JPS60100504A - Antibacterial composition and its production - Google Patents

Antibacterial composition and its production

Info

Publication number
JPS60100504A
JPS60100504A JP20871883A JP20871883A JPS60100504A JP S60100504 A JPS60100504 A JP S60100504A JP 20871883 A JP20871883 A JP 20871883A JP 20871883 A JP20871883 A JP 20871883A JP S60100504 A JPS60100504 A JP S60100504A
Authority
JP
Japan
Prior art keywords
antibacterial
zeolite
carbonate
metal
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20871883A
Other languages
Japanese (ja)
Other versions
JPS6328402B2 (en
Inventor
Zenji Hagiwara
萩原 善次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20871883A priority Critical patent/JPS60100504A/en
Publication of JPS60100504A publication Critical patent/JPS60100504A/en
Publication of JPS6328402B2 publication Critical patent/JPS6328402B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE:To provide a calcined antibacterial composition composed of the system of an antibacterial metal, a carbonate and a zeolite and optionally containing a binder, and having excellent mechanical strength, water resistance, heat resistance and the retainability of the antibacterial activity. CONSTITUTION:A three-component mixture consisting of (A) a carbonate (preferably an alkaline earth metal carbonate), (B) a zeolite (preferably a thermally stable zeolite, A-type zeolite, X-type zeolite, etc. having granular or powdery form) and (C) an antibacterial metal (Zn, Cu or Ag, or their mixture), is added with a binder to reinforce the binding force between the particles. The obtained mixture is formed to a desired form by wet-forming, dried, and calcined at a temperature above the thermal decomposition initiation temperature of the carbonate and below the thermal decomposition initiation temperature of the zeolite, to obtain the objective antibacterial composition. The content of the metal in the calcined product is preferably 0.001-20% for Ag, >=0.04% for Zn and >= about 0.03% for Cu.

Description

【発明の詳細な説明】 発明の背景 イ 発明の属する技術分野 本発明は抗菌性組成物およびその製造方法に関するさら
に詳しくは、本発明&ま実質的に炭酸塩のゼオライトお
よび抗菌性金属力)ら成り機械的強度や耐水性、耐熱性
に優れ且つ抗菌力の保持能の点で優れた新規な抗菌性組
成物およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION A. Technical field to which the invention pertains The present invention relates to an antibacterial composition and a method for producing the same. The present invention relates to a novel antibacterial composition that has excellent mechanical strength, water resistance, heat resistance, and ability to retain antibacterial activity, and a method for producing the same.

金属イオン、亜鉛イオン、銅イオン、銀イオン等が抗菌
力を有することは公知である。例えば、銀イオンは硝酸
銀水溶液の形態で消毒や殺菌剤として一般に広く使用さ
れているが、これの溶液状での利用では取扱いも不便で
あり、おのずから用途も限屋されてしまう難点がある。
It is known that metal ions, zinc ions, copper ions, silver ions, etc. have antibacterial properties. For example, silver ions are widely used in the form of silver nitrate aqueous solutions as disinfectants and sterilizers, but when used in solution form, it is inconvenient to handle, and its uses are naturally limited.

一方銀等を活性炭、アルミナまたはシリカゲル系の吸着
物質に保持させて、これを容器に入れ、または、適当な
形状の塔に充填して液の殺菌に使用することも提案され
た。しかしながら後者の場合、前記の吸着物質に対する
抗菌性金属の保持容量やそれの液相への漏出の点で欠点
がある。例えば活性炭に硝酸銀水溶液を接触させて銀を
活性炭相に保持させる時、水溶液相の硝酸銀の濃度を増
大させれば活性炭相への銀の吸着量は増大するが、銀の
吸着等混線より4ても明らかに銀吸着量には自から限界
がある。また活性炭相に保持される銀量が増大するにつ
れて、かかる銀含有活性炭と溶液を接触させた際には固
相の銀が早期に漏出したり、漏出する銀量が過大になる
傾向が増大し、最終的には殺菌液中への銀の溶出量が許
容量を越えてしまう現象が見られる。かかる銀の溶出現
象を極力防止するために、例えば殺菌を目的とする銀含
有活性炭中の鉄含量を数6pP1程度に抑えたものが市
販されている。しかしながらかかる殺菌剤は長期使用の
見地からみて、殺菌効果も必らずしも満足すべき状態と
はいえない。銀の規制については米国合衆国の公衆衛生
局ではI)I)b以下、西独では100ppb以下また
スイスでは200 ppb以下である。
On the other hand, it has also been proposed that silver or the like be retained in activated carbon, alumina, or silica gel-based adsorbent materials, and then placed in a container or packed into a tower of an appropriate shape for use in sterilizing liquids. However, the latter case has drawbacks in terms of the retention capacity of the antimicrobial metal for the adsorbed substances and its leakage into the liquid phase. For example, when an aqueous silver nitrate solution is brought into contact with activated carbon to retain silver in the activated carbon phase, increasing the concentration of silver nitrate in the aqueous solution phase will increase the amount of silver adsorbed to the activated carbon phase, but due to crosstalk such as silver adsorption, However, there is clearly a limit to the amount of silver that can be adsorbed. Additionally, as the amount of silver retained in the activated carbon phase increases, the tendency for solid phase silver to leak out prematurely or to leak out in an excessive amount increases when a solution is brought into contact with such silver-containing activated carbon. However, there is a phenomenon in which the amount of silver eluted into the sterilizing solution ultimately exceeds the permissible amount. In order to prevent such silver elution as much as possible, for example, silver-containing activated carbon intended for sterilization with an iron content suppressed to about 6 pP1 is commercially available. However, from the viewpoint of long-term use, the bactericidal effect of such bactericides is not necessarily satisfactory. The regulations for silver are below I)I)b in the United States Public Health Service, below 100 ppb in West Germany, and below 200 ppb in Switzerland.

かかる規制植より判断しても、銀を含有する殺菌剤を使
用時には液中への銀の漏出を極力最少限に防止して殺菌
効果を長期間にわたり最大にすることは急務である。
Judging from such regulated plants, when using silver-containing bactericidal agents, it is urgent to minimize the leakage of silver into the solution and maximize the bactericidal effect over a long period of time.

発明の要約 本発明者は市販の殺菌剤を改良する目的で鋭意研究を重
ねた結果、抗菌性金属、炭酸塩およびゼオライトを複合
させた抗菌性組成物が機械的強度が大であり、また耐水
性も優れ、さらに抗菌力およびその効果の持続性の点で
も公知の殺菌剤に比較してより多(の利点があることを
見出し、本発明に到達した。
Summary of the Invention As a result of extensive research aimed at improving commercially available disinfectants, the present inventor has discovered that an antibacterial composition containing a composite of antibacterial metals, carbonates, and zeolites has high mechanical strength and is water resistant. The present invention was based on the discovery that it has excellent antibacterial properties and has many advantages over known bactericidal agents in terms of antibacterial activity and durability of its effects.

従って、本発明の主目的は抗菌性金属−炭酸塩−ゼオラ
イドから実質的に成る抗菌性組成物を提供することであ
る。
Accordingly, it is a principal object of the present invention to provide an antimicrobial composition consisting essentially of an antimicrobial metal-carbonate-zeolide.

本発明の別の目的は抗菌性金属−炭酸塩−ゼオライト−
結合剤から実質的に成る抗菌性組成物を提供することで
ある。
Another object of the present invention is the antibacterial metal-carbonate-zeolite
An object of the present invention is to provide an antimicrobial composition consisting essentially of a binder.

本発明の他の目的は抗菌性金属−炭酸塩−ゼオライト−
結合剤から実質的に成る複合体を焼結して成る機械的強
度、耐水性、耐熱性および抗菌力の保持能力で優れた焼
成体状抗蘭性組成物およびその製造方法を提供すること
である。
Another object of the present invention is the antibacterial metal-carbonate-zeolite
To provide an orchid-resistant composition in the form of a sintered body, which is made by sintering a composite substantially consisting of a binder and has excellent mechanical strength, water resistance, heat resistance, and ability to retain antibacterial activity, and a method for producing the same. be.

本発明の他の目的および利点は以下逐次間らかにされる
Other objects and advantages of the invention will be highlighted below.

本発明は抗菌性金属−炭酸塩−ゼオライトから実質的に
成る抗菌性組成物およびその製造方法に関する。
The present invention relates to an antimicrobial composition consisting essentially of an antimicrobial metal-carbonate-zeolite and a method for producing the same.

本発明で使用する用語6抗菌性金属”は広義には殺菌剤
として用いられている金属をいうが、敢えて限定するな
らば、亜鉛、銅、および銀から成る群から選択された一
種又はそれらの混合金属と定義される。
The term 6 "antibacterial metal" used in the present invention broadly refers to a metal used as a bactericidal agent, but if we were to limit it, it would be one selected from the group consisting of zinc, copper, and silver, or a metal selected from the group consisting of zinc, copper, and silver. Defined as a mixed metal.

本発明の抗菌性組成物は実質的に炭酸塩類、ゼオライト
および抗菌性金属の6成分より構成されるが、実際の使
用に際しては、粒子間の結合力を強化するために結合剤
が副成分として添加されて焼成体として成形される。本
発明の組成物を焼成して希望する形状に成形された焼成
体は殺菌目的のため液体と接触させて使用されるので、
耐水性や焼成体の強度が優れていることが要求、される
The antibacterial composition of the present invention is essentially composed of six components: carbonates, zeolites, and antibacterial metals, but in actual use, a binder is added as a subcomponent to strengthen the binding force between particles. It is added and molded into a fired body. The fired body formed into a desired shape by firing the composition of the present invention is used in contact with a liquid for the purpose of sterilization.
Excellent water resistance and strength of the fired product are required.

本発明の抗菌性組成物の主要成分の一つとして使用され
る炭酸塩は水に不溶性あるいは難溶性であることが望ま
しい。特にアルカリ土類金属の炭酸塩(マグネシウム、
衣ルシウム、ストロンチウム、バリウムの炭酸塩)は水
に難溶であり、またこれらの熱分解温度も高いので抗菌
性組成物の最終的な焼成に際してかなりの高温でこれの
焼成が″可能であり、硬度の優れた焼成体が得られる利
点がある。
The carbonate used as one of the main components of the antibacterial composition of the present invention is preferably insoluble or sparingly soluble in water. Especially carbonates of alkaline earth metals (magnesium,
Carbonates of lucium, strontium, and barium) are sparingly soluble in water, and their thermal decomposition temperatures are high, so it is possible to calcinate the antibacterial composition at a considerably high temperature in the final calcination. There is an advantage that a fired body with excellent hardness can be obtained.

