、ここで平均電流
は実効値とは異るもので、1周期内における電流の積分
平均値を意味し、また、目標電流どは、目標どする電流
のことである。−1二車作動の概略を第3図のフローヂ
ャートに示す。すなわち、第3図において、ステップ4
01で、目標電流と実際に比例電磁弁3に流れている電
流即ちモニタ電流の差△Iを演算し、ステップ402で
その差を所定11r1と1と較する。電流の差ΔIの絶
対値が所定値より小さい時は、ON時間比は現状のまま
とし、次の処理へ進む。△■の絶対値が所定値より大き
い時はON時間比の補正要と判断し、ステップ403に
進む。ステップ403で目標電流とモニタ電流の大小関
係を判定し、モニタ電流が人さいとぎはステップ404
へ進みON時間を減少させる。逆にモニタ電流が小さい
ときはステップ405へ進みON時間を増大させる。か
くして、ステップ404.405の後に次の処理へと手
順は進む。なお比例電磁弁3の平均電流は駆動トランジ
スタ4ON時の特定のタイミングにおける電流値にほぼ
一致りることが実験的に確認されている。その模様を第
4図に示η−0第4図において、王は比例電磁Jf’3
の駆動周期て固定である。今、例えば電源電圧が比較的
高くて、駆動トランジスタ4のON時間が9、i+ <
て所定の平均電流iaを(qている時、抵抗5の両※2
;電月汲形づ−なわち電流波形が 11であり、1−ラ
ンジスタ4のON時間がT また時間TI経過しONl
 ) たタイミングにおいて比例電磁弁3の瞬時電流 11が
平均iR流1aに一致しているとする。一方、電源電圧
が低い場合、1ヘランジスタ4のON時間は王。N2と
人さくすることにJζす、平均電流1aを得ているもの
とJる。この時、時間T2経過したタイミングにおいて
瞬時電流 12が平均電流1aど一致している。
In this way, in a proportional solenoid valve, its ON - OFF F
The flrlIm period is generally 200 to 600 Hz. Now, the pulse that drives the proportional voltage VTL valve 3, that is, the control pulse for ON-OFF of the transistor 4, is directly C
PU7,j is outputted and given to transistor 4,
An average current corresponding to the ON II; Y #l state flows through the proportional solenoid valve 3. However, this alone may not be sufficient in terms of reliability or stability of operation, as the average current may not match the target current due to variations in the applied voltage to the proportional solenoid valve 3 or the DC resistance of the proportional solenoid valve 3. do not have. In order to prevent or cover the occurrence of such an undesirable situation, the following measures are adopted. However, in this embodiment, a resistor 5 is connected to the emitter of the transistor 4, and the voltage across the resistor 5 is monitored via the AD conversion circuit 6 as the current when the transistor 4 is turned on. By changing the ON time ratio of the 0N-OFF control pulse, the average current of the proportional solenoid valve 3 is made to match the target current. Note that the average current here is different from the effective value and means the integrated average value of the current within one cycle, and the target current is the current to be targeted. -1 The outline of the two-wheel operation is shown in the flowchart in Figure 3. That is, in FIG. 3, step 4
At step 01, the difference ΔI between the target current and the current actually flowing through the proportional solenoid valve 3, that is, the monitor current is calculated, and at step 402, the difference is compared with predetermined values 11r1 and 1. When the absolute value of the current difference ΔI is smaller than the predetermined value, the ON time ratio is left as it is and the process proceeds to the next step. When the absolute value of Δ■ is larger than a predetermined value, it is determined that the ON time ratio needs to be corrected, and the process proceeds to step 403. In step 403, the magnitude relationship between the target current and the monitor current is determined, and if the monitor current is too high, step 404
Proceed to decrease the ON time. Conversely, when the monitor current is small, the process advances to step 405 and the ON time is increased. Thus, after steps 404 and 405, the procedure continues to the next step. It has been experimentally confirmed that the average current of the proportional solenoid valve 3 almost matches the current value at a specific timing when the drive transistor 4 is turned on. The pattern is shown in Figure 4.η-0 In Figure 4, the king is the proportional electromagnetic Jf'3
The drive cycle is fixed. Now, for example, if the power supply voltage is relatively high, the ON time of the drive transistor 4 is 9, i+ <
When the predetermined average current ia is (q), both resistors 5*2
;The electric current waveform is 11, and the ON time of 1-transistor 4 is T, and the time TI has elapsed, and it is ON1.
) It is assumed that the instantaneous current 11 of the proportional solenoid valve 3 coincides with the average iR flow 1a at the timing. On the other hand, when the power supply voltage is low, the ON time of the 1-heran resistor 4 is approximately 100%. Let us assume that an average current of 1a is obtained, assuming that N2 is used. At this time, the instantaneous current 12 matches the average current 1a at the timing when time T2 has elapsed.

