JPS60100755A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPS60100755A
JPS60100755A JP20957183A JP20957183A JPS60100755A JP S60100755 A JPS60100755 A JP S60100755A JP 20957183 A JP20957183 A JP 20957183A JP 20957183 A JP20957183 A JP 20957183A JP S60100755 A JPS60100755 A JP S60100755A
Authority
JP
Japan
Prior art keywords
gas sensor
sensitivity
sno2
added
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20957183A
Other languages
Japanese (ja)
Inventor
Takashi Yamaguchi
隆司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUIGARO GIKEN KK
Figaro Engineering Inc
Original Assignee
FUIGARO GIKEN KK
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUIGARO GIKEN KK, Figaro Engineering Inc filed Critical FUIGARO GIKEN KK
Priority to JP20957183A priority Critical patent/JPS60100755A/en
Publication of JPS60100755A publication Critical patent/JPS60100755A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To prevent the deterioration in sensitivity with gaseous alcohol with age with a gas sensor by mixing a heat insulating material such as silica and alumina added with a small amt. of V2O5 with SnO2. CONSTITUTION:A heater 12 is inserted into an insulating alumina pipe 4 attached with a pair of electrodes 6 and 8 to heat a gas sensor 2 and the change in the resistance value of a gas sensitive SnO2 film 10 is taken out. The film 10 is formed by adding a small amt. of V2O5 to a heat insulating material such as silica colloid or the like which does not spoil the sensitivity of said film in spite of reaction with SnO2 and mixing the same with SnO2. The deterioration in the sensitivity of the sensor 2 with H2 and gaseous alcohol such as ethanol is thus prevented.

Description

【発明の詳細な説明】 この発明は、SnO2の抵抗値の変化を利用したガスセ
ンサの、改良に関スル。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a gas sensor that utilizes changes in the resistance value of SnO2.

添加物によりSnO2ガスセンサの特性を改善しようと
する試みは、数多くなされている。このような努力にも
かかわらず、未解決のまま残された問題として、H2や
エタノールへの経時変化が有る。
Many attempts have been made to improve the characteristics of SnO2 gas sensors using additives. Despite these efforts, one issue that remains unresolved is the aging of H2 and ethanol.

即ち、ガスセンサを長期間使用すると、H2やエタノー
ルへの感度が徐々に増すのである。本発明者の実験によ
ると、H2やエタノールへの経時変化はガスセンサの使
用温度を高める程、著しくなることがわかった。
That is, when a gas sensor is used for a long period of time, its sensitivity to H2 and ethanol gradually increases. According to experiments conducted by the present inventor, it was found that the change over time to H2 and ethanol becomes more significant as the temperature at which the gas sensor is used increases.

発明者は、5no2に少量のV2O5を添加すると、H
2やエタノールへの経時変化を防止し1))ることを見
出した。次に、少量のV2O5を担持させたシリカコロ
イドやアルミナを、5n02と混合しても、同じ効果が
生ずることを見出した。
The inventor discovered that when a small amount of V2O5 is added to 5no2, H
We have found that 1)) prevents the change over time to 2 and ethanol. Next, it was found that the same effect was produced even when silica colloid or alumina carrying a small amount of V2O5 was mixed with 5n02.

Sn 02以外のものに加えたV2O5が、何故5n0
2の経時変化を抑制するのかは、明らかでない。しかし
この発明は、この発見から始まる。そしてこの発明では
、小量のV2O5を添加したシリカやアルミナ等の耐熱
絶縁性物質を、sn 02と混合することにより、H2
やエタノール等のアルコールガスへの、経時変化を防止
する。
Why does V2O5 added to things other than Sn 02 become 5n0?
It is not clear whether it suppresses the change over time of 2. However, this invention begins with this discovery. In this invention, H2
Prevents changes over time to alcohol gases such as ethanol and ethanol.

以下に、各実施例を説明する。Each example will be described below.

