JPS60100764A - Method for measuring concentration of antigen or antibody - Google Patents

Method for measuring concentration of antigen or antibody

Info

Publication number
JPS60100764A
JPS60100764A JP20849283A JP20849283A JPS60100764A JP S60100764 A JPS60100764 A JP S60100764A JP 20849283 A JP20849283 A JP 20849283A JP 20849283 A JP20849283 A JP 20849283A JP S60100764 A JPS60100764 A JP S60100764A
Authority
JP
Japan
Prior art keywords
antigen
antibody
concentration
concn
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20849283A
Other languages
Japanese (ja)
Other versions
JPH0154667B2 (en
Inventor
Toshiyuki Sagusa
佐草 寿幸
Kyoko Makiguchi
牧口 恭子
Yasushi Nomura
靖 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20849283A priority Critical patent/JPS60100764A/en
Publication of JPS60100764A publication Critical patent/JPS60100764A/en
Publication of JPH0154667B2 publication Critical patent/JPH0154667B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable automation of a nephelometry or a turbidimetry utilizing an antibody antigen reaction by making the calibration curve with which the concn. of the antigen or antibody, scattering intensity and absorbancy attain a linear relation only with the calibrator for a concn. rate and the known concn. at an optional one point. CONSTITUTION:A sample vessel 44 is supplied to a sampling position and a specified amt. of serum is held in a probe 41 by a pipetter 40, is transferred to a discharge position 45 and is discharged into a reaction vessel 22. The vessel 22 passes through a luminous flux 26 during rotation of a disc 21. The output from spectroscope 27 is taken into a central processing unit 50 via an A/D converter 54. The unit 50 detects the concn. of an antigen or antibody by utilizing the calibration curve which is formed only from the calibrator of a concn. rate and the known concn. at optional one point and at which the concn. of the antigen or antibody, scattering intensity and absorbancy attain a linear relation.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、抗原抗体反応によって試料中の抗原もしくは
抗体の濃度を測定して行う血清免疫倹在−に係り、特に
、自動分析装置において使用するに好適な抗原又は抗体
の濃度測定方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to serum immunoprecipitation carried out by measuring the concentration of an antigen or antibody in a sample through an antigen-antibody reaction, and in particular to a method for use in an automatic analyzer. The present invention relates to a method for measuring antigen or antibody concentration suitable for.

〔発明の背景〕[Background of the invention]

一般に、溶液中での抗原と抗体の反応を、抗体濃度を一
定にして、抗原濃度と生成する免疫校合体の濃度すなわ
ち比ろう法による散乱強度又は比濁法による吸光度の関
係で示すと、第1図の如きシグモイド曲線になる。この
第1図によると、第1図図示A領域の如く抗原濃度が著
しく小さい場合、巨大な免疫複合体分子の生成する率す
なわち、散乱強度又は吸光度の増加する率は低い。これ
は抗原製置に比較して抗体濃度が過剰で巨大分子のでき
難い抗体過剰域となっているものである。抗原濃度及第
1図図示B領域の如くある程度大きくなると、抗原濃度
に比例して巨大分子の免疫複合体が生成され、散乱強度
又は吸光度は直線的に増太する。したがって、この領域
が散乱強度又は吸光度の測定値より試料中の抗原濃度を
正確に測定し得る至適領域となる。また、抗原濃度が抗
体濃度に近くなると巨大分子の生成する率は再び減少し
て散乱強度又は吸光度の増加率は第1図図示C領域に示
す如く鈍る。さらに抗原濃度が抗体濃度より大きくなる
いわゆる抗原過剰域では第1図図示り領域に示す如く抗
原濃度が増大するほど巨大分子の生成量そのものが減少
し、散乱強度または吸光度が減少する。これはプロゾー
ン現象といわれるもので周知の現象である。
In general, when the reaction between an antigen and an antibody in a solution is expressed by the relationship between the antigen concentration and the concentration of the immunoconjugate produced, that is, the scattering intensity by the nephelometric method or the absorbance by the nephelometric method, when the antibody concentration is kept constant, It becomes a sigmoid curve as shown in Figure 1. According to FIG. 1, when the antigen concentration is extremely low as in region A shown in FIG. 1, the rate at which large immune complex molecules are produced, that is, the rate at which scattering intensity or absorbance increases is low. This is because the antibody concentration is excessive compared to the antigen preparation, resulting in an antibody excess region where it is difficult to form macromolecules. When the antigen concentration increases to a certain extent as shown in region B in Figure 1, a macromolecular immune complex is generated in proportion to the antigen concentration, and the scattering intensity or absorbance increases linearly. Therefore, this region is the optimal region in which the antigen concentration in the sample can be accurately measured from the measured values of scattering intensity or absorbance. Furthermore, when the antigen concentration approaches the antibody concentration, the rate of production of macromolecules decreases again, and the rate of increase in scattering intensity or absorbance slows down as shown in region C in FIG. Further, in the so-called antigen excess region where the antigen concentration is higher than the antibody concentration, as shown in the region shown in FIG. 1, as the antigen concentration increases, the amount of macromolecules produced decreases, and the scattering intensity or absorbance decreases. This is a well-known phenomenon called the prozone phenomenon.