上記の関係において実験的にT + / T ON 1
とT2/王 がほぼ等しいことが確認されており、ON
時N2 間に一定数を乗じた時間経過後の瞬時電流をモニタする
ことにより、平均電流iaを推定することが可能となる
。以上の作動により、比例電磁弁3の平均電流1aを目
標電流に概略一致させる。しかし、前記電流のモニタ方
法では正確に比例電F4)弁3の平均電流を目標電流に
一致さけることは不可能であり、実際の電流は目標のそ
れより常に大きめ、あるいは小さめとなることがある。
In the above relationship, experimentally T + /T ON 1
It has been confirmed that and T2/King are almost equal, and ON
By monitoring the instantaneous current after the elapse of time N2 multiplied by a certain number, it is possible to estimate the average current ia. By the above-described operation, the average current 1a of the proportional solenoid valve 3 is brought to approximately match the target current. However, with the current monitoring method described above, it is impossible to accurately match the average current of the proportional electric valve 3 to the target current, and the actual current may always be larger or smaller than the target. .

例えばそれは抵抗5の抵抗値のばらつき等に起因する。For example, this is caused by variations in the resistance value of the resistor 5.

そこでその苅策として本考案では、空燃ノヒセンリ−1
よりの信号のリッチ(淵)・リーン(薄)時間比率をモ
ニタし、前記リッチ・リーン時間比率により、比例電磁
弁3の目標電流に補正を加える。以下その内容について
説明する。第2図はリッチ・リーン時間比率と目標電流
の補正係数の関係の一例を示すものでリッチ・リーン時
間比率が50%の時に最適な制御状態であるとする。前
記時間比率が50%より大きくなった場合、即iエンジ
ンの排気カスが、リッチ側にずれている場合、比例電磁
弁3への制御211出力をリーン側に補正する必要かあ
り、第2図の例では比例電磁弁3は電流が多く流れれば
リーンどなる。例えばより多くの空気をエンジンに供給
するものとすると目標電流を大きくし4丁(」れば4t
ら4rい。即ち、第2図の補正係数は1以上の値を取る
必要がある。なa5、補正係数決定のためのリップ・リ
ーン時間比率のモニタは本発明による空燃比帰jψ制御
が実行され(その条件については本弁明で(j関知しな
い)、また加減速等を除く定常状態でエンジンが作動し
ている時に実施しなければイfらない。
Therefore, as a solution to this problem, in this invention, we have developed an air fuel
The rich/lean time ratio of the signal is monitored, and the target current of the proportional solenoid valve 3 is corrected based on the rich/lean time ratio. The contents will be explained below. FIG. 2 shows an example of the relationship between the rich/lean time ratio and the target current correction coefficient, and assumes that the optimal control state is when the rich/lean time ratio is 50%. If the time ratio becomes greater than 50%, i.e., if the engine exhaust gas deviates to the rich side, it is necessary to correct the control 211 output to the proportional solenoid valve 3 to the lean side, as shown in Figure 2. In the example, the proportional solenoid valve 3 becomes lean when a large amount of current flows. For example, if you want to supply more air to the engine, the target current should be increased to 4 tons.
La 4r. That is, the correction coefficient shown in FIG. 2 needs to take a value of 1 or more. a5, the lip/lean time ratio for determining the correction coefficient is monitored when the air-fuel ratio return jψ control according to the present invention is executed (the conditions are in this explanation (j is not concerned), and the steady state excluding acceleration/deceleration etc. It won't work if you don't do it while the engine is running.

第15図は本発明の第2の実施例を示J−図で、比例電
磁弁3のOFF時の電流を抵抗10で検出し、01)ア
ンプ9、抵抗12〜15で構成される差動増幅回路を介
してAD変換回路6に入力する。
FIG. 15 is a J-diagram showing a second embodiment of the present invention, in which the current when the proportional solenoid valve 3 is OFF is detected by a resistor 10, The signal is input to the AD conversion circuit 6 via the amplifier circuit.