ガスセンサの構造を、第1図に示す。このガスセンサ(
2)は、アルミナ製の絶縁管(4)に、一対の電極F6
1. (81を取り付け、S、 o2ガス感応股(1υ
)の抵抗値の変化を取り出すようにしだものである。そ
してヒータO9を絶縁管(4)に挿入し、ガスセンサ(
2)を加熱する。ガスセンサの構造には、多くの公知例
が有勺、ここに示したもの以外に種々のものを用いるこ
とができる。
The structure of the gas sensor is shown in FIG. This gas sensor (
2) is a pair of electrodes F6 in an alumina insulating tube (4).
1. (Install 81, S, o2 gas sensitive crotch (1υ
) is designed to extract the change in resistance value. Then, insert the heater O9 into the insulating tube (4), and insert the gas sensor (
2) Heat. There are many known examples of gas sensor structures, and various structures other than those shown here can be used.

このガス感応膜(lO)は、SnO2と、少量のV2O
5を添加した耐熱絶縁性物質との混合物からなるOここ
に耐熱絶縁性物質としては、例えばSn o2の骨材で
あるa−At203やr−At203、あるいは5no
2の焼結剤であるシリカコロイド等の、 5no2と反
応してその感度を損ねないもので有れば良い。
This gas-sensitive film (lO) consists of SnO2 and a small amount of V2O.
As the heat-resistant insulating material, for example, a-At203 or r-At203, which is an aggregate of SnO2, or 5no.
Any material that does not react with 5no2 and impair its sensitivity, such as silica colloid, which is the sintering agent of No. 2, may be used.

す1■のV205を添加しだα−At203を用い、α
−At2o3 とSnO2との混合重量比を1:2.1
:1.2.5:1の3段階にわけ試験を行ったが、いず
れの試料でも同程度にH2やエタノールへの経時変化を
抑制することができた。またs;o2換算で12当97
■のV2O5を添加しだ硅酸ヒドロシルを用いた場合、
5n02100r当υの、5i02換算での硅酸ヒドロ
シルの添加量を2r、6F(7)2種にわけて試験を行
ったが、いずれも充分な効果が得られた。このように耐
熱絶縁性物質の添加量は自由に変えることができ、実用
上は骨材や焼結剤等の、おのおのの耐熱絶縁性物質が持
つI“有の性質に基づいて添加量を定めれば良い。
Using α-At203 with 1 μm of V205 added, α
-Mixing weight ratio of At2o3 and SnO2 to 1:2.1
The test was conducted in three stages: 1.2.5:1, and all samples were able to suppress the change over time to H2 and ethanol to the same extent. Also 12 wins 97 in s; o2 conversion
When using hydrosyl silicate with the addition of V2O5,
A test was conducted with the amount of hydrosyl silicate added in terms of 5i02 equivalent to 5n02100r divided into two types: 2r and 6F(7), and sufficient effects were obtained in both cases. In this way, the amount of heat-resistant insulating material added can be changed freely, and in practice, the amount added is determined based on the I" property of each heat-resistant insulating material, such as aggregate and sintering agent. That's fine.

耐熱絶縁性物質1g当りのV2O5の添加1j(は、広
くとも50μf〜50TI9とし、次に好ましくは50
μm〜20mfとし、最も好ましくは801)7〜3■
とする。V2O5の添加効果は、耐熱紀1糸1ミ物質1
1当り100μ2の添加でも著しく太き(、i宿加量を
増すとともに大きくなり、t my以」二の添7Jl]
で飽和する。ところでV2O5の添加量を不・必要に大
きくすると、各種ガスへの感度が低十するとともに、ガ
スセンサ(2)が高抵抗化し、力゛スーヒン−IJ−+
21としての実用性が失なわれる。V2O5’IIA力
11量の上限は、耐熱絶縁性物質の種類により変化し、
−律に定めることができない。添加量の上限が最も低く
なったのは、α−AA203を用いた場合で、この場合
は、α−AA2031 f当り20m7以下が好ましい
。しかしγ−AA203を用いた例では、17当り50
キの添加でも弊害は小さかった。
The addition 1j of V2O5 per gram of heat-resistant insulating material is broadly 50 μf to 50 TI9, then preferably 50
μm to 20mf, most preferably 801)7 to 3■
shall be. The effect of adding V2O5 is as follows: heat resistance 1 yarn 1 material 1
Even with the addition of 100 μ2 per 1 ml, it becomes significantly thicker (it becomes larger as the amount of i addition increases, and 7 Jl of 2 additions per t my)
becomes saturated. By the way, if the amount of V2O5 added is increased unnecessarily or unnecessarily, the sensitivity to various gases will decrease, the resistance of the gas sensor (2) will increase, and the power
21 will be lost. The upper limit of V2O5'IIA force 11 varies depending on the type of heat-resistant insulating material,
-Cannot be established by law. The upper limit of the addition amount is the lowest when α-AA203 is used, and in this case, it is preferably 20 m7 or less per α-AA2031 f. However, in the example using γ-AA203, 50 per 17
Even with the addition of Ki, the adverse effects were small.