本発明の抗菌性組成物の一成分として使用する炭酸塩は
上述の如きアルカリ土類金属の炭酸塩の1種または2棟
以上を使用しても差支えない。また上記炭酸塩の素材中
に若干の塩基性塩等が混入していても勿論支障はない。
As the carbonate used as a component of the antibacterial composition of the present invention, one or more of the above-mentioned alkaline earth metal carbonates may be used. Further, there is of course no problem even if some basic salt etc. are mixed into the carbonate material.

アルカリ土類金属の炭酸塩で本発明に使用好適の例とし
て炭酸カルシウムが挙げられる。これは水に難溶で水に
対する溶解度は常温で15〜20p+n程度であり、ま
たこれの熱分解温度も高くて825℃付近にあるので本
発明の炭酸塩成分として使用して好結果が得られる。本
発明では上述の如きアルカリ土類金属の炭酸塩の1種ま
たは2種以上が、粒子〜粉末状で使用されるがこれを添
加して湿式成形を実施し、乾燥、焼成することにより得
られる本発明の抗菌性組成物の強度を極めて高く保持す
る効果がある。
Calcium carbonate is an example of an alkaline earth metal carbonate suitable for use in the present invention. It is sparingly soluble in water, and its solubility in water is about 15-20p+n at room temperature, and its thermal decomposition temperature is high, around 825°C, so it can be used as the carbonate component of the present invention with good results. . In the present invention, one or more of the above-mentioned alkaline earth metal carbonates are used in the form of particles or powder, which can be obtained by adding the carbonates, performing wet molding, drying, and baking. This has the effect of maintaining the strength of the antibacterial composition of the present invention at an extremely high level.

アルカリ金属の炭酸塩(リチウム、ナトリウム、カリウ
ム等)は水に可溶であり、これを本発明の抗菌性組成物
を構成する炭酸塩の成分として使用する時には本発明の
組成物を用いて液の殺菌を実施する際に、炭酸塩の可成
りの籠が液中に溶出したりするので好ましくない。
Alkali metal carbonates (lithium, sodium, potassium, etc.) are soluble in water, and when used as a component of the carbonate constituting the antibacterial composition of the present invention, the composition of the present invention is used to dissolve the alkali metal carbonate. When carrying out sterilization, a considerable amount of carbonate may be eluted into the liquid, which is undesirable.

本発明の抗菌性組成物の一成分として使用されるゼオラ
イトは周知の如く、三次元の骨格構造を有スるアルミノ
シリケートであって、一般式%式% るものである。但し、Mはイオン交換が可能である金属
を表わし、通常の場合1〜2価金属である。
As is well known, the zeolite used as a component of the antibacterial composition of the present invention is an aluminosilicate having a three-dimensional skeleton structure and has the general formula %. However, M represents a metal capable of ion exchange, and is usually a monovalent to divalent metal.

nは金属の原子価を表わし、さらにXおよびyはそれぞ
れ金属酸化物、シリカの係数を、Zは結晶水を表わして
いる。本発明の抗菌性組成物の成分として使用されるゼ
オライトは合成品、または天然品の何れを使用しても差
支えないが、熱的に安定なゼオライトがより好ましい。
n represents the valence of the metal, X and y represent the coefficients of metal oxide and silica, respectively, and Z represents crystal water. The zeolite used as a component of the antibacterial composition of the present invention may be either a synthetic product or a natural product, but a thermally stable zeolite is more preferred.

合成ゼオライトとしては例えば八−型ゼオライド、X−
型ゼオライド、Y−型ゼオライド、モルデナイト等が好
適なものとして挙げられる。またノ・イシリカの合成ゼ
オライト、例えばZSM等も使用可能である。
Examples of synthetic zeolites include 8-type zeolide,
Preferred examples include type zeolide, Y-type zeolide, and mordenite. It is also possible to use synthetic zeolites such as ZSM.

一方天然ゼオライドとしてはクリノプチロライト(C1
1noptilolite )、モルデナイト(Mor
den i te )、チャバサイト(Chabazi
te ) 、cリオナイト(Er1oni te)、フ
ィリップサイト(Ph1llipsite )、アナル
シン、(Analcime )、フォージャサイト(F
aujasi te)等が本発明で使用するゼオライト
として好適である。これらの天然および合成ゼオライト
は多孔質で細孔も発達しており、従って比表面積も大で
あり、通常の場合粒子〜粉末状で本発明の抗菌性組成物
の成分の一つとして使用される。
On the other hand, as a natural zeolide, clinoptilolite (C1
1 noptilolite), mordenite (Mor
den ite), Chabazi
te), C ryonite, Ph1llipsite, Analcime, Faujasite (F
Zeolites such as zeolites are suitable for use in the present invention. These natural and synthetic zeolites are porous and have well-developed pores, and therefore have a large specific surface area, and are usually used in particle to powder form as one of the components of the antibacterial composition of the present invention. .

次に本発明の抗菌性組成物の組成について述べる。Next, the composition of the antibacterial composition of the present invention will be described.

本発明の抗菌性組成物は上述の如く、主として炭酸塩−
ゼオライド−抗菌性金属から成るが、実際の使用に除し
てはこれに焼成強度を犬にするため有機系および/また
は無機系の結合剤が添加されて湿式成形により希望する
形状に成形される。
As mentioned above, the antibacterial composition of the present invention mainly contains carbonates.
Zeolide - Composed of an antibacterial metal, but for practical use organic and/or inorganic binders are added to increase firing strength and formed into the desired shape by wet molding. .

本発明の抗菌性組成物中には前述の主成分以外に副成分
として、シリカゲル、アルミナ等の無機系の吸着物質が
含まれていても勿論差支えない。
It goes without saying that the antibacterial composition of the present invention may contain inorganic adsorbent substances such as silica gel and alumina as subcomponents in addition to the above-mentioned main components.

本発明の抗菌性組成物の実際の使用形態は前述の如くア
ルカリ土類金属の炭酸塩の1種または2種以上、ゼオラ
イトとして天然または合成ゼオライト、および抗菌性金
属から成る組成物に結合剤を配合させ焼成した焼成体よ
り主として構成されるものである。
The actual usage form of the antibacterial composition of the present invention is as described above, in which a binder is added to a composition consisting of one or more carbonates of alkaline earth metals, a natural or synthetic zeolite, and an antibacterial metal. It is mainly composed of a fired body made by blending and firing.

ここで代表的な抗菌性金属として朔、亜鉛、および銅を
例にとって、焼成体中のそれらの含有量および炭酸塩と
ゼオライトの重量比について述べる。
Here, taking as examples of typical antibacterial metals, zinc, and copper, their content in the fired body and the weight ratio of carbonate to zeolite will be described.

抗菌性金属が銀の場合該焼成体中の銀含有量はo、oo
i〜20%の範囲内が好ましく、且つ炭酸塩(C)とゼ
オライl−(Z )の重量比C/Z=0606〜4の範
囲内にあることが好ましい。細菌類、例えば連鎖状球菌
(5tapylococcus aureus)、g1
タノクキV 大腸菌(Escherichia coli )、緑膿
菌(PseudO−monas aeruginosa
 )等に対して、また真菌類、例えばカビ(Asper
gillus flavus ) 等に対して、本発明
の抗(ホ)性組成物が充分な収繭効果を挙げるためには
本発明の組成物中の銀含量は既述のの如く、0.001
〜20%の範囲にあることが望ましく、もつとも好まし
いそれの範囲は0.005〜15%である。
When the antibacterial metal is silver, the silver content in the fired body is o, oo
It is preferably within the range of i to 20%, and the weight ratio C/Z of carbonate (C) to zeolite l-(Z) is preferably within the range of 0606 to 4. Bacteria, such as Streptococcus aureus, g1
Tanokuki V Escherichia coli, Pseudomonas aeruginosa
), and fungi, such as mold (Asper
In order for the anti-(E) composition of the present invention to have a sufficient cocooning effect against P. gillus flavus), the silver content in the composition of the present invention should be 0.001 as described above.
It is desirable that it be in the range of ~20%, with the most preferred range being 0.005-15%.

抗菌性金属が亜鉛の場合 該焼成体中の亜鉛含量は少くとも0.04%以上であっ
て、且つ炭酸塩(C)とゼオライト(z)の重量比e/
Zは0,06〜乙の範囲内にあることが好ましい。一方
抗菌性金属として銅のみを使用した場合は、焼成体中の
銅含量は少(とも0.06%以上であって且つ上記のC
/Zは0,06〜3の範囲内にあることが好ましい。次
に上述の如く数値限定を行なった理由を説明する。
When the antibacterial metal is zinc, the zinc content in the fired body is at least 0.04%, and the weight ratio of carbonate (C) to zeolite (z) is e/
It is preferable that Z is within the range of 0.06 to O. On the other hand, when only copper is used as the antibacterial metal, the copper content in the fired body is small (both 0.06% or more and the above C
/Z is preferably within the range of 0.06 to 3. Next, the reason for limiting the numerical values as described above will be explained.