抗原濃度を一定にl−で抗体濃度を変化するいわゆる試
料中の抗体を測定する場合も、第1図図示抗原の場合と
類似の結果が待られる。
When measuring antibodies in a so-called sample in which the antigen concentration is kept constant and the antibody concentration is varied with l-, results similar to those for the antigen shown in FIG. 1 can be expected.

すなわち、抗原(又は抗体)を測定する場合、試薬中の
抗体(又は抗原)の濃度を充分に大きくすれば測定対象
範囲の上限を前述の第1図図示至適領域内に移動するこ
とは可能である。しかしながら抗体濃度(又は抗原濃度
)を増すば増すほど測定対象物の低濃度における検量線
が曲線を描く第1図図示人領域が拡大することになる。
In other words, when measuring an antigen (or antibody), if the concentration of the antibody (or antigen) in the reagent is made sufficiently large, it is possible to move the upper limit of the measurement target range to the above-mentioned optimal region shown in Figure 1. It is. However, as the antibody concentration (or antigen concentration) increases, the area in which the calibration curve at low concentrations of the measuring object draws a curve, as shown in FIG. 1, expands.

このため至適領域(第1図図示C領域)が移動するだけ
である。したがって、抗原体反応を利用する従来の比ろ
う法や比濁法を用いた血清免疫検査においては、はとん
どの場合検量線が直線とならなかった。
Therefore, only the optimum region (region C shown in FIG. 1) moves. Therefore, in conventional serum immunoassays using the nephelometric method or nephelometric method, which utilize antigen-substance reactions, the calibration curve is not a straight line in most cases.

第2図はレーザーネフエフロメーターでトランスフェリ
ンを測定する場合の検量線の1例を示したものである。
FIG. 2 shows an example of a calibration curve for measuring transferrin with a laser nephrometer.

すなわち測定対象のトランスフェリン(抗原)の濃度に
対する散乱強度の関係員、トランスフェリンの測定対象
範囲のO〜1000mg/dtにおいて典型的なシグモ
イド曲線を呈する。
That is, the relationship between the scattering intensity and the concentration of transferrin (antigen) to be measured exhibits a typical sigmoid curve in the measurement range of transferrin from 0 to 1000 mg/dt.

そのためレーザーネフエロメーターでは5〜6点の濃度
既知のキャリブレータ−を測定し、各キャリブレータ−
間を折れ線で結ぶか、LOG−LOGITや3次多項式
などの曲線回帰を行って検量線をめている。
Therefore, with a laser nephelometer, 5 to 6 calibrators with known concentrations are measured, and each calibrator is
A calibration curve is determined by connecting the curves with a polygonal line or by performing curve regression using LOG-LOGIT or a cubic polynomial.

したがって、このような従来の抗原抗体反応を測定する
方法にあっては正確な検量線をめるため多数の濃度既知
のキャリブレータ−を必要とし、その検量線をめる之め
の測定に多大の時間を要し、また測定データの処理が複
雑なため抗原抗体反応を利用する比ろう法や比濁法を自
動化することができないという欠点を有していた。
Therefore, in such conventional methods for measuring antigen-antibody reactions, a large number of calibrators with known concentrations are required in order to establish an accurate calibration curve, and the measurement required to establish the calibration curve requires a large amount of effort. This method has the drawback of not being able to automate the nephelometric method or nephelometric method, which utilizes antigen-antibody reactions, because it takes time and the processing of measurement data is complicated.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、抗原抗体反応を利用する比ろう法や比
濁法を自動化することのできる抗原又は抗体の濃度測定
方法を提供することにある。
An object of the present invention is to provide a method for measuring the concentration of an antigen or antibody that can automate the nephelometric method or nephelometry that utilizes antigen-antibody reactions.