以下に、ガスセンサ(2)の試験例を、製造例とともに
説明する。
Test examples of the gas sensor (2) will be described below along with manufacturing examples.

5002100 f当po、sy、のpdoを担持させ
たものを用意する。PdOは、ガスへの感度と応答性の
改善釦用いるもので、P t+ALI等の他の添加物に
代えても、あるいはなくても良い。
5002100 Prepare one carrying pdo of fpo, sy. PdO is used to improve sensitivity and response to gases, and may be replaced with other additives such as Pt+ALI, or may be omitted.

200メツシユパスのび−At203に、金属バナジウ
ムを硝酸に溶解させた水溶液を含浸させ、乾燥後650
iに空気中で30分間加熱し、0.1〜10η/ t 
At20aのV2O5を担持しだα−At203を得る
。なお650℃への加熱で、バナジウムの化合物は熱分
解され、大部分がV2O5となる。バナジウムの存在形
態としては、V2O5の他に微量のV2O4等が含まれ
ると思われるが、添加したバナジウムが全てV2O5に
転化したものとして、添加量を示す。含浸法では高濃度
のV2O5を担持させることが難しいので、同じα−A
t203に50〜/f!At203ノv205粉末を加
え、650℃に80分間空気中で加熱し、高濃度のV2
O5を担持させだa −A7203を得ル。V2O5を
添加Lり(Z −At203を、α−At203: 5
n02の重量比で1:2.1:1.2.5:Lに、5n
02と混合し、水に分散させて絶縁管(4)に塗布し、
750℃に10分間空気中で加熱して、ガス感応膜(1
0)とする。次に、5m7/l At2o3 、および
50〜/ ? A7203のV2O5を含浸法により担
持させたγ−Az2o3、(比表面積80n?、#)を
得る。γ−At203と3102の重量比を1=1とし
て、ガス感応膜t101とする。V2O5の添加やガス
感応膜の製造過程は、α−At203の場合と同様とす
る。
200 mesh pass extension - At203 is impregnated with an aqueous solution of metal vanadium dissolved in nitric acid, and after drying, 650
Heated in air for 30 minutes to 0.1-10η/t
α-At203 carrying V2O5 of At20a is obtained. Note that by heating to 650° C., the vanadium compound is thermally decomposed, and most of it becomes V2O5. Although it is thought that vanadium exists in a trace amount such as V2O4 in addition to V2O5, the added amount is shown assuming that all of the added vanadium has been converted to V2O5. Since it is difficult to support a high concentration of V2O5 with the impregnation method, the same α-A
50~/f on t203! Add At203nov205 powder and heat to 650°C for 80 minutes in air to obtain a high concentration of V2.
A-A7203 was obtained by carrying O5. Addition of V2O5 (Z-At203, α-At203: 5
The weight ratio of n02 is 1:2.1:1.2.5:L, 5n
02, dispersed in water and applied to the insulating tube (4),
The gas-sensitive membrane (1
0). Then 5 m7/l At2o3 and 50~/? γ-Az2o3 (specific surface area 80n?, #) on which V2O5 of A7203 was supported by an impregnation method was obtained. The weight ratio of γ-At 203 and γ-At 3102 is set to 1=1 to form a gas sensitive film t101. The addition of V2O5 and the manufacturing process of the gas-sensitive film are the same as in the case of α-At203.