第6図は、第5図の抵抗10の両端電圧即ち駆動1−5
ンジスク4が○「F時の比例電磁弁3の電流のタイミン
グチA7−1〜であり、■は第4図ど同様に比例電vt
目↑3の駆動周期であり、’OFFは駆動トランジスタ
4のOFF時間である。比例電磁弁3のインダスタンス
により、トランジスタ4がOFFしている時は比例電磁
弁3の電流は抵抗10、ダイオード11による閉回路を
流れて抵抗10の両端に電圧が発生し、その電圧波形す
l=、わち電流波形は i3のようになる。本実施例で
は、比例電磁弁3のOF F 11.¥電流は第6図に
示すトランジスタ4ON時刻の13時間前に平均電流i
aに一致しており、そのT3と■oよの比T3/ToF
FがT。□に無関係でほぼ一定であることが実験的に確
認されている。従ってOFF時間に一定数乗じた時間だ
けトランジスタの0Nvi刻より前のタイミングで比例
電磁弁3の電流をモニタすることにより平均電流iaを
推定することが可能となる。以下の作動は第1図の実施
例の場合と変わらない。
FIG. 6 shows the voltage across the resistor 10 in FIG.
4 is the timing of the current of the proportional solenoid valve 3 at F time A7-1~, and ■ is the proportional voltage vt as in Figure 4.
This is the drive cycle of ↑3, and 'OFF' is the OFF time of the drive transistor 4. Due to the inductance of the proportional solenoid valve 3, when the transistor 4 is OFF, the current of the proportional solenoid valve 3 flows through a closed circuit consisting of a resistor 10 and a diode 11, and a voltage is generated across the resistor 10, and the voltage waveform is l=, that is, the current waveform becomes i3. In this embodiment, OF F 11. of the proportional solenoid valve 3. The current is the average current i 13 hours before the transistor 4 ON time shown in Figure 6.
a, and the ratio of T3 and ■ oyo is T3/ToF
F is T. It has been experimentally confirmed that it is independent of □ and remains almost constant. Therefore, it is possible to estimate the average current ia by monitoring the current of the proportional solenoid valve 3 at a timing that is equal to the OFF time multiplied by a certain number and before the 0Nvi clock of the transistor. The following operation is the same as in the embodiment shown in FIG.

発明の効果 以上の説明から明らかなにうに、本発明によれば、シス
テム全体のその回路構成が従来技術のそれに比較して格
段に簡単であり、回路素子や構成部品も少くなくて済む
にもかかわらず、空燃比セン晋すを含め ゛その制御系
の特性がきわめて安定・確実となり、システム4jIf
構成部品に不可避的な特性のバラツキが多少含まれてい
たとしても、それにもとづく影響を吸収しながら、確実
な制御動作を遂行して、所期の空燃比制御機能を有効に
発揮することができる、という顕著な効果がもたらされ
る。
Effects of the Invention As is clear from the above explanation, according to the present invention, the circuit configuration of the entire system is much simpler than that of the prior art, and the number of circuit elements and components can be reduced. Regardless, the characteristics of the control system, including the air-fuel ratio sensor, are extremely stable and reliable, and the system 4j If
Even if there is some unavoidable variation in characteristics of the component parts, it is possible to absorb the effects of this, perform reliable control operations, and effectively perform the intended air-fuel ratio control function. , a remarkable effect is brought about.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図は本発明の内燃機関の空燃比制御装置を具体
化した一実施例について、その全体構成を示すブロック
図であり、また、第2図、第3図及び第4図はこの第1
図示の実施例に関連して本発明の原J!l! 1.’に
いし作用を説明するためのもので、第2図はリッチ・リ
ーン時間比率と通電時間補正係数との対応関係を示すグ
ラフ、第3図はこの実施例における制御動作の概要を示
すフローチャート、そして第4図は、駆動用1〜ランジ
スタの0N−OFF周期と比例電磁弁の電流どの時間的
関係を示すタイミング・チャー1〜である。また、第5
図は本発明の他の実施例についてその全体構成を示すブ
ロック図、第6図はこの実施例における駆動用トランジ
スタの0N−OFF周期と比例電磁弁の電流との時間的
関係を示すタイミング・チャートである。 図において: 1・・・空燃比セン1ノ、2・・・比較回路、3・・・
比例電磁弁、4・・・駆動用トランジスタ、6・・・ア
ナログ/ディジタル・コンバータ、7・・・CPU、8
・・・エンジン をそれぞれ示す。 代理人 浅 利 皓 牙1図 牙4図
FIG. 1 is a block diagram showing the overall configuration of an embodiment of the air-fuel ratio control device for an internal combustion engine according to the present invention, and FIGS. 1
The origin of the invention in connection with the illustrated embodiments is J! l! 1. Figure 2 is a graph showing the correspondence between the rich/lean time ratio and the energization time correction coefficient, and Figure 3 is a flowchart outlining the control operation in this embodiment. FIG. 4 is a timing chart 1 showing the temporal relationship between the ON-OFF period of the driving transistor 1 and the current of the proportional solenoid valve. Also, the fifth
The figure is a block diagram showing the overall configuration of another embodiment of the present invention, and FIG. 6 is a timing chart showing the temporal relationship between the ON-OFF period of the driving transistor and the current of the proportional solenoid valve in this embodiment. It is. In the diagram: 1... Air-fuel ratio sensor 1, 2... Comparison circuit, 3...
Proportional solenoid valve, 4... Drive transistor, 6... Analog/digital converter, 7... CPU, 8
...Each engine is shown. Agent Asari Koga 1 picture 4 picture

Claims (1)