〔発明の概要〕[Summary of the invention]

本発明は、濃度O(零)と任意の1点の濃度既知のキャ
リブレータのみで抗原又は抗体濃度と散乱強度および吸
光度が直線関係となる検量線を作成することにより抗原
抗体反応を利用する比ろう法や比濁法を自動化しようと
いうものである。
The present invention is a comparative method that utilizes the antigen-antibody reaction by creating a calibration curve in which the antigen or antibody concentration has a linear relationship with the scattering intensity and absorbance using only the concentration O (zero) and a calibrator whose concentration is known at one arbitrary point. The idea is to automate the law and turbidimetry.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

現在市販されているほとんど全ての比ろう法又は比濁法
の試薬は測定対象範囲で第3図に示す如きシグモイド曲
線になる。すなわち、測定対象範囲の上限付近である第
3図図示Aの曲りは試薬中の抗体(又は抗原)の濃度を
増大することによって解決できる。この第3図に示され
る試薬中の抗体(又は抗原)の濃度を増大すると第4 
bw+に示す如く測定対象範囲の上限付近の第3図図示
Aの如き曲りを修正することができる。し今しながら、
第3図と第4図の比較より明らかなように第3図Bに示
される測定対象範囲の下限付近の曲りも試薬中の抗体(
又は抗原)のだ1度を増大するほど第4図Bに示す如く
拡大される。一方、抗原抗体反応は両者の濃度の比に左
右されるため、検1t、線が直線となる至適領域の広さ
は試薬中の抗体(又は抗原)6度を増大するほど拡大さ
れ、この拡大は第3図Bに示される測定対象範囲の下1
ift (τJ近の曲りの拡大よりもはるかに大きい。
Almost all reagents for nephelometric or turbidimetric methods currently on the market have a sigmoidal curve as shown in FIG. 3 in the measurement target range. That is, the curvature shown in Figure 3 A, which is near the upper limit of the measurement target range, can be resolved by increasing the concentration of antibody (or antigen) in the reagent. Increasing the concentration of antibody (or antigen) in the reagent shown in FIG.
As shown by bw+, it is possible to correct the curvature shown in A of FIG. 3 near the upper limit of the measurement target range. In the meantime,
As is clear from the comparison between Figures 3 and 4, the curve near the lower limit of the measurement range shown in Figure 3B also applies to the antibody in the reagent (
(or antigen) is enlarged as shown in FIG. 4B. On the other hand, since the antigen-antibody reaction depends on the ratio of the two concentrations, the width of the optimal region where the line becomes a straight line expands as the antibody (or antigen) in the reagent increases. The enlargement is the lower part of the measurement target range shown in Figure 3B.
ift (much larger than the expansion of the bend near τJ.

したがって、第3図Bに示される測定対象範囲の下限イ
τ1近の曲りを解消すれば検量線の直線性は確保できる
Therefore, the linearity of the calibration curve can be ensured by eliminating the curvature near the lower limit τ1 of the measurement range shown in FIG. 3B.

そこで、従来行われている1液系を2液系で行うように
する。すなわち、第1試薬は、緩(iti物質(例えば
、リン酸バッファ等測定対象物のイ!1類によって異る
)と第4図図示Cmで示される一度の測定対象物(抗原
又は抗体)の純品を主成分とするものとする。第2試薬
は、測定対象範囲の上限濃度CMよりも充分に多量(例
えば、2倍以上)の抗体又は抗原と緩衝物質(第1試薬
の緩衝物質と同じ)より構成される。
Therefore, a two-liquid system is used instead of the conventional one-liquid system. That is, the first reagent is a slow (iti substance (e.g., phosphate buffer, etc.) that differs depending on the type 1 of the analyte) and a one-time analyte (antigen or antibody) shown by Cm in Figure 4. The main components shall be pure products.The second reagent should contain a sufficiently larger amount (e.g., twice or more) of the antibody or antigen and a buffer substance (compared to the buffer substance of the first reagent) than the upper limit concentration CM of the measurement range. same).