またテトラエチ)VVリケチー75ccに水25ccと
塩酸Q、 3 ccを加え、30分間かき交ぜて、硅酸
ヒドロゾIしを得る。この硅酸ヒドロシルに、金属バナ
ジウムと硝酸との反応溶液を加え、5i021j’当9
7ηのバナジウム化合物(V2O5換算)を担持させる
。5no2の塗膜を設けた絶縁管(4)を、バナジウム
化合物を担持させた硅酸ヒドロシル中に浸漬し、750
℃に10分間空気中で加熱し、ヒドロシルのゲルへの分
解と、V2O5への熱分解とを行う。ここで、5i02
と5n02との重量比を、2:100と、6:100の
2種とする。
Additionally, 25 cc of water and 3 cc of hydrochloric acid Q were added to 75 cc of VV Rickettsia, and the mixture was stirred for 30 minutes to obtain silicic acid hydrochloride. A reaction solution of metal vanadium and nitric acid was added to this hydrosilicic acid, and 5i021j' and 9
A vanadium compound of 7η (in terms of V2O5) is supported. The insulating tube (4) provided with a coating film of 5no2 was immersed in hydrosilicic acid supporting a vanadium compound, and
C. for 10 minutes in air to effect decomposition of the hydrosil into a gel and thermal decomposition to V2O5. Here, 5i02
The weight ratios of 5n02 and 5n02 are set to 2:100 and 6:100.

これらのガスセンサ(2)を、各5個ずつ用い、25℃
−65%RHの雰囲気下で、測定を行う。
Using 5 of each of these gas sensors (2), at 25°C.
Measurement is performed under an atmosphere of -65% RH.

各ガスの濃度をいずれも2000pp、、とし、ガスセ
ンサ12)の加熱温度を400℃とする。ただしガスセ
ンサ12)の加熱温度を凌えても、結果は変らない0 第2図に、11当シ1myのV2O5を添加したα−A
t203を等重量の5n02と混合したガスセンサ(2
)の経時特性を示す。第3図に、V2O5無添加のα−
At2 o3を加えた他は、同一のものの経時特性を示
す。
The concentration of each gas is set to 2000 pp, and the heating temperature of the gas sensor 12) is set to 400°C. However, even if the heating temperature of the gas sensor 12) is exceeded, the results will not change. Figure 2 shows α-A with 11/1 myV2O5 added.
Gas sensor (2
) shows the temporal characteristics of Figure 3 shows α- without V2O5 addition.
It shows the aging characteristics of the same product except that At2 o3 was added.

通電開始時の特性を見ると、各種ガスへの感度や抵抗値
(R8)は、変らない。しかしV2O5無添加のもので
は、R2やエタノールへの感度が経時的に増大する。一
方、V2O5を加えたものでは、経時変化が見られない
Looking at the characteristics at the start of energization, the sensitivity to various gases and the resistance value (R8) do not change. However, with no V2O5 added, the sensitivity to R2 and ethanol increases over time. On the other hand, when V2O5 was added, no change over time was observed.

耐熱絶縁性物質の量や種類を変えた際の結果を表に示す
。なお各種ガスへの相対感度はほとんど同じであるので
、イソブタンへの感度のみを示す。
The table shows the results when changing the amount and type of heat-resistant insulating material. Note that the relative sensitivity to various gases is almost the same, so only the sensitivity to isobutane is shown.

1 1 α−At203 50 1J 2 1 α−At203100 1.28 1 α−A
lzOa 250 1.24 0” 1−AltxOs
 100 5.85 5 1.05 6 50 1.0 7 0秦 5402 6 5.7 8 7 Ml、05 9 7 5口)2 2 1.1 秦印は従来例 ul a縁体1 y当りy) V2O5m、121 5
HO2100f当りの添加量1.31 通電120日後
のf[気伝導度と最初の!気伝導度との比、(41空気
中の抵抗値とイソブタン中の抵抗値の比。
1 1 α-At203 50 1J 2 1 α-At203100 1.28 1 α-A
lzOa 250 1.24 0” 1-AltxOs
100 5.85 5 1.05 6 50 1.0 7 0 Qin 5402 6 5.7 8 7 Ml, 05 9 7 5 units) 2 2 1.1 Qin mark is conventional example UL a edge 1 y per y) V2O5m, 121 5
Amount added per 100f of HO2 1.31 After 120 days of energization, f[air conductivity and initial! Ratio to air conductivity, (41 Ratio of resistance value in air to resistance value in isobutane.