本発明は炭酸カルシウム、天然ゼオライトまたは合成ゼ
オライトおよび結合剤の配合比を種々かえるとともに、
銀、亜鉛または銅含量も変化させて各種の抗菌性組成物
の焼成体を試作して、どれらの抗1性の評価と真菌に対
する死滅率の測定を実施した。抗菌性の評価に際しては
S taphylococcusaureusl Es
cherichia Co11 r Pscudomo
nasaeruginosa 等の細菌を使用してディ
スク法により評価を行なった。一方真閑に対する死滅率
の測定はAspergillus flavusを用い
た。本発明の亜鉛−人一型ゼ第2イトー炭′酸カルシウ
ム−結合剤を複合させた焼成体で亜鉛16.2%含有時
はAspergillus flavusに対する死滅
率は100%であった。また亜鉛−Y−型ゼオライドー
炭酸カルシウムー結合剤を複合させた焼成体で亜鉛26
%含有時はAspergillus flavusに対
する死滅率は98%であり、一方5taphyloco
ccus aureusやEscherichia C
o11 の細菌に対しても良好な抗菌力を示すことが判
明した。前者の焼成体中に亜鉛が1.8%および0.1
1%含有時はAspergillusflavusに対
する死滅率はそれぞれ82%、67%であり、また亜鉛
量が0.04%の際は上記真菌に対する死滅率は26%
に低下した。亜鉛が0.04%以下では、抗菌力はさら
に減少し、亜鉛が0[12〜0.06%付近では死滅率
はいずれの試験でも10%以下であった。
In the present invention, the blending ratio of calcium carbonate, natural zeolite or synthetic zeolite, and binder is varied, and
Various antibacterial compositions were trial-produced with different silver, zinc, or copper contents, and their anti-microbial properties and fungal killing rates were measured. When evaluating antibacterial properties, S taphylococcus aureusl Es
cherichia Co11 r Pscudomo
Evaluation was carried out by the disk method using bacteria such as S. nasaeruginosa. On the other hand, Aspergillus flavus was used to measure the mortality rate against Mankan. When the calcined body of the present invention, which was a composite of the zinc-human type 2 calcium carbonate binder, contained 16.2% zinc, the mortality rate against Aspergillus flavus was 100%. In addition, the fired body is a composite of zinc-Y-type zeolide and calcium carbonate binder.
%, the mortality rate against Aspergillus flavus was 98%, while 5 taphyloco
ccus aureus and Escherichia C
It was found that it also showed good antibacterial activity against bacteria such as O11. Zinc is 1.8% and 0.1% in the former fired body.
When zinc content is 1%, the mortality rate against Aspergillus flavus is 82% and 67%, respectively, and when the zinc content is 0.04%, the mortality rate against the above fungi is 26%.
It declined to . When the zinc content is 0.04% or less, the antibacterial activity further decreases, and when the zinc content is around 0[12% to 0.06%], the mortality rate was 10% or less in all tests.

以上の理由にもとすいて本発明の焼成体中に占める亜鉛
量を0.04%(無水基準)以下と限定した。銅含有の
本焼成体についても前述の亜鉛含有の焼成体と同様な試
験を実施して、好ましい抗菌効果を示す下限値として銅
含有量0.06%(無水基準)を設定した。この理由は
下記にもとづく。
For the above reasons, the amount of zinc in the fired body of the present invention was limited to 0.04% (anhydrous basis) or less. The same tests as for the above-mentioned zinc-containing fired body were conducted for the copper-containing main fired body, and a copper content of 0.06% (anhydrous standard) was set as the lower limit showing a preferable antibacterial effect. The reason for this is based on the following.

銅含量が5%以上の本発明の焼成体ではAsperg市
usflavusK対する死滅率は、天然および合成の
2種のゼオライト素材を用いた何れの焼成体の試験に於
いても、95〜100%であった。−刃鋼含有量が2〜
2.5%の焼成体では、上記の菌に対する死滅率は、天
然および合成ゼオライトの2種を用いた何れの焼成体の
試験に於いても、70〜88%であり、さらに銅含有量
が1%付近では死滅率は60〜67%であった。−刃鋼
含有量が1%の本発明の焼成体では、天然または合成ゼ
オライトを使用して試作した倒れの焼成体の試験に於い
ても、Escherichia colL Pseud
omonasaerginosaの細菌については依然
抗菌効果が確認された。銅含有量が0.06%以下の焼
成体では上述の菌に対する効果は銅含量の減少とともに
著しく減少するので、抗菌性金属として銅のみを含有す
る本発明の焼成体に於いては銅の含有量の下限値として
0806%(無水基準)を設定した。銀含有の本焼成体
についても同様の試験を実施して銅含量が上記の下限値
o、ooi%以下の組成では、抗菌の効果が銅含量の減
少と共に著しく低下し、一方上限値以上の銀を使用して
も殺菌性の効果は銀の含量に無関係となりほぼ一定にな
ることを発見したので上記の如く各金属の範囲を設定し
た。
In the fired body of the present invention with a copper content of 5% or more, the mortality rate against Asperg usflavus K was 95 to 100% in both tests using two types of zeolite materials, natural and synthetic. Ta. -Blade steel content is 2~
With the 2.5% calcined body, the killing rate against the above bacteria was 70-88% in both tests using two types of zeolite, natural and synthetic zeolites. At around 1%, the mortality rate was 60-67%. - In the fired body of the present invention with a blade steel content of 1%, Escherichia colL Pseud
The antibacterial effect was still confirmed for B. omonasaerginosa bacteria. In a fired body with a copper content of 0.06% or less, the above-mentioned effect against bacteria decreases significantly as the copper content decreases. Therefore, in the fired body of the present invention containing only copper as an antibacterial metal, 0806% (anhydrous standard) was set as the lower limit of the amount. A similar test was conducted on silver-containing main fired bodies, and it was found that in compositions where the copper content was below the above-mentioned lower limit o, ooi%, the antibacterial effect decreased significantly as the copper content decreased; It was discovered that even when silver was used, the bactericidal effect remained almost constant regardless of the silver content, so the ranges for each metal were set as described above.

次に本発明の組成物中に占める炭酸塩とゼオライトの量
的関係について述べる。C/Z=0.03〜4の範囲が
好ましい。C/Zが0.03以下では本発明の抗菌性組
成物成型体の機械的強度が炭酸カルシウムの減少にとも
ない著しく低下してくる欠点がある。一般に本発明の組
成物の強度は結合剤の使用量や炭酸カルシウムの含量に
比例して増大する。一方C/Zが4以上の領域では炭酸
カルシウム添加量の増大とともに湿式成型を満足に遂行
することが次第に不可能になる欠点がある。
Next, the quantitative relationship between carbonate and zeolite in the composition of the present invention will be described. The range of C/Z=0.03 to 4 is preferable. When C/Z is 0.03 or less, the mechanical strength of the molded article of the antibacterial composition of the present invention has a drawback that it decreases significantly as the calcium carbonate content decreases. Generally, the strength of the compositions of the present invention increases in proportion to the amount of binder used and the content of calcium carbonate. On the other hand, in the range where C/Z is 4 or more, there is a drawback that as the amount of calcium carbonate added increases, it becomes gradually impossible to perform wet molding satisfactorily.

C/Z≦4の領域では、後述の実施例からもわかるよう
に機械的強度や耐水性の点で非常に優れまた抗菌効果や
それの保持能の点で満足すべき本発明の銀、亜鉛、銅の
単−又は混合金属を含有する抗菌性組成物の製造が可能
である。
In the region of C/Z≦4, the silver and zinc of the present invention are very excellent in terms of mechanical strength and water resistance, and are satisfactory in terms of antibacterial effect and retention ability, as can be seen from the examples described below. It is possible to produce antimicrobial compositions containing single or mixed metals such as , copper.

次に本発明の抗菌性組成物の成形方法の特徴について述
べる。本発明の抗菌性組成物は湿式成形法により成形さ
れる。すなわち炭酸塩−抗菌性金属−ゼオライドの複合
体に対して無機系の結合剤のみ、または有機系−無機系
の結合剤を併用して水または尿素水溶液の存在下に湿式
混和を実施し得られた混和物を成形機により適当な形状
に成形し、引続き乾燥し最終的に使用する炭酸塩成分の
熱分解開始以下の温度であり又、且つ使用するゼオライ
ト成分の熱分解開始以下の温度域で焼成することによっ
て実際の使用に供される。
Next, the characteristics of the method for molding the antibacterial composition of the present invention will be described. The antibacterial composition of the present invention is molded by a wet molding method. That is, it can be obtained by wet mixing a carbonate-antibacterial metal-zeolide complex in the presence of water or an aqueous urea solution using only an inorganic binder or a combination of an organic-inorganic binder. The mixture is molded into an appropriate shape using a molding machine, and then dried at a temperature below the onset of thermal decomposition of the carbonate component to be used, and below the onset of thermal decomposition of the zeolite component to be used. It is ready for actual use by firing.

本発明の抗菌性組成物の成分として使用する炭酸塩類な
らびにゼオライトについては既に詳述しであるのでここ
では省略する。
Since the carbonates and zeolites used as components of the antibacterial composition of the present invention have already been described in detail, they are omitted here.

本発明で使用する抗菌性金属は硝酸塩や硫酸塩のような
水に可溶性の塩類の形で添加するかまたは愉ライトに予
め抗菌性金属の単一金属あるいは両者の混合金属を保持
させて安定化させた状態で添加される。特に後者の方法
によれば、抗菌性金属がゼオライト骨格中に安定に保持
されて抗菌効果が長期に亘って持続される活性な抗菌性
組成物を調製することが可能である。後者の場合には水
溶性の亜鉛塩、銅塩、銀塩または上記の混合塩、例えば
硝酸銀、硝酸銅、硝酸亜鉛、または上記の混合塩の水溶
液と粉末〜粒子状の天然または合成ゼオライトを常温な
いし高温(例60”〜90℃)でpH7以下の酸性域で
イオン交換すれば、ゼオライト骨格、中のイオン交換基
の1部または大部分が銀、亜鉛、銅、または上記の混合
金属型に転換される。A、X、またはY−型の合成ゼオ
ライトにイオン交換な行なって銀、亜鉛または銅をゼオ
ライトの有する交換容量の飽和値付近まで導入すること
も可能である。イオン交換に際してゼオライトに接触さ
せる塩類溶液の濃度反応温度や時間を調節することによ
りゼオライト相に保持させる銀銅や亜鉛量を任意にかえ
ることが出来る。かかるイオン交換を実施することによ
り抗菌性金属の保持は極めて均一に多孔性のゼオライト
全般にわたって行なわれるので抗菌性金属の保持方法と
して上述のイオン交換法は好ましいものである。また内
部比表面積の大きなゼ第2イト同相中の抗菌性の金属は
ゼオライトの母体に非常に安定に結合して固定化され活
性状態にある。かかる状態の抗菌性組成物が水と接触し
た際には抗菌性効果も大であるばかりでなく、水溶液相
への抗菌性金属イオンの溶出が公知の殺菌剤に比較して
必要に最少限に抑制されて、銀、銅や亜鉛の濃度は何れ
も規制値以下になる長所がある。
The antibacterial metal used in the present invention is stabilized by adding it in the form of water-soluble salts such as nitrates and sulfates, or by pre-holding a single antibacterial metal or a mixture of the two in the funite. It is added in the same state. In particular, according to the latter method, it is possible to prepare an active antibacterial composition in which the antibacterial metal is stably retained in the zeolite framework and the antibacterial effect is maintained over a long period of time. In the latter case, an aqueous solution of a water-soluble zinc salt, copper salt, silver salt, or a mixed salt of the above, such as silver nitrate, copper nitrate, zinc nitrate, or a mixed salt of the above, and powder to particulate natural or synthetic zeolite are mixed at room temperature. If ion exchange is performed in an acidic range with a pH of 7 or less at a high temperature (e.g. 60" to 90°C), part or most of the ion exchange groups in the zeolite skeleton will be converted to silver, zinc, copper, or the above mixed metal type. It is also possible to introduce silver, zinc or copper into synthetic zeolites of the A, By adjusting the concentration and reaction time of the salt solution brought into contact, it is possible to arbitrarily change the amount of silver copper and zinc retained in the zeolite phase.By carrying out such ion exchange, the retention of antibacterial metals becomes extremely uniform. The above-mentioned ion exchange method is preferable as a method for retaining antibacterial metals because it is carried out throughout the entire porous zeolite.Furthermore, the antibacterial metals in the same phase of zeolites, which have a large internal specific surface area, are very suitable for the zeolite matrix. When the antibacterial composition in such a state comes into contact with water, it not only has a large antibacterial effect, but also causes the elution of antibacterial metal ions into the aqueous solution phase. It has the advantage that compared to known bactericides, the concentration of silver, copper and zinc is all below the regulatory values.