まず、測定しようとする試料(例えば抗原)が何である
か予め解っているので、この試料の純品を用いて上記の
条件で第1試薬を作り、第2試薬を作る。次に、脱イオ
ン水(濃度0)と、濃度既知の試料を濃度別に複数個用
いて、各試料について散乱強度又は吸光度をとると、第
5図に示す如く測定対象範囲の全領域において直線とな
る。したがって、脱イオン水(濃度0)と、既知濃度試
料1個用いて検量線を容易にめることができる。
First, since the identity of the sample (for example, antigen) to be measured is known in advance, a first reagent is prepared using a pure version of this sample under the above conditions, and then a second reagent is prepared. Next, by using deionized water (concentration 0) and multiple samples with known concentrations for each concentration, and measuring the scattering intensity or absorbance for each sample, a straight line is obtained over the entire measurement target range as shown in Figure 5. Become. Therefore, a calibration curve can be easily established using deionized water (concentration 0) and one sample of known concentration.

この検量線がまれば、この検量線に基いて抗原又は抗体
の濃度を測定することは、採取した未知濃度の試料を初
めに第1試薬と混合した後、第2試薬と混合させて反応
を開始するようにすることにより容易に行いうる。
Once this calibration curve is established, measuring the concentration of antigen or antibody based on this calibration curve involves first mixing the collected sample with an unknown concentration with the first reagent, then mixing it with the second reagent and initiating the reaction. This can be easily done by starting.

又 なお、第2試薬中の抗体は抗原濃度は測定対象^ 範囲の上限で検量線の曲りを生じない程度、多くの場合
上限濃度の2〜3倍で充分であり、不必要に大きくする
と、下限の検に、線の曲りも増大することから第1試薬
の純物質濃度の増大を引き起し第1試薬、第2試薬を不
必要に消費することになる。
Furthermore, the antigen concentration of the antibody in the second reagent is sufficient to avoid bending the calibration curve at the upper limit of the range, in most cases 2 to 3 times the upper limit concentration; When detecting the lower limit, the curve of the line also increases, causing an increase in the concentration of the pure substance in the first reagent, resulting in unnecessary consumption of the first and second reagents.

第6図には、本発明の適用される自動分析装置の概略構
成図が示されている。
FIG. 6 shows a schematic configuration diagram of an automatic analyzer to which the present invention is applied.

図において、各測定対象物である試料がθν数個設置で
きるサンプルディスク10が設けられている。この複数
個の試料は、測定対象毎に連続してサンプルディスク1
0上に並べることができるように構成されている。また
、反応ディスク21は、その円周上に複数個の測定セル
を兼ねた反応容器22を有し、回転自在に構成されてい
る、また、試料の移送は、サンプリングプローブ41に
よって行われ、試薬の分注は、分注器38.39によっ
て行われる。また、分光器27は、複数検知器を有する
多波長同時測光形であり、光源ランプ25と相対し、反
応ディスク21が回転状態にあ 、、。
In the figure, a sample disk 10 is provided on which several samples θv of each object to be measured can be placed. These multiple samples are sequentially placed on the sample disk for each measurement target.
It is configured so that it can be arranged on top of 0. Further, the reaction disk 21 has a plurality of reaction containers 22 that also serve as measurement cells on its circumference, and is configured to be rotatable.Moreover, the sample is transferred by a sampling probe 41, and the reagent The dispensing is performed by dispensers 38, 39. The spectrometer 27 is of a multi-wavelength simultaneous photometry type having a plurality of detectors, and faces the light source lamp 25, with the reaction disk 21 in a rotating state.

るときに、反応容器22の列が光源ランプ25からの光
束26を通過する様に構成されている。光束26は、反
応ディスク21が停止状態にあるときに吐出位置45か
ら時計方向に数えて、例えば、31番目の反応容器46
の中心を透過する様に配置されている。光束26の位置
と吐出位置45の間には排液装置および洗浄装置24が
配置されている。
The array of reaction vessels 22 is configured such that a light beam 26 from a light source lamp 25 passes through the row of reaction vessels 22 when the reaction vessel 22 is turned on. The light beam 26 is emitted from, for example, the 31st reaction container 46 counting clockwise from the discharge position 45 when the reaction disk 21 is in a stopped state.
It is arranged so that it passes through the center. A draining device and a cleaning device 24 are arranged between the position of the light beam 26 and the discharge position 45.