1・1 4B 11.8 1.1 72 1.7 1.1 62 52 4.7 52 20 1.0 47 21 1.0 45 25 4.8 59 1.2 1.0 57 1.5 1.05 67 0.9 耐熱絶縁性物質の種類や量によらず、V2O5による経
時変化の抑制効果が得られることがわかる。
1・1 4B 11.8 1.1 72 1.7 1.1 62 52 4.7 52 20 1.0 47 21 1.0 45 25 4.8 59 1.2 1.0 57 1.5 1. 05 67 0.9 It can be seen that the effect of suppressing changes over time due to V2O5 can be obtained regardless of the type or amount of the heat-resistant insulating material.

次に、SnO2とα−At203とを重・量比で1:1
に混合したものを例に、V2O5の添加量の影響を検討
した。第4図に、経時変化の抑制効果を示し、その横軸
はα−At20317当りのV2O5量を、縦軸は通電
120日後の電気伝導度と最初の電気伝導度との比をあ
られす。01■/fA7203の添加で、経時変化は著
しく抑制され、この効果は1ツ7yAt2o3以上の添
加で飽和する。
Next, SnO2 and α-At203 were mixed in a weight/weight ratio of 1:1.
The effect of the amount of V2O5 added was investigated using as an example a mixture of V2O5 and V2O5. FIG. 4 shows the effect of suppressing changes over time, where the horizontal axis shows the amount of V2O5 per α-At20317, and the vertical axis shows the ratio of the electrical conductivity after 120 days of energization to the initial electrical conductivity. The addition of 01■/fA7203 significantly suppresses the change over time, and this effect is saturated when 17yAt2o3 or more is added.

V2O5を1〜/lAt203より多く加えると、各種
ガスへの感度が低下し、ガスセンサ(2)の抵抗値が増
大する。これについての結果を第5図に示す。
When V2O5 is added in an amount greater than 1 to /lAt203, the sensitivity to various gases decreases and the resistance value of the gas sensor (2) increases. The results are shown in FIG.

なおイソブタンとcH4への感度を図示するが、他のガ
スへの感度も同様の挙動を示した。V2O5量を10■
/ f At、20:lとすると感度はかなシ低下15
0〜/ r At203 とすると著しく低下する。し
かしV2O5量の上限は、耐熱絶縁性物質によシ変化し
、γ−At 203の場合50り/ y Az203の
添加でも感度の低下は小さかった。(表の試料6)。
Although the sensitivity to isobutane and cH4 is illustrated, the sensitivity to other gases also showed similar behavior. V2O5 amount 10■
/ f At, 20:l, the sensitivity decreases slightly 15
When it is set to 0~/r At203, it decreases significantly. However, the upper limit of the amount of V2O5 varies depending on the heat-resistant insulating material, and in the case of γ-At203, even when 50 ri/y of Az203 was added, the decrease in sensitivity was small. (Sample 6 in the table).

なお経時変化抑制の効果は、5n02を用いたガスセン
サ(2)にのみ有効で、In2O3やZllo を用い
たセンサには効果がなかった。またV2O5を5b20
3やNb2O5、Ta205に代えると、効果が失なわ
れた。
Note that the effect of suppressing changes over time was effective only for the gas sensor (2) using 5n02, and was not effective for the sensors using In2O3 or Zllo. Also, V2O5 is 5b20
3, Nb2O5, and Ta205, the effect was lost.

以上説明したように、この発明ではガスセンサのH2や
エタノール等のアルコ−/レカースへの経時変化を防止
することができる。
As explained above, according to the present invention, it is possible to prevent the gas sensor from changing over time into alcohol/recurse such as H2 or ethanol.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例のガスセンサの部分切り欠き図、第2図
は実施例のガスセンサの特性図、第3図は従来例のガス
センサの特性図である。 第4図、第5図は実施例のガスセンサの特性図である。 特許出願人 フィガロ技研株式会社 第1図 第2図 −6−air −0−C0 00 つn Time(day) 第3図 @−a!r −0−C0 Time(day) 第4図 0 0.1 1 10 100 100V203(@A1203)
FIG. 1 is a partially cutaway view of the gas sensor of the embodiment, FIG. 2 is a characteristic diagram of the gas sensor of the embodiment, and FIG. 3 is a characteristic diagram of a conventional gas sensor. FIG. 4 and FIG. 5 are characteristic diagrams of the gas sensor of the example. Patent applicant Figaro Giken Co., Ltd. Figure 1 Figure 2 -6-air -0-C0 00 Time (day) Figure 3 @-a! r -0-C0 Time (day) Fig. 4 0 0.1 1 10 100 100V203 (@A1203)