前述した如く炭酸塩−抗菌性金属−ゼオライドから成る
本発明の抗菌性組成物は無機系の結合剤や有機系−無機
系の結合剤と共に湿式成形されてビーズ状、タブレット
状、ベレット状、筒状、板状、ハニカム状その他の適当
な形状に成形される。
As mentioned above, the antibacterial composition of the present invention comprising carbonate, antibacterial metal, and zeolide is wet-molded together with an inorganic binder or an organic-inorganic binder to form beads, tablets, pellets, or cylinders. It is formed into a shape, plate shape, honeycomb shape, or other suitable shape.

湿式混和に際して含水率は18〜45%が適量であり、
かかる範囲の含水率を保って3〜5時間の混和を実施す
ることにより成形容易な混和物が得られる。ところで混
和に対して必要とする水分は単に水を上記の組成物に加
えるか、または尿素水溶液を加えることによって供給さ
れる。尿素水溶液を加えることにより抗菌性組成物の焼
成に際して尿素がNH3,CO,、およびH,0の気体
に分解し、その際に抗菌性組成物は上記の気体による発
泡現象のためにより多孔質になる利点がある。
During wet mixing, the appropriate moisture content is 18 to 45%.
By maintaining the moisture content within this range and mixing for 3 to 5 hours, a blend that is easy to mold can be obtained. However, the water required for incorporation can be provided simply by adding water to the above composition or by adding an aqueous urea solution. By adding an aqueous urea solution, urea decomposes into gases such as NH3, CO, and H,0 during calcination of the antibacterial composition, and at this time, the antibacterial composition becomes more porous due to the foaming phenomenon caused by the above gases. There are some advantages.

次に本発明の抗菌性組成物の成形に際して使用される結
合剤について述べる。無機系の結合剤としてはベントナ
イト、ケイソウ土、カオリン、コロイダルシリカまたは
コロイダルアルミナ等が好ましいものとして例示される
。一方有機系の結合剤トシテはセルロース類(メチルセ
ルロース、カルボキシメチルセルロース、ヒドロキシエ
チルセルロース等の結晶性セルロース化合物)、糖蜜、
アルギン酸塩等が好ましい例として挙げられる。
Next, the binder used in molding the antibacterial composition of the present invention will be described. Preferred examples of the inorganic binder include bentonite, diatomaceous earth, kaolin, colloidal silica, and colloidal alumina. On the other hand, organic binders include cellulose (crystalline cellulose compounds such as methylcellulose, carboxymethylcellulose, and hydroxyethylcellulose), molasses,
Preferred examples include alginates and the like.

これらの無機系および有機系の結合剤は単独または併用
して差支えないが、本発明の抗菌性組成物の成形に際し
ては、特に無機系の結合剤の単独または併用ならびに有
機系−無機系の結合剤の組合わせで併用するのが好まし
い。さて上述の結合剤の使用量は抗菌性組成物の構成成
分である炭酸塩やゼオライトの物性、ならびにこれら使
用量の比率により支配されるが、通常の場合は、前記素
材の合量に対して7〜68%が適当の範囲である。有機
系と無機系の結合剤を併用する際は、両者の含量が前記
の7〜68%の範囲であって前者は2〜6が適量である
。次に混和工程を経て所定の形状に成形された炭酸塩−
ゼオライド−抗菌性金属−結合剤よりなる焼成体は10
0℃付近で乾燥された後、一定の形状分布を示すように
それの調整が行なわれる。かかる調整工程を終rした乾
燥成形体は成分として使用している炭酸塩ならびにゼオ
ライトの熱分解開始以下の温度領域で焼成されて実際の
使用に供され得る焼成体が最終的に得られる。この場合
の焼成温度域は使用する成分の種類にも関係するが、通
常の場合、650°〜650℃が適当であり、400°
〜600 ”Cはもつとも好ましい温反域である。上述
の方法により調製される本発明の抗菌性組成物は構造的
にも極めて安定であり、X−線回折では抗菌性金属の酸
化物の存在は殆んど見られず複合体中の抗菌性金属の大
部分はゼオライトに結合して安定に保持されている。
These inorganic and organic binders may be used alone or in combination, but when molding the antibacterial composition of the present invention, in particular, inorganic binders alone or in combination and organic-inorganic bonds may be used. It is preferable to use a combination of agents. Now, the amount of the above-mentioned binder used is controlled by the physical properties of the carbonate and zeolite that are the constituent components of the antibacterial composition, as well as the ratio of these amounts used, but in normal cases, it is based on the total amount of the above materials. A suitable range is 7-68%. When an organic binder and an inorganic binder are used together, the content of both is in the above-mentioned range of 7 to 68%, and the appropriate amount of the former is 2 to 6%. Carbonate is then molded into a predetermined shape through a mixing process.
The fired body made of zeolide-antibacterial metal-binder is 10
After drying at around 0° C., it is adjusted to exhibit a constant shape distribution. The dried molded body that has undergone this adjustment step is fired in a temperature range below the onset of thermal decomposition of the carbonate and zeolite used as components to finally obtain a fired body that can be used in actual use. The firing temperature range in this case is related to the types of ingredients used, but in normal cases, 650° to 650°C is appropriate, and 400°
~600"C is an extremely preferable temperature range. The antibacterial composition of the present invention prepared by the above-mentioned method is structurally extremely stable, and X-ray diffraction shows that the presence of antibacterial metal oxides is not detected. Almost no antibacterial metals are observed, and most of the antibacterial metals in the complex are bound to the zeolite and stably retained.

かかる抗菌性組成物は活性化状態にあるので抗菌力も高
い特徴がある。さらに上述の方法で得られる本発明の抗
菌性組成物は、後述の実施例よりも明らかに、極めて機
械的強度や密度が犬であり、一方抗菌性の保持能力の点
でも優れた利点かあムさらに、かかる焼成体が液体と接
触した場合抗菌性組成物中の抗菌性金属は容易にイオン
化されるので好ましい状態で殺菌が行なえることが確認
された。′また抗菌試験に際して液相への抗菌性金属の
溶出は極めて微量であることが確認された。
Since such an antibacterial composition is in an activated state, it is characterized by high antibacterial activity. Furthermore, the antibacterial composition of the present invention obtained by the above-mentioned method clearly has significantly higher mechanical strength and density than the Examples described below, and also has superior advantages in terms of antibacterial retention ability. Furthermore, it has been confirmed that when such a fired body comes into contact with a liquid, the antibacterial metal in the antibacterial composition is easily ionized, so that sterilization can be carried out under favorable conditions. 'Also, during antibacterial tests, it was confirmed that the elution of antibacterial metals into the liquid phase was extremely small.

次に本発明の実施の態様を実施例により説明するが、本
発明はその要旨を越えぬ限り本実施例に限定されるもの
ではない。
Next, embodiments of the present invention will be described with reference to Examples, but the present invention is not limited to these Examples unless the gist thereof is exceeded.

実施例−1 本実施例は本発明の抗菌性組成物の構成成分である銀ゼ
オライトの調製に関するものである。
Example 1 This example relates to the preparation of silver zeolite, which is a component of the antibacterial composition of the present invention.

比表面積549m”/、!i’、平均粒子径6μmの八
−型ゼオライド微粉末(市販のNaZ−型)、約2幻を
採取し、これに0.1M硝酸銀水溶液約4/と水を加え
て全容積をZljに保持した。かかる状態のスラリー混
合液を室温にて攪拌下に7時間保った。上記のイオン交
換反応によりゼオライトの有するイオン交換基のナトリ
ウムの1部を銀に転2換させてNaAgZ型の形成を行
なった。次に濾過して得られたN a A g Z固形
物の水洗を過剰の銀イオンがなくなるまで実施した後、
NaAgZは100”〜110℃にて乾燥された。本転
換試験によりN a A g Z乾燥粉末約2008.
9が得られた。この場合、乾燥N a A g Z、粉
末中の鉄含量は2.07%であった。
Approximately 2 pieces of 8-type zeolide fine powder (commercially available NaZ-type) with a specific surface area of 549 m''/!i' and an average particle size of 6 μm was collected, and to this was added 0.1M silver nitrate aqueous solution of about 4/2 and water. The total volume was maintained at Zlj.The slurry mixture in this state was kept at room temperature under stirring for 7 hours.A part of the sodium in the ion exchange group of the zeolite was converted to silver by the above ion exchange reaction. Then, the NaAgZ solid obtained by filtration was washed with water until excess silver ions were removed.
The NaAgZ was dried at 100"-110°C. This conversion test yielded a dry powder of about 2008".
9 was obtained. In this case, the iron content in the dry N a A g Z powder was 2.07%.

実施例−2 本実施例は本発明の抗菌性組成物の調製法に関するもの
である。実施例−1により得られた銀−ゼオライド(N
aAgZ−乾燥粉末)35[’に対して150〜200
メツシユの炭酸カルシウムの微粉末を650g加えた。
Example 2 This example relates to a method for preparing the antibacterial composition of the present invention. Silver-zeolide (N
aAgZ-Dry Powder) 150-200 for 35['
650 g of finely powdered calcium carbonate from Metsuyu was added.