制御装置全体の構成は、マルチプレクサ、対数変換増幅
器53、A/D変換器54、リード・オンリ・メモリ(
以下ROMと称する)、ランダム・アクセス・メモリ(
以下、RAMと称する)、プリンタ55、操作パネル5
2、機構部駆動回路35からなるが、A/D変換器54
ばさらに、インターフェイス50を経て中央処理装置5
1に接続されている。この中央処理装置51は、機構系
を含めた装置全体の制御と、前述の多重回帰による検量
線作成や濃度演算などのデータ処理全般を行なうもので
マイクロコンピュータが使用される。
The overall configuration of the control device includes a multiplexer, a logarithmic conversion amplifier 53, an A/D converter 54, and a read-only memory (
Random access memory (hereinafter referred to as ROM), random access memory (hereinafter referred to as ROM),
(hereinafter referred to as RAM), printer 55, operation panel 5
2. It consists of a mechanism drive circuit 35, and an A/D converter 54
Furthermore, the central processing unit 5 via the interface 50
Connected to 1. A microcomputer is used as the central processing unit 51, which controls the entire apparatus including the mechanical system and performs general data processing such as preparing a calibration curve by multiple regression and calculating concentration.

次に、動作を説明する。Next, the operation will be explained.

まず、測定対象物である抗原又は抗体の種類は予め解っ
ているため、脱イオン水(濃度0)と既知濃度の試料1
個の2つの試料を用いて各試料の散乱強度又は吸光度を
め、2つの測定イ11′1に基づき測定対象物の検量線
をめ記憶させてj、・く。
First, since the type of antigen or antibody to be measured is known in advance, deionized water (concentration 0) and a sample of known concentration 1
Measure the scattering intensity or absorbance of each sample using two samples, and store a calibration curve of the object to be measured based on the two measurements (11'1).

次に、試料を収容したE料容器44がザングリング位置
に供給されると、ピペッタ40のグローブ41の先端が
上記試料容器中に浸漬さノ1、血清の一定量を吸入し、
プローブ41内に保持する。
Next, when the E sample container 44 containing the sample is supplied to the zangling position, the tip of the glove 41 of the pipetter 40 is immersed into the sample container, and a certain amount of serum is aspirated.
It is held within the probe 41.

その後、グローブ41は、反応ディスク21の吐出位置
45まで移動し、吐出位置45に移送されている反応容
器22内にプローブ41で保持17ていた血清を吐出す
る。上記サンプリング動作が終ると、反応ディスク21
は反時計方向に間欠的な回転移動を開始し、反応ディス
ク21」二に、反応容器22の全数より1つ多い数の反
応容器22が吐出位置を通過するまで回転l−で停止す
る。
Thereafter, the glove 41 moves to the discharge position 45 of the reaction disk 21 and discharges the serum held 17 by the probe 41 into the reaction container 22 which has been transferred to the discharge position 45. When the above sampling operation is completed, the reaction disk 21
begins an intermittent rotational movement in the counterclockwise direction and stops at rotation l- until one more reaction vessels 22 than the total number of reaction vessels 22 have passed through the discharge position.

前記反応ディスク21の回転に、しって、上記サンプリ
ング動作でサンプリングされた試料の入った反応容器2
2は、吐出位置45より反応’6器1ピッチ分だけ反時
計方向に進んだ位置に来て停止している。前記反応ディ
スク21の回転中に、反応ディスク21上の全ての反応
容器22は光束26を通過する。従って、それぞれの反
応容器22が光束26を通過するときには、分光器27
による光吸収測定がなされ、分光器27の出力は、マル
チブレフサにより現在必要な測定波長の信号が選択され
、A/D変換器54により中央処理装置50に取込れて
、RAMに記憶される。
As the reaction disk 21 rotates, the reaction container 2 containing the sample sampled in the sampling operation is rotated.
No. 2 comes to a position which has advanced one pitch of the reactor 6 in the counterclockwise direction from the discharge position 45 and has stopped. During the rotation of the reaction disk 21, all the reaction vessels 22 on the reaction disk 21 pass through the light beam 26. Therefore, when each reaction vessel 22 passes through the light beam 26, the spectrometer 27
Optical absorption measurement is performed by the spectrometer 27, and a multi-blephr selects a signal of the currently required measurement wavelength from the output of the spectrometer 27, which is taken into the central processing unit 50 by the A/D converter 54 and stored in the RAM.