【特許請求の範囲】[Claims] 自動車用エンジンの排気管に設置され、排気ガスの空燃
比を検出する空燃比センサ、前記空燃比セン1ノの信号
を所定の参照電圧と比較する比較回路、エンジンの吸気
系に設置され、エンジンに供給される混合気の空燃比を
制御するアクチコエータとしてON−OF F制御され
る比例電磁弁、前記比例電磁弁+を0N−OFF制御す
る駆動用トランジスタ、前記比例電磁弁の電流を検出す
φ電流検出手段、前記電流検出手段のアナログ信号を入
力しディジタル値に変換するAD変換回路、前記AD変
換回路と接続され、前記駆動用トランジスタの0N−O
FF制御信号を出力するCPUからなる空燃比制御装置
にJ3いて;前記比例電磁弁のON時或いはOFF時の
特定のタイミングにおける瞬時電流が目標の平均電流に
=一致J゛るJ:うに前記駆動用トランジスタのON時
間を制御すると共に、前記空燃センサ信号のリッチ・リ
ーン時間比率に応じて目標の平均電流を補正せしめるよ
うに構成したことを特徴とする内燃機関の空燃比制御装
置。
An air-fuel ratio sensor installed in the exhaust pipe of an automobile engine to detect the air-fuel ratio of exhaust gas; a comparison circuit that compares the signal from the air-fuel ratio sensor 1 with a predetermined reference voltage; installed in the intake system of the engine; A proportional solenoid valve that is ON-OFF controlled as an acticoator to control the air-fuel ratio of the air-fuel mixture supplied to the controller, a driving transistor that performs ON-OFF control of the proportional solenoid valve +, and a φ that detects the current of the proportional solenoid valve. a current detection means, an AD conversion circuit that inputs the analog signal of the current detection means and converts it into a digital value, and an 0N-O of the driving transistor connected to the AD conversion circuit;
J3 is in an air-fuel ratio control device consisting of a CPU that outputs an FF control signal; the instantaneous current at a specific timing when the proportional solenoid valve is ON or OFF matches the target average current J: J: The above drive An air-fuel ratio control device for an internal combustion engine, characterized in that the air-fuel ratio control device for an internal combustion engine is configured to control an ON time of a transistor for use in the air-fuel ratio, and to correct a target average current according to a rich/lean time ratio of the air-fuel sensor signal.
JP20734683A 1983-11-07 1983-11-07 Air-fuel ratio control device Pending JPS60101233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20734683A JPS60101233A (en) 1983-11-07 1983-11-07 Air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20734683A JPS60101233A (en) 1983-11-07 1983-11-07 Air-fuel ratio control device

Publications (1)

Publication Number Publication Date
JPS60101233A true JPS60101233A (en) 1985-06-05

Family

ID=16538212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20734683A Pending JPS60101233A (en) 1983-11-07 1983-11-07 Air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JPS60101233A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038334A (en) * 2008-08-07 2010-02-18 Toyota Motor Corp Disk brake device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038334A (en) * 2008-08-07 2010-02-18 Toyota Motor Corp Disk brake device

Similar Documents

Publication Publication Date Title
US4244340A (en) Method and apparatus for controlling fuel management for an internal combustion engine
US4252098A (en) Air/fuel ratio control for an internal combustion engine using an exhaust gas sensor
US5426937A (en) Dual-sensor type air-fuel ratio control system for internal combustion engine and catalytic converter diagnosis apparatus for the same
US5898107A (en) Method and arrangement for monitoring the operation of a hydrocarbon sensor for an internal combustion engine
US4989150A (en) Injector diagnosis system
JP3616683B2 (en) Abnormality detection device for air pump of internal combustion engine
JPH08338288A (en) O2 sensor failure diagnostic device and o2 sensor failure diagnostic method
JPH04314949A (en) Trouble diagnostic device for egr controller
US4237829A (en) Variable reference mixture control with current supplied exhaust gas sensor
JPS60101233A (en) Air-fuel ratio control device
US4314537A (en) Fuel feedback control system for internal combustion engine
US4351287A (en) Process of controlling the current flowing period of an ignition coil
JPH05232054A (en) Method and apparatus for monitoring aged state of oxygen sensor
JP3000510B2 (en) Engine cylinder pressure detector
JPS6114337B2 (en)
JPS62162750A (en) Fuel injection controller
JP2001241347A (en) Air-fuel ratio control device
JPH0373742B2 (en)
JPH0520579B2 (en)
JP3150139B2 (en) Ignition control device
JP2569989B2 (en) Exhaust gas recirculation control device
KR100279440B1 (en) Oxygen Sensor Aging Compensator in Automobiles
JPH0353459B2 (en)
JP2000145606A (en) Time course detecting method for ignition plug in internal combustion engine
JPH05231280A (en) Ignition device