上記の混合物に対して無機系の結合剤として100−2
00メツシユのベントナイトの微粉末を60%(210
1を加えてばキサ−による混合を約4時間行なった。次
に前記混合物に対して水26%を加えて湿式混和を約3
時間にわたって実施した。かかる工程により得られた混
和物の成形を双軸成形機を用いて実施して1/16“ベ
レットを得た。引続きベレットの乾燥を100°〜11
0℃で行なった後、それの長さの調整をフラッシャ−を
用いて行なった1、さらに乾燥ベレットを560°〜5
50℃に6時間60分焼成して本発明の抗菌性組成物の
1716′焼成体(Ag含量=0.89%(無水基準)
〕を得た。
100-2 as an inorganic binder for the above mixture.
00 mesh bentonite fine powder 60% (210
When 1 was added, mixing using a mixer was carried out for about 4 hours. Next, 26% water was added to the mixture and wet mixing was carried out for about 30%.
It was carried out over a period of time. The mixture obtained by this process was molded using a twin-shaft molding machine to obtain 1/16" pellets. Subsequently, the pellets were dried at 100° to 11".
After drying at 0℃, the length was adjusted using a flasher1, and the dried pellet was heated at 560℃ to 5℃.
A 1716' fired body of the antibacterial composition of the present invention was baked at 50°C for 6 hours and 60 minutes (Ag content = 0.89% (anhydrous basis))
] was obtained.

本実施例で得られた抗菌性組成物の硬度を第1表に示し
た。また本品の見掛密度の平均値は1、639に達して
いる。
Table 1 shows the hardness of the antibacterial composition obtained in this example. In addition, the average value of the apparent density of this product reached 1,639.

第1表 実施例−2により得られた抗菌性組成物の硬度
(焼成済1 / 16’(0,15cm (以下表記の
値は本例により得られた抗菌性組成物の抜き取り検査を
行なった結果を示したものであり、1/16“プレット
(焼成済)の平均硬度C= 12.3Vペレツトに達し
ている。見掛密度や硬度の平均値より見ても明らかに本
発明の抗菌性組成物の硬度が極めて高く従って耐久性も
大であるので殺菌目的に適合していることを表わしてい
る(実施例−5参照)。
Table 1 Hardness of the antibacterial composition obtained in Example 2 (calcined 1/16' (0.15 cm) The values shown below are based on a sample test of the antibacterial composition obtained in this example. The results show that the average hardness of 1/16" pellets (calcined) C = 12.3V pellets. It is clear that the antibacterial properties of the present invention are evident from the average value of apparent density and hardness. The composition has extremely high hardness and therefore great durability, indicating that it is suitable for sterilization purposes (see Example 5).

実施例−3 本実施例は天然のゼオライト素材を使用して本発明の抗
菌性組成物を調製した例について説明している。
Example 3 This example describes an example in which the antibacterial composition of the present invention was prepared using a natural zeolite material.

比表面積348m’/gを有する天然のモルデナイトゼ
オライト粉末(100〜200メツシユ)2.5kli
+を硝酸銀溶液を用いて、実施例−1に述べたと同一方
法で室温下にイオン交換を実施して、モルデナイトの有
する交換基の一部の金属を銀に転換して銀置換型の天然
のモルデナイトを得た。
Natural mordenite zeolite powder (100-200 mesh) with specific surface area 348m'/g 2.5kli
+ was ion-exchanged using a silver nitrate solution at room temperature in the same manner as described in Example 1, and some of the metals in the exchange groups of mordenite were converted to silver, resulting in silver-substituted natural Obtained mordenite.

次に上記の銀型モルデナイトの乾燥粉末2.5kgを採
取し、これに対して150〜200メツシユの粉末状の
炭酸カルシウムを28.6%(650,1加えた。さら
に上記混合物に対して無機系の結合剤として100−2
00メツンユのベントナイトの微粉末を1a15(44
8g)と有機系の結合剤としてメチルセルロース(Me
thyl cellulose )〔東京化成工業株式
会社の市販品: 7.000〜10.0OOcps(2
0℃に於ける2%水溶液の粘度)〕を22%59F)添
加してミキサーによる混合を2時間行なった。
Next, 2.5 kg of the above-mentioned dry powder of silver-type mordenite was collected, and 28.6% (650.1%) of powdered calcium carbonate of 150 to 200 meshes was added to it. 100-2 as a binder in the system
00 metsunyu fine bentonite powder 1a15 (44
8g) and methylcellulose (Me
thyl cellulose) [Commercial product from Tokyo Kasei Kogyo Co., Ltd.: 7.000-10.0OOcps (2
22% viscosity of an aqueous solution (at 0° C.)] was added and mixed using a mixer for 2 hours.

次に上記混合粉末に対して6%尿素水溶液を加えて湿式
混和を6時間10分実施した。この場合混和終了時の含
水率は27qbであった。上記工程で得られた混和物の
成形を双軸成型機を用いて実施して1/16”ベレット
を得た。引続きペレットの乾燥を100°〜110℃で
行なった後それの長さの調整を7ラツシヤーにより実施
した。
Next, a 6% aqueous urea solution was added to the mixed powder, and wet mixing was carried out for 6 hours and 10 minutes. In this case, the moisture content at the end of mixing was 27 qb. The mixture obtained in the above process was molded using a twin-screw molding machine to obtain 1/16" pellets. Subsequently, the pellets were dried at 100° to 110°C and their length was adjusted. was carried out using 7 lashers.

最終的に1/16“乾燥ペレットを550°−560℃
に3時間焼成して本発明の抗菌性組成物である1/16
N焼成体CAg含量−1.52%(無水基準)〕を得た
Finally 1/16" dry pellets at 550°-560℃
1/16 which is the antibacterial composition of the present invention by baking for 3 hours.
An N fired body with a CAg content of -1.52% (anhydrous basis) was obtained.

第2表 実施例−6により得られた抗菌性組成物(焼成
済1/16′′ペレツト)の硬度本例で得られた抗菌性
組成物の硬度を第2表に記載したが、表記の値は抜き取
り検査を行なった結果を示したものである。1/16’
ペレット焼成体の平均硬度すは13.41V/ベレツト
に達している。これより見ても本発明の抗菌性組成物の
硬度が非常に優れていることは明白である。
Table 2 Hardness of the antibacterial composition obtained in Example 6 (calcined 1/16'' pellets) The hardness of the antibacterial composition obtained in this example is listed in Table 2. The values indicate the results of sampling tests. 1/16'
The average hardness of the fired pellets reached 13.41 V/Bellet. From this, it is clear that the antibacterial composition of the present invention has excellent hardness.

実施例−4 本例は実施例−2で得られた本発明の抗菌性組成物の抗
菌力の評価ならびに実施例−2および6で得られた抗菌
性組成物に対する真菌の死滅率に関するものである。
Example 4 This example relates to the evaluation of the antibacterial activity of the antibacterial composition of the present invention obtained in Example 2 and the fungal killing rate for the antibacterial compositions obtained in Examples 2 and 6. be.

抗菌力の評価に際しては被検物質を100y/dの濃度
に県濁し、ディスクにしみこませた。培地は細菌類につ
いてはMuel Ier Hinton培地、真菌につ
いてはサブロー寒天培地を使用した。被検菌は生理的食
塩水10II/ 、7浮遊させた培地に0.1mlコン
ラージ棒で分散させた。被検ディスクをその上にはりつ
けた。
When evaluating the antibacterial activity, the test substance was precipitated to a concentration of 100 y/d and soaked into the disk. As the culture medium, Muel Ier Hinton medium was used for bacteria, and Sabouraud agar medium was used for fungi. The test bacteria were dispersed using a 0.1 ml Conlage rod in a medium suspended in 10 II/7 saline. The disk to be tested was attached onto it.

判定に際しては、67℃で18時間保持して阻止帯形成
の有無を観察した。一方真菌については60℃で7日間
保持した後判定を行なった。
For determination, the sample was maintained at 67° C. for 18 hours and the presence or absence of inhibition zone formation was observed. On the other hand, fungi were evaluated after being kept at 60°C for 7 days.

真菌の死滅率の測定は下記の方法によった。The fungal mortality rate was measured by the following method.

Aspergillus flavusの胞子系濁液(
10’/m4’)の111tlを被検物質の県濁液(5
00my/m)、9mJノ中へ注入混釈して24時間3
0’C,で作用させた。
Aspergillus flavus spore suspension (
111 tl of 10'/m4') was added to the prefectural slurry of the test substance (5
00my/m), injected and mixed into 9mJ for 24 hours3
It was operated at 0'C.

これの0.1コをサブロー寒天培地に分散させて30℃
で48時間保持した後、生存個数を測定し死滅率を算出
した。
Disperse 0.1 of this on Sabouraud agar medium and hold at 30°C.
After holding for 48 hours, the number of surviving cells was measured and the mortality rate was calculated.

第3表 実施例−2および乙により得られた抗菌性組成
物の抗菌性評価 第6表は実施例−2により得られた本発明の抗菌性組成
物〔1/16“ベレット(焼成済):Ag=0.89%
(無水基準)〕を微粉末として、これを用いて抗菌性の
評価を行なった結果を示したものである。表記した如く
4種の何れの菌についても好結果が得られることが判明
した。なお比較例として実施例−1のゼオライト素材(
A−型ゼオライドのNa−型乾燥粉末)の抗菌性の評価
の結果を第3表に付記したが素材のゼオライトのみでは
抗菌効果は全(見られない。
Table 3 Antibacterial evaluation of antibacterial compositions obtained in Example-2 and B :Ag=0.89%
(anhydrous standard)] was used as a fine powder to evaluate its antibacterial properties. As shown, it was found that good results were obtained for all four types of bacteria. As a comparative example, the zeolite material of Example-1 (
The results of the antibacterial evaluation of the Na-type dry powder of A-type zeolide are listed in Table 3, but the antibacterial effect is not seen at all with the zeolite material alone.