前記の反応ディスク21の回転および停止している間の
時間は、第2液を添加攪拌後測定する時の反応が一定す
るように反応時間(測定対象物の種類によって異なるが
、5〜15分)を考慮して決められる。この時間を1サ
イクルとして上記動作を繰り返す。上記サイクルが進む
につれてサンプリングされた特定の被測定試料は反応デ
ィスク21が停止している状態での位置が反応容器1ピ
ッチ分ずつ反時計方向に進む。分注器36と分注器37
からの試薬の吐出は、試料の入った反応容器22が反応
容器1ピッチ分ずつ反時計方向に進んで、反応ディスク
21上で、それぞれ吐出位1it46.47に停止した
状態でなされる。特定の彼測試料について見ると、吐出
位置47で第1試薬が一定量添加され、吐出位置46で
tn 2 nt薬が一定量添加され抗原抗体反応が開始
される。以上の動作で1サイクルにおける反応ディスク
21の特定試料についてみると、その試料の反応過扁#
−,L 1分30秒〜5分30秒毎に31回測定され、
48〜165分間の測定データがR,AMに記1.((
される。
The time during which the reaction disk 21 is rotated and stopped is set to a reaction time (5 to 15 minutes, although it varies depending on the type of object to be measured) so that the reaction is constant when measuring after adding and stirring the second liquid. ). The above operation is repeated with this time as one cycle. As the cycle progresses, the position of the sampled sample to be measured moves counterclockwise by one pitch of the reaction container when the reaction disk 21 is stopped. Dispenser 36 and dispenser 37
The reagent is discharged from the reaction disk 21 while the reaction container 22 containing the sample advances counterclockwise by one pitch of the reaction container and stops at a discharge position of 1 it 46.47 on the reaction disk 21. When looking at a particular sample, a certain amount of the first reagent is added at the ejection position 47, and a certain amount of the tn 2 nt drug is added at the ejection position 46, thereby starting an antigen-antibody reaction. When we look at a specific sample of the reaction disk 21 in one cycle with the above operation, we can see that the sample's reaction density is #
-, L Measured 31 times every 1 minute 30 seconds to 5 minutes 30 seconds,
Measurement data from 48 to 165 minutes are recorded in R and AM.1. ((
be done.

中央処理装置はROMのプログラムに従って作動し、R
AM内の31個の測定データを抽出し、演算処理を行う
The central processing unit operates according to the program in the ROM, and
Extract 31 pieces of measurement data in AM and perform calculation processing.

このようにめた検量線は、被測定物l′(のR度に対し
て原点を通る直線となり、自動分析装置i’tにおいて
、単一の補液(標準血清)でギヤリプレージョンができ
るような試薬組成及び測定法が提供されろう特に本発明
は試料中の抗1.1式(又をま抗体)と試薬中の抗体(
又は抗原)との反応によって巨大な免疫複合体を形成さ
せ、それよよる散乱強18−の増加又は吸光度の増加を
検知する比ろう法や比濁法において有効である。
The calibration curve drawn in this way is a straight line passing through the origin with respect to the R degree of the measured object l'( In particular, the present invention provides a reagent composition and a measurement method for anti-1.1 formula (also known as an antibody) in a sample and an antibody (also known as an antibody) in a reagent.
It is effective in the nephelometric method and nephelometric method, in which a large immune complex is formed by reaction with a large immune complex (or an antigen), and the resulting increase in scattering intensity or absorbance is detected.

次に、本発明を用いて血清中のIgG(免疫グロブリン
G)測定の比濁法にょる測定結果を説明する。
Next, the results of measuring IgG (immunoglobulin G) in serum by turbidimetry using the present invention will be explained.

従来法及び本発明による方法の自動分析装置における測
定う12件は第り表に示されている。
The remaining 12 measurements performed by the conventional method and the method according to the present invention using automatic analyzers are shown in Table 1.

a¥ 1 表 第1表では1液法と2液法の差はあるが試fF付、最終
希釈率、測定?ノそ長などは同一である。捷た第2表に
(1L来法と21” ’;j:明の方法の試結の+?f
l成が示されている。
a¥ 1 In Table 1, there is a difference between the one-liquid method and the two-liquid method, but test fF included, final dilution rate, and measurement? The length and other details are the same. In the 2nd table I cut out (1L and 21''; j: +?f of the trial result of Ming's method)
1 configuration is shown.

このような条件によって IgG標準血希(3000m
g/dtWJ(0)の希釈系列によってめた従来例と、
本発明の濃度対吸光度の関係が第7図に示されている、
第7図中人が従来例、Bが本発明による測定結果である
。第7図によると従来の方法では5〜6点の濃度既知の
ギヤリブレータを必要とする検量線作成が拳法では任意
の1濃度のキャリブレータ−のみで可能であることが分
る。同様の方法でI gA、I gM、CR,P、RF
Under these conditions, the IgG standard blood concentration (3000 m
A conventional example determined by a dilution series of g/dtWJ(0),
The concentration versus absorbance relationship of the present invention is shown in FIG.
The middle part of FIG. 7 shows the conventional example, and the part B shows the measurement results according to the present invention. According to FIG. 7, it can be seen that the conventional method requires the preparation of a calibration curve using gear calibrators with known concentrations at 5 to 6 points, but in Kenpo, it is possible to create a calibration curve using only a calibrator of one arbitrary concentration. In a similar manner, I gA, I gM, CR, P, RF
.