Claims (1)

【特許請求の範囲】 II) 5n02に耐熱絶縁性物質を混合したガスセン
サにおいて、 前記耐熱絶縁性物質に、V2O5を添加したことを特徴
とするガスセンサ。
[Claims] II) A gas sensor comprising 5n02 mixed with a heat-resistant insulating substance, characterized in that V2O5 is added to the heat-resistant insulating substance.
JP20957183A 1983-11-08 1983-11-08 Gas sensor Pending JPS60100755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20957183A JPS60100755A (en) 1983-11-08 1983-11-08 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20957183A JPS60100755A (en) 1983-11-08 1983-11-08 Gas sensor

Publications (1)

Publication Number Publication Date
JPS60100755A true JPS60100755A (en) 1985-06-04

Family

ID=16575031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20957183A Pending JPS60100755A (en) 1983-11-08 1983-11-08 Gas sensor

Country Status (1)

Country Link
JP (1) JPS60100755A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209159A (en) * 1984-04-03 1985-10-21 Nippon Muki Kk Gas detecting element
CN104634830A (en) * 2015-01-26 2015-05-20 南京大学 PMMA-SnO2-based thin-film gas sensor for detecting methane
CN110988046A (en) * 2019-10-30 2020-04-10 广州钰芯传感科技有限公司 V capable of detecting ethanol gas2O5Preparation method of nano material and application of nano material in gas sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317440A (en) * 1976-07-31 1978-02-17 Sayama Seimitsu Kogyo Kk Ball storage control system for pachinko game machine
JPS573681A (en) * 1980-06-06 1982-01-09 Youzou Seki Automatic stop device for sewing machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317440A (en) * 1976-07-31 1978-02-17 Sayama Seimitsu Kogyo Kk Ball storage control system for pachinko game machine
JPS573681A (en) * 1980-06-06 1982-01-09 Youzou Seki Automatic stop device for sewing machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209159A (en) * 1984-04-03 1985-10-21 Nippon Muki Kk Gas detecting element
JPH053541B2 (en) * 1984-04-03 1993-01-18 Nippon Muki Kk
CN104634830A (en) * 2015-01-26 2015-05-20 南京大学 PMMA-SnO2-based thin-film gas sensor for detecting methane
CN110988046A (en) * 2019-10-30 2020-04-10 广州钰芯传感科技有限公司 V capable of detecting ethanol gas2O5Preparation method of nano material and application of nano material in gas sensor

Similar Documents

Publication Publication Date Title
JPS5815731B2 (en) Kemuri Oyobi Gasken Chisoshi
JPS626182B2 (en)
JPS6218865B2 (en)
JPS60100755A (en) Gas sensor
JP3053865B2 (en) Sensor for detecting carbon monoxide
JPS5814043B2 (en) humidity sensor element
EP0261275B1 (en) A hydrogen gas detecting element and method of producing same
Pagel et al. STUDIES ON THE HIGHER OXIDES OF SOME RARE-EARTH ELEMENTS1
CN109917069A (en) A kind of novel catalytic combustion type gas sensor
JPS59105553A (en) Gas detecting element
JP2544144B2 (en) Gas sensor and manufacturing method thereof
JPS6410774B2 (en)
JPS60263845A (en) Gas detecting element and its production
JPS5847018B2 (en) gas sensing element
CN114965593A (en) Two-dimensional/three-dimensional organic-inorganic hybrid perovskite derived formaldehyde gas-sensitive material and preparation method thereof
JPH0390848A (en) Gas sensor
JPS5948648A (en) Manufacture of gas detection element
JPS60100754A (en) Gas sensor
JPH06118043A (en) Amine sensor
JPS627497B2 (en)
JPS5840696B2 (en) gas sensing element
JPH0225457B2 (en)
JPH0230661B2 (en) GASUKENCHISOSHI
JPH01145561A (en) Gas sensor
Scheve et al. The Selection of Catalysts by Thermogravimetry