また第4表は実施例−2により得られた本発明の抗菌性
組成物[1/1(S“ベレット(焼成済);Ag=0.
89%(無水基準)〕とそれの粉末ならびに実施例−6
の抗菌性組成物〔1/16″ペレツト〔焼成済):Ag
=1.52%(無水基準)〕についての死滅率を真菌と
してAspergillus flavusを使用して
測定したものである。表より明らかに本発明の抗菌性組
成物は真菌に対して極めて高い抗菌効果を発揮すること
は疑いもない。一方同表の比較例に付記した如(合成ま
たは天然のゼオライト素材のみでは真菌に対する効果は
全く認められない。但し第4表記載の粉砕品の抗菌力の
評価試験と死滅率の測定は前述の方法と同様である。
Table 4 also shows the antibacterial composition of the present invention obtained in Example-2 [1/1 (S" pellet (calcined); Ag=0.
89% (anhydrous standard)] and its powder and Example-6
Antibacterial composition [1/16'' pellets [calcined]: Ag
= 1.52% (anhydrous standard)] was measured using Aspergillus flavus as the fungus. As is clear from the table, there is no doubt that the antibacterial composition of the present invention exhibits extremely high antibacterial effects against fungi. On the other hand, as noted in the comparative example in the same table (synthetic or natural zeolite materials alone have no effect on fungi. The method is similar.

また表記の成型体の死滅率の測定はAspergill
usfluvusの胞子系濁液(104個/−)に抗菌
性の成型体を浸漬して、前記の死滅率測定法に従って実
施された。
In addition, the mortality rate of the molded body described above was measured using Aspergill.
An antibacterial molded body was immersed in a spore suspension of S. usfluvus (104 spores/-), and the killing rate was measured according to the method described above.

第4表 本発明の抗菌性組成物を用いて真菌の死滅率の
測定 a)実施例−2により得られた本発明の抗菌性組成物1
/16“ペレットの微粉末試料 b)実施例−1に使用したゼオライト素材二人型ゼオラ
イト(Na−型粉末乾燥試料) C)実施例−3に使用した天然のモルデナイトゼオライ
):100−200メツシュ乾燥試料実施例−5 本実施例は本発明の抗菌性組成物の耐水性と抗菌力保持
能の試験に関するものである。
Table 4 Measurement of fungal killing rate using the antibacterial composition of the present invention a) Antibacterial composition 1 of the present invention obtained in Example-2
/16" pellet fine powder sample b) Zeolite material used in Example-1 Two-person type zeolite (Na-type powder dry sample) C) Natural mordenite zeolite used in Example-3): 100-200 mesh Dry Sample Example-5 This example relates to testing the water resistance and ability to retain antibacterial activity of the antibacterial composition of the present invention.

実施例−2により得られた本発明の抗菌性組成物(焼成
済1/16”ペレット)約15.9を内径22mのガラ
ス製の小カーラムに採取し、水を用いて洗逆してこれの
均一充填を行なった。これに市の水道水(Ca”= 1
7 P ; Mg2″−=6.8ppm;CI=34p
)を33±1.5 ml /minの流速で通水して本
発明組成物の耐水性と抗菌力保持能に関する試験を実施
した。通水液量と小カーラムよりの流出液中の銀濃度の
関係を第5表に示した。試験に際しては液量が表記に達
した時カーラムの底部よりの流出液の少量を採水し、原
子吸光法により液中の銀の濃度を定量した。第5表より
見ても本発明の抗菌性組成物よりの銀の溶出は極めて少
なく ppb−量であり満足すべき結果が得られた。な
お通水試験の開本組成物成形体の形状破損は全く見られ
ず、従って成形体の耐水性とも非常に優れていることが
判明した。次に前述の全流出液量が第5表 本発明組成
物の通水試験 10.0 5 30.0 4 80.0 5 101.0 7 153.0 6 201.0 8 2011の通水試験を終了した使用済みの抗菌性組成物
の抗菌力保持の持続性を確認するために真菌に対する死
滅率の測定を、Aspergillus flavus
を使用して実施した。本測定の方法は実施例−4に示し
た真菌の死滅率の測定と同一であるので結果のみを第6
表に示した。この表より見ても本発明の組成物の抗菌効
果は大であり、且つ長時間に亘って抗菌性が持続される
ことは明白である。
Approximately 15.9 pieces of the antibacterial composition of the present invention (calcined 1/16" pellets) obtained in Example 2 were collected in a small glass column with an inner diameter of 22 m, and washed back with water. To this, city tap water (Ca” = 1
7P; Mg2″-=6.8ppm; CI=34p
) at a flow rate of 33±1.5 ml/min to conduct a test regarding the water resistance and antibacterial ability of the composition of the present invention. Table 5 shows the relationship between the amount of water passing through and the silver concentration in the effluent from the small column. During the test, when the liquid volume reached the indicated value, a small amount of the liquid flowing out from the bottom of the column was sampled, and the concentration of silver in the liquid was determined by atomic absorption spectrometry. As can be seen from Table 5, the elution of silver from the antibacterial composition of the present invention was extremely small, in ppb-amount, and a satisfactory result was obtained. It should be noted that no damage to the shape of the molded product of the open-ended composition was observed in the water flow test, and it was therefore found that the molded product had excellent water resistance. Next, the above-mentioned total effluent volume is shown in Table 5 Water flow test of the composition of the present invention 10.0 5 30.0 4 80.0 5 101.0 7 153.0 6 201.0 8 Water flow test of 2011 In order to confirm the durability of the antibacterial activity of the used antibacterial composition, the fungal kill rate was measured using Aspergillus flavus.
It was carried out using Since the method for this measurement is the same as that for measuring the fungal mortality rate shown in Example 4, only the results are shown in Example 6.
Shown in the table. It is clear from this table that the antibacterial effect of the composition of the present invention is large and that the antibacterial properties are maintained for a long time.

第6表 通水試験終了済みの本発明の組成物を用いた。Table 6: Compositions of the present invention that had been subjected to a water flow test were used.

被検物質 死滅率(%) (通水テスト終了品、1/16“ペレット)実施例−6 本実施例は本発明の抗菌性組成物の構成の一成分として
使用するゼオライトに予め銅を保持させた銅−A−!ゼ
オライ) (NaCuZ)の調製方法に関するものであ
る。八−型ゼオライドの乾燥粉末(比表面積676ゼ/
I;化学組成、1.01NatO−A lt Os −
i、96sio2− XH2O)約1.6 k&に対し
て0,2M硫酸第2銅溶液4.8ノと水とを加えて全容
量を約567ノに保持した。この場合希酸または希アル
カリ溶液を用いて混合液のpaを4.6に調節した。混
合液は室温にて8時間攪拌した。
Test substance Mortality rate (%) (Water flow test completed product, 1/16" pellet) Example-6 This example is a method in which copper is pre-preserved in the zeolite used as a component of the antibacterial composition of the present invention. This paper relates to a method for preparing copper-A-!zeolite (NaCuZ).Dry powder of 8-type zeolide (specific surface area 676
I; Chemical composition, 1.01NatO-AltOs-
i, 96 sio 2- In this case, the pa of the mixed solution was adjusted to 4.6 using a dilute acid or dilute alkaline solution. The mixture was stirred at room temperature for 8 hours.

上記のイオン交換反応終了後遠心分離を行なって固相を
炉別した。次にゼオライト固相の水洗を硫酸イオンが認
められなくなるまで実施した後、得られたNaCuZを
100°〜105℃で乾燥した。
After the completion of the above ion exchange reaction, centrifugation was performed to separate the solid phase. Next, the zeolite solid phase was washed with water until no sulfate ions were observed, and then the obtained NaCuZ was dried at 100° to 105°C.

本実施例ではNaCuZ乾燥粉末1.55kgが得られ
た。
In this example, 1.55 kg of NaCuZ dry powder was obtained.

実施例−6NaCuZの調製 状 量:1.55kg(乾燥粉末) NaCuZの固相金属成分: c?=0.2237 ;
陪+’=0.7763(当量分率) 実施例−7 本実施例は本発明の抗菌性組成物の一成分として使用す
るゼオライトに予め銅を保持させた銅−Am型ゼオライ
) (NaC’uZ:)の調製に関するものである。実
施例−6に使用したと同じA−型ゼオライド粉末1.6
 kflに対して0.6M硫酸第2銅溶液5.61と水
とを加えて全容量を約5.91に保持した。この場合混
合液のpHを4.5に調節した。
Example-6 Preparation form of NaCuZ Amount: 1.55 kg (dry powder) Solid phase metal component of NaCuZ: c? =0.2237;
+' = 0.7763 (equivalent fraction) Example 7 This example is a copper-Am type zeolite (NaC' It concerns the preparation of uZ:). Same A-type zeolide powder 1.6 as used in Example-6
To kfl, 5.61 parts of 0.6M cupric sulfate solution and water were added to maintain the total volume at approximately 5.91 parts. In this case, the pH of the mixture was adjusted to 4.5.

混合液を昇温して約65℃に保った後、同温度にて4時
間連続攪拌を行なった。
After the mixture was heated and maintained at about 65° C., it was continuously stirred at the same temperature for 4 hours.

上述のイオン交換反応を終了後遠心分離を行なって固相
を炉別した。
After the above ion exchange reaction was completed, centrifugation was performed to separate the solid phase.

次にゼオライト固相の水洗を硫酸イオンが認められなく
なるまで実施してから得られたNaCuZを100°〜
105℃で乾燥した。本実施例ではNaCuZ乾燥粉末
1.57kgが得られた。
Next, the zeolite solid phase was washed with water until no sulfate ions were observed, and the obtained NaCuZ was
It was dried at 105°C. In this example, 1.57 kg of NaCuZ dry powder was obtained.

実施例−7NaCuZの調製 状 量:1.57kli+(乾燥粉末)NaCuZの固
相金属成分: Cu” =0.3779 ;Na =0
.6221(当量分率) 実施例−8 本実施例は本発明の抗菌性組成物の構成の一成分として
使用するゼオライトに予め亜鉛を保持させた亜鉛−A−
型ゼオライド(NaZnZ)の調製に関するものである
。八−型ゼオライドの乾燥粉末(比表面ft692d/
、9;化学組成、1.02NatO・Al2O3・1.
94Si02・XH,O)約1,3躊に対して0.8M
塩化亜塩溶液、6.6ノと水とを加えて全容量を約4.
61に保持した。この場合混合液のpHを4.2に調節
した。混合液を昇温して50℃に保った後、同温度にて
6時間連続攪拌を行なった。
Example-7 Preparation of NaCuZ Amount: 1.57 kli + (dry powder) Solid phase metal component of NaCuZ: Cu" = 0.3779; Na = 0
.. 6221 (equivalent fraction) Example 8 This example shows zinc-A-, which is prepared by holding zinc in zeolite used as a component of the antibacterial composition of the present invention.
The present invention relates to the preparation of type zeolide (NaZnZ). Dry powder of 8-type zeolide (specific surface ft692d/
, 9; Chemical composition, 1.02NatO.Al2O3.1.
94Si02・XH,O) 0.8M for approximately 1.3 h
Add 6.6 g of subsalt chloride solution and water to bring the total volume to about 4 g.
It was held at 61. In this case, the pH of the mixture was adjusted to 4.2. After raising the temperature of the mixed solution and keeping it at 50°C, continuous stirring was performed at the same temperature for 6 hours.