ハプトグロン、トランスフェリン、α蓋−アンチトリプ
シン、セルロプラスミン、C3,C4など10以上の血
清免疫検査の比濁法における検量線の直線化に成功した
。また反応物質(抗原又は抗体)と添加純品(抗原又は
抗体)を第1液と第2液に分離しているため、各試薬の
安定性も全く問題とならない。
We succeeded in linearizing the calibration curves for turbidimetry for more than 10 serum immunoassays such as haptogrons, transferrin, α-lid-antitrypsin, ceruloplasmin, C3, and C4. Further, since the reactant (antigen or antibody) and the added pure product (antigen or antibody) are separated into the first liquid and the second liquid, the stability of each reagent is not a problem at all.

したがって、本実施例によれば、抗原抗体反応を用いる
多くの血清免疫検査の自動化が可能となった。また、比
ろう法(ネフェロメトリー)においても゛同様の効果を
得ることができる。
Therefore, according to this example, it became possible to automate many serum immunological tests using antigen-antibody reactions. Furthermore, a similar effect can be obtained in the nephelometric method.

以上説明したように、本発明によれば、抗原抗体反応を
利用する比ろう法や比濁法を自動化することができる。
As explained above, according to the present invention, it is possible to automate the nephelometric method and nephelometric method that utilize antigen-antibody reactions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の抗体0度を一定にして抗原濃度を変化さ
せたときの散乱強度(又は吸光度) /l“v性図、第
2図はレーザーネフ工ロメータでトランスフェリンを測
定する場合の従来の検量線図、第3図は測定対象範囲を
示すシグモイド曲託i図、第4図は第3図図示試薬中の
抗体の5度を増大したときの測定図、第5図は本発明に
よる検量線図、第6図は本発明の適用される自動分析装
置のI’i・Y成図、第7図は血清中のIgG測定の比
濁法による従来例と本発明による測定結果を示す図であ
る。 22・・・反応容器、26・・・分光器、36.37・
・・分注器、40・・・ピペッタ、44・・・試料容器
。 代理人 弁理士 鵜沼辰之 第 1 目 花原液度−□ $ 2 図 濃度 (朝p/dノノ 第3圀 Bt/!!/rC/″ ′ また徹濃度 CM Vム圀
Figure 1 shows the conventional scattering intensity (or absorbance) /l"v characteristic diagram when the antigen concentration is varied with the antibody at 0 degrees constant. Figure 2 shows the conventional method when measuring transferrin with a laser nephrometer. Figure 3 is a sigmoid curve i diagram showing the measurement target range, Figure 4 is a measurement diagram when the antibody in the reagent shown in Figure 3 is increased by 5 degrees, and Figure 5 is a diagram according to the present invention. A calibration curve diagram, Fig. 6 shows an I'i/Y diagram of an automatic analyzer to which the present invention is applied, and Fig. 7 shows a conventional example of measuring IgG in serum using a nephelometric method and measurement results according to the present invention. It is a figure. 22... Reaction container, 26... Spectrometer, 36.37.
...dispenser, 40... pipettor, 44... sample container. Agent Patent attorney Tatsuyuki Unuma 1st Meka original liquid level −□ $ 2 Figure concentration (Morning p/d Nono 3rd area Bt/!!/rC/″ ′ Also thorough concentration CM Vmu area

Claims (1)

【特許請求の範囲】 1、抗原抗体反応によって生ずる巨大分子の免疫複合体
による散乱強度又は吸光度の増加を測定することにより
抗原又は抗体の濃度を測定する方法において、第1試薬
中に測定対象物と同一の第1の所定濃度の抗原又は抗体
を含有せしめ、第2試薬中に第2の所定濃度の抗体又は
抗原を含有せしめ、測定対象物と前記第1試薬を混合し
た後に前記第2試薬を混合して上記散乱強度又は吸光度
を測定するようにしたことを特徴とする抗原又は抗体の
濃度測定方法。 2、特許請求の範囲第1項記載の発明において、上記第
1の所定濃度は、至適領域の下限濃度でおることを特徴
とする抗原又は抗体の濃度測定方法。 3、特許請求の範囲第1項又は第2項記載の発明におい
て、上記第2の所定濃度は、抗原又は抗体の測定対象範
囲上限濃度の2倍以上の濃度であることを特徴とする抗
原又は抗体の濃度測定方法。
[Scope of Claims] 1. In a method for measuring the concentration of an antigen or antibody by measuring the increase in scattering intensity or absorbance due to a macromolecular immune complex generated by an antigen-antibody reaction, the first reagent contains an object to be measured. a first predetermined concentration of the same antigen or antibody, a second predetermined concentration of the antibody or antigen, and after mixing the measurement object and the first reagent, the second reagent is mixed with the first reagent. A method for measuring the concentration of an antigen or antibody, characterized in that the scattering intensity or absorbance is measured by mixing the two. 2. The method for measuring the concentration of an antigen or antibody according to the invention as set forth in claim 1, wherein the first predetermined concentration is a lower limit concentration of an optimal region. 3. The invention according to claim 1 or 2, wherein the second predetermined concentration is twice or more the upper limit concentration of the antigen or antibody in the measurement range. Method for measuring antibody concentration.
JP20849283A 1983-11-07 1983-11-07 Method for measuring concentration of antigen or antibody Granted JPS60100764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20849283A JPS60100764A (en) 1983-11-07 1983-11-07 Method for measuring concentration of antigen or antibody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20849283A JPS60100764A (en) 1983-11-07 1983-11-07 Method for measuring concentration of antigen or antibody

Publications (2)

Publication Number Publication Date
JPS60100764A true JPS60100764A (en) 1985-06-04
JPH0154667B2 JPH0154667B2 (en) 1989-11-20

Family

ID=16557053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20849283A Granted JPS60100764A (en) 1983-11-07 1983-11-07 Method for measuring concentration of antigen or antibody

Country Status (1)

Country Link
JP (1) JPS60100764A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207958A (en) * 1986-03-10 1987-09-12 Hitachi Chem Co Ltd Method and reagent for quantitative determination of antigen or antibody
JPH0287063A (en) * 1988-09-24 1990-03-27 Shimadzu Corp Determining method of prozone in immunoreaction
WO1998009172A1 (en) * 1996-08-30 1998-03-05 Optimum Research Method for analysing proteins and system for its implementation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207958A (en) * 1986-03-10 1987-09-12 Hitachi Chem Co Ltd Method and reagent for quantitative determination of antigen or antibody
JPH0287063A (en) * 1988-09-24 1990-03-27 Shimadzu Corp Determining method of prozone in immunoreaction
WO1998009172A1 (en) * 1996-08-30 1998-03-05 Optimum Research Method for analysing proteins and system for its implementation

Also Published As

Publication number Publication date
JPH0154667B2 (en) 1989-11-20

Similar Documents

Publication Publication Date Title
US4508832A (en) Ellipsometrically measuring rate of optical change in immunoassay
JPH0259671A (en) Immunoassay
US11971425B2 (en) Automatic analysis device and automatic analysis method
JPH0746111B2 (en) Sample analysis method and automatic analyzer using the same
JPH0134337B2 (en)
JPS6222066A (en) Latex agglutination reaction measuring instrument
Blirup-Jensen Protein standardization III: method optimization. Basic principles for quantitative determination of human serum proteins on automated instruments based on turbidimetry or nephelometry
JPS59100862A (en) Automatic analyzer
JP2671931B2 (en) Device and method for analyzing medical samples
US5258308A (en) Method, kit and apparatus for verifying calibration and linearity of vertical photometers
JPS60100764A (en) Method for measuring concentration of antigen or antibody
JP3168633B2 (en) Prozone determination method and analysis method in antigen-antibody reaction
US4144030A (en) Method for improving the rate and measurement accuracy of chemical analysis
JPS60196669A (en) Analytical method and apparatus for antigen-antibody reaction
JPH0547782B2 (en)
JP3102160B2 (en) Immunoturbidimetric analysis method
JPS61270661A (en) Automatic analyzing instrument
JPH0359461A (en) Automatic biochemical analysis apparatus
JP2001235422A (en) Automatic analyzer
JPS60188846A (en) Automatic analyzing method
JP2508115B2 (en) Automatic biochemical analyzer
JPH0684973B2 (en) Automatic analyzer
JPH0287063A (en) Determining method of prozone in immunoreaction
JP6657016B2 (en) Automatic analyzer
JP3259431B2 (en) Immunoturbidimetric analysis method