上述のイオン交換終了後遠心分離を行なって固相を戸別
した。次にゼオライト同相の水洗を塩素イオンが認めら
れた< 1xるまで実施してから、得られたNaZnZ
を100°〜105℃で乾燥した。本実施例ではNaZ
nZの乾燥粉末1.22 kgが得られプこ。
After the above-mentioned ion exchange was completed, centrifugation was performed to separate the solid phase. Next, the zeolite in phase was washed with water until chloride ions were observed <1x, and the resulting NaZnZ
was dried at 100° to 105°C. In this example, NaZ
1.22 kg of dry powder of nZ was obtained.

実施例−8NaZnZの調製 収 量:1.22時(乾燥粉末) Na Zn Zの固相金属成分: Zn”=0.5914 ; Na+=0.4086(当
情分率)実施例−9 本実施例は本発明の抗菌性組成物の一成物として使用す
る天然ゼオライトに予め亜鉛を保持させた亜鉛−クリッ
プチロライト型の調製方法に関すルモのである。天然の
クリノプチロライト(北米産)の微粉末約60011に
対して1M塩化亜鉛溶液1.2ノ加えた。この場合得ら
れた混合液のpHを4.1に調節した。上記のゼオライ
トを含む混合液を室温にて6時間攪拌した。上記のイオ
ン交換反応終了後遠心分離を行なって固相を戸別し、そ
れの水洗を塩素イオンが認められなくなるまで実施して
から100°〜105℃で乾燥した。本実施例では亜鉛
−クリップチロライト乾燥粉末580Iiが得られた。
Example-8 Preparation of NaZnZ Yield: 1.22 hours (dry powder) Solid phase metal component of NaZnZ: Zn''=0.5914; Na+=0.4086 (current fraction) Example-9 Present implementation An example is given of a method for the preparation of a zinc-criptylolite type in which natural zeolite is preloaded with zinc for use as a component of the antibacterial composition of the present invention.Natural clinoptilolite (from North America) 1.2 parts of 1M zinc chloride solution was added to approximately 60011 of the fine powder.The pH of the resulting mixture was adjusted to 4.1.The mixture containing the zeolite was stirred at room temperature for 6 hours. After the completion of the above ion exchange reaction, centrifugation was performed to separate the solid phase, which was washed with water until no chloride ions were observed, and then dried at 100° to 105°C.In this example, zinc- A dry Klip Tyrolite powder 580Ii was obtained.

実施例−9亜鉛クリノプチロライトの調製収 量:58
0.!i’(乾燥粉末) 亜鉛含有量:Zn=1.74%(無水基準)次に、本発
明の抗菌性組成物を第7表に例示した条件で成形した。
Example-9 Preparation of zinc clinoptilolite Yield: 58
0. ! i' (dry powder) Zinc content: Zn = 1.74% (anhydrous basis) Next, the antibacterial composition of the present invention was molded under the conditions illustrated in Table 7.

実施例−10および11はNaCuZおよび炭酸カルシ
ウム粉末を用いてそhぞれベントナイトおよびベントナ
イトとメチルセルロース結合剤の併用を行なって成形を
実施したものである、後者の場合は有機結合剤としてメ
チルセルロース(20℃に於ける2%水溶液の粘度= 
7. OOO〜10.000cps)2%の添加を行な
っている、実施例−12ではNaZnZと炭酸カルシウ
ムの混合粉末にベントナイト結合剤のみを添加して湿式
成形を実施し、また実施例−16は亜鉛−クリノプチロ
ライト(天然ゼオラ゛イト)に炭酸カルシウム粉末を加
オて得られた混合物に対して、実施例−12と同様に、
ベントナイト結合剤のみを添加して成形を行なったもの
である。上述の湿式混和で必要とする水分は表示した如
く単に水を加えるか、または6%尿素水溶液を添加する
ことにより行なって含水率を表記の如(保持した。次に
成形体ベレットの乾燥は倒れの例でも100°〜105
°Cで実施され、一方乾燥ペレットの焼成は実施例10
−12でFi510°〜520℃の温度域で4.5時間
、また実施例−16では560°〜540℃の温度域で
4時間に真って実施された。
In Examples 10 and 11, NaCuZ and calcium carbonate powder were molded using bentonite and a combination of bentonite and methyl cellulose binder, respectively. In the latter case, methyl cellulose (20 Viscosity of 2% aqueous solution at °C =
7. In Example-12, only bentonite binder was added to the mixed powder of NaZnZ and calcium carbonate and wet molding was carried out, and in Example-16, zinc- For a mixture obtained by adding calcium carbonate powder to clinoptilolite (natural zeolite), in the same manner as in Example 12,
Molding was performed by adding only a bentonite binder. The moisture required in the wet mixing described above was achieved by simply adding water as indicated, or by adding a 6% urea aqueous solution, and the moisture content was maintained as indicated.Next, the molded pellets were dried by collapsing. Even in the example of 100° to 105
°C, while the calcination of the dry pellets was carried out in Example 10.
In Example-12, the test was carried out in a temperature range of 510° to 520°C for 4.5 hours, and in Example-16, the test was carried out in a temperature range of 560° to 540°C for 4 hours.

第8表は本成形で得られた抗菌性のベレット焼成体の物
性値を示したものであり、表中のベレットの平均強度も
大で、また見掛密度も高(・値を示している。
Table 8 shows the physical property values of the antibacterial fired pellets obtained by this molding, and the average strength of the pellets in the table is high, and the apparent density is also high (. .

表記の物性値よりみても亜鉛または銅を含有する抗菌性
組成物の湿式成形に際して炭酸カルシウムの如き炭酸塩
を用いる効果は明白である。
The effect of using a carbonate such as calcium carbonate in wet molding an antibacterial composition containing zinc or copper is clear from the physical property values listed.

第8表 抗菌性組成物の成形体の物性値次に本発明の抗
菌性組成物の抗菌試験を成形体ならびに、それの粉砕品
の両方について実施した。
Table 8: Physical properties of molded bodies of antibacterial composition Next, antibacterial tests of the antibacterial composition of the present invention were carried out on both molded bodies and crushed products thereof.

成形体の粉砕品についての抗菌力の評価は下記の方法に
より実施された。粉砕品の被検物質を100+p/ml
の濃度に県濁しディスクにしみこませた。培地は細菌類
についてはMueller Hinton培地を、真菌
についてはサブロー寒天培地を使用した。被検菌は生理
食塩水に108個/プ浮遊させ培地にQ、 i mlコ
ンラージ棒で分散させた。被検ディスクをその上にはり
つけた。
The antibacterial activity of the pulverized molded product was evaluated by the following method. 100+p/ml of pulverized test substance
It was soaked into a prefecture turbid disk to a concentration of . Mueller Hinton medium was used for bacteria, and Sabouraud agar medium was used for fungi. The test bacteria were suspended in physiological saline at a rate of 10 8 cells/p, and dispersed in the medium using a Q, 1 ml Conlage rod. The disk to be tested was attached onto it.

判定に際しては細菌類は67℃で18時間経過後に阻止
帯の有無を観察した。真菌は30℃で1週間経過後に判
定した。
For judgment, the presence or absence of an inhibition zone was observed for bacteria after 18 hours had passed at 67°C. Fungi were determined after one week at 30°C.

一方真菌の死滅率の測定は下記の方法により実施した。On the other hand, the fungal mortality rate was measured by the following method.

Aspergi I Ius f Iavusの胞子系
濁液(104個/d)の1mlを被検物質系濁液(50
0ダ/mJ)9Mの中へ注入混釈し、60℃で24時間
作用させた。そのo、 i mJをサブロー寒天培地に
分散させ68℃で48時間経過後に生存個体数を測定し
死滅率をめた。
1 ml of Aspergi Ius f Iavus spore suspension (104 spores/d) was added to the test substance suspension (50
The mixture was injected and mixed into 9M (0 da/mJ) and allowed to act at 60°C for 24 hours. The o, i mJ was dispersed on a Sabouraud agar medium, and after 48 hours at 68°C, the number of surviving individuals was measured to determine the mortality rate.

次に成形体の抗菌力の評価は成形体を被検ディスクとし
て前述の評価法に従って実施し、また成形体に対する真
菌の死滅率測定はAspergi l1usf 1av
usの胞子系濁液(104個/ml)に抗菌性の成形体
を浸漬して、前述の死滅率測定法に従って実施した。
Next, the antibacterial activity of the molded body was evaluated using the molded body as a test disk according to the above-mentioned evaluation method, and the fungal kill rate of the molded body was measured using Aspergi l1usf 1av.
The antibacterial molded body was immersed in a suspension of spores (10 4 spores/ml) of U.S. spores, and the killing rate was measured according to the method described above.

抗菌試験の結果を第9〜10表に示した。本発明の抗菌
性組成物の真菌(Aspergillus flavu
s)に対する死滅率は第9表に記載した如くであり、殺
菌力は優れている。また第10表に4種の細菌に関する
抗菌性の評価結果を示した。画表に記載した比較例−人
は被検体として塩基性炭酸銅の微粉末(CuCO3+ 
Cu (0H)z ・Ht O(近似組成);Cu=5
5.2%〕を用いて試験したものであるが、(i’Jれ
の抗菌試験でも効果が無いことが判明した。
The results of the antibacterial test are shown in Tables 9 and 10. The fungus (Aspergillus flavu) of the antibacterial composition of the present invention
The mortality rate against s) is as shown in Table 9, and the bactericidal activity is excellent. Furthermore, Table 10 shows the results of antibacterial evaluation regarding four types of bacteria. Comparative example shown in the diagram - Humans were tested using basic copper carbonate fine powder (CuCO3+) as a test subject.
Cu (0H)z ・Ht O (approximate composition); Cu = 5
5.2%], but it was also found to have no effect in the antibacterial test of (i'J).

上記粉末中の銅含量は表記の如<53.2%の高い値に
達しているにもかかわらず抗菌力が全く見られないこと
は、これの解離が殆んど行なわれないために抗菌性の銅
イオンの放出が見られないことに起因すると考えられる
。−力木発明に於いては抗菌性の亜鉛または銅はゼオラ
イトに安定に結合されており、こわの成形体の強度や密
度を増大させるために炭酸カルシウム等の炭酸塩を複合
させて結合剤共存下の成型、乾燥、および坑底を行なっ
ている。本焼成体中の抗菌金属はゼオライトと結合して
おり炭酸塩とは化合物を形成していない。
Although the copper content in the above powder reaches a high value of <53.2% as indicated, no antibacterial activity is observed. This is thought to be due to the fact that no release of copper ions was observed. - In the strength wood invention, antibacterial zinc or copper is stably bonded to zeolite, and in order to increase the strength and density of the stiff molded product, a carbonate such as calcium carbonate is combined with the coexistence of a binder. The molding, drying, and bottom of the mine are being carried out below. The antibacterial metal in the fired body is combined with the zeolite and does not form a compound with the carbonate.

このために多孔性のゼオライトの活性点付近で亜鉛や銅
イオンの解離が迅速に行なわれて少量の抗菌性金属の存
在でも良好な抗菌力を発揮1−ることか可能と考えられ
る。かかる点は本発明の特徴的利点の一つである。
For this reason, it is thought that zinc and copper ions are rapidly dissociated near the active sites of porous zeolite, and that it is possible to exhibit good antibacterial activity even in the presence of a small amount of antibacterial metal. This point is one of the characteristic advantages of the present invention.

第9表 真菌の死滅率の測定 〈実施例−14〉 本実施例は本発明の抗菌性組成物の成形体(ベレット)
の通水試験に関するものである。実施例−16で得られ
た抗菌性h6〃ペレッ) (Cu=2.98%(無水基
準);C=5.12kg/ベレット;見掛密度=1.2
56)を内径22囮のガラス製カーラムに約7I採取し
た。水にて逆洗した後抗菌ベレットの均一充填を実施し
た。次に市の水道水を15〜20 ml /wit+の
流速で下降流にて通水して、カーラムよりの流出液量と
流出液中に含まれる銅濃度との関係を試験した(第11
表参照)。銅の溶出は微量づつ好ましい状態で行なわれ
ることが判明した(一般河川放流時の銅の規制値:6碧
以下)。また通水の間暑6〃ペレットの破損は全く見ら
れずベレットの耐水性も充分であることが判明した。な
お2001の通水試験を終了後使用済みベレットの一部
を用いてAspergNIus flavusに対する
抗菌能を測定したところ死滅率は41.8%であり、依
然効果があることが確認された。
Table 9 Measurement of fungal killing rate <Example-14> This example is a molded article (pellet) of the antibacterial composition of the present invention.
This is related to the water flow test. Antibacterial h6 pellet obtained in Example-16 (Cu = 2.98% (anhydrous standard); C = 5.12 kg/pellet; Apparent density = 1.2
Approximately 7 I of 56) was collected in a glass column with an inner diameter of 22 decoys. After backwashing with water, uniform filling of antibacterial pellets was carried out. Next, city tap water was passed downward at a flow rate of 15 to 20 ml/wit+, and the relationship between the amount of liquid effluent from the car ram and the copper concentration contained in the effluent was tested (11th
(see table). It was found that the elution of copper was carried out in small amounts under favorable conditions (regulatory value for copper when discharged into general rivers: 6 or less). Further, no breakage of the pellets was observed during the water flow, indicating that the pellets had sufficient water resistance. After completing the water flow test in 2001, the antibacterial ability against AspergNIus flavus was measured using a portion of the used pellets, and the killing rate was 41.8%, confirming that it was still effective.

第11表通水試験(実施例−10、’16./ベレット
使用)次に上記と全く同様な通水試験を実施例−12で
傅られた抗菌性暑6〃ペレッ) (Zr+−7,28%
;C=6.96に9/ベレット;見掛密度−1,359
)約7gを使用して行なった。試験条件は前例と全く同
様であるので省略する。通水試験の結果を第12表に示
したが流出液中の亜鉛濃度は130〜190 ppbに
保持されている(一般河川放流時の亜鉛の規制値:5解
以下)。また通水試験の間暑6〃ペレットの破損は全く
認められずベレットの耐水性も良好であった。通水試験
終了後、使用済みベレットの一部を用いたAsperg
NIus flavusに対する死滅率の測定値は19
%であった。
Table 11 Water flow test (Example-10, '16./Using pellets) Next, a water flow test completely similar to the above was conducted using the antibacterial heat 6 pellets (Zr+-7, 28%
;C=6.96 to 9/beret;apparent density -1,359
) Approximately 7 g was used. The test conditions are exactly the same as the previous example, so they will be omitted. The results of the water flow test are shown in Table 12, and the zinc concentration in the effluent was maintained at 130 to 190 ppb (regulatory value for zinc when discharged into a general river: 5 or less). Further, during the water flow test, no breakage of the pellets was observed during the heat 6 test, and the water resistance of the pellets was also good. After completing the water flow test, Asperg using a part of the used pellet
The measured mortality rate for NIus flavus was 19
%Met.

第12表 通水試験(実施例−7、暑6〃べWト使用)
本発明の抗菌性組成物は殺菌目的で液相のみならず気相
で使用しても充分な効果が発揮出来ると期待される。
Table 12 Water flow test (Example-7, heat 6〃be used)
The antibacterial composition of the present invention is expected to be sufficiently effective when used not only in a liquid phase but also in a gas phase for the purpose of sterilization.

特許出願人 萩 原 善 次Patent applicant Yoshitsugu Hagihara

Claims (1)

【特許請求の範囲】 1 炭酸塩、ゼオライトおよび抗菌性金属から成る抗菌
性組成物。 2 炭酸塩、ゼオライト、抗菌性金属および結合剤から
成る抗菌性組成物。 6 炭酸塩、ゼオライト、抗菌性金属および結合剤から
成る複合体に水または尿素水溶液の存在下に湿式混和を
実施し、得られた混和物を希望の形状に成形し、引続き
乾燥し、最終的に炭酸塩の熱分解開始以外の温度域であ
って且つゼオライトの熱分解開始以下の温度域で焼成す
ることから成る焼成体状抗菌性組成物を製造する方法。 4 抗菌性金属が銀、亜鉛、銅およびそれらの一混合物
から成る群から選択される特i¥f請求の範囲第1乃至
第2項記載の組成物。 5 抗菌性金属が銀、亜鉛、銅およびそれらの混合物か
ら成る群から選択される特許請求の範囲第6項記載の方
歩。 6 抗菌性金属が銀である特許請求の範囲第6項記載の
方法。 7 銅含量が焼成体中o、ooi〜20%である特許請
求の範囲第6項記載の方法。 8 抗菌性金属が亜鉛である特許請求の範囲第6項記載
の方法。 9 亜鉛含量が焼成体中央(とも0.04%である特許
請求の範囲第8項記載の方法。 10 抗菌性金属が銅である特許請求の範囲第6項記載
の方法0 11、銅含量が焼成体中央くとも0.06%゛Cある特
許請求の範囲第10項記載の方法。
[Claims] 1. An antibacterial composition comprising a carbonate, a zeolite, and an antibacterial metal. 2. Antimicrobial composition consisting of carbonate, zeolite, antimicrobial metal and binder. 6 Wet blending the composite of carbonate, zeolite, antimicrobial metal and binder in the presence of water or aqueous urea solution, molding the resulting blend into the desired shape, subsequent drying and final mixing. 1. A method for producing an antibacterial composition in the form of a fired body, which comprises firing at a temperature range other than the start of thermal decomposition of carbonate and below the start of thermal decomposition of zeolite. 4. A composition according to claims 1 to 2, wherein the antimicrobial metal is selected from the group consisting of silver, zinc, copper and a mixture thereof. 5. The method of claim 6, wherein the antimicrobial metal is selected from the group consisting of silver, zinc, copper and mixtures thereof. 6. The method according to claim 6, wherein the antibacterial metal is silver. 7. The method according to claim 6, wherein the copper content in the fired body is from o, ooi to 20%. 8. The method according to claim 6, wherein the antibacterial metal is zinc. 9. The method according to claim 8, in which the zinc content is 0.04% in the center of the fired body. 10. The method according to claim 6, in which the antibacterial metal is copper. 11. 11. The method according to claim 10, wherein the center of the fired body is at least 0.06% °C.
JP20871883A 1983-11-07 1983-11-07 Antibacterial composition and its production Granted JPS60100504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20871883A JPS60100504A (en) 1983-11-07 1983-11-07 Antibacterial composition and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20871883A JPS60100504A (en) 1983-11-07 1983-11-07 Antibacterial composition and its production

Publications (2)

Publication Number Publication Date
JPS60100504A true JPS60100504A (en) 1985-06-04
JPS6328402B2 JPS6328402B2 (en) 1988-06-08

Family

ID=16560931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20871883A Granted JPS60100504A (en) 1983-11-07 1983-11-07 Antibacterial composition and its production

Country Status (1)

Country Link
JP (1) JPS60100504A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190536A (en) * 1984-12-28 1986-08-25 ジヨンソン マツセイ パブリツク リミテイド カンパニ− Antibacterial composition
JPS63154746A (en) * 1986-12-19 1988-06-28 Kanebo Ltd Antibacterial film
JPS63239205A (en) * 1986-10-15 1988-10-05 Kanebo Ltd Zeolite-active carbon composite material having antibacterial, mildew-proofing and cod lowering function and production thereof
JPH01164720A (en) * 1987-12-21 1989-06-28 Shinagawa Nenryo Kk Antibacterial amorphous aluminosilicate salt
US4906464A (en) * 1987-12-26 1990-03-06 Shinagawa Fuel Co., Ltd. Method for preparing dispersions containing antibiotic power
US4938958A (en) * 1986-12-05 1990-07-03 Shinagawa Fuel Co., Ltd. Antibiotic zeolite
US4938955A (en) * 1987-04-22 1990-07-03 Shingawa Fuel Co., Ltd Antibiotic resin composition
FR2654426A1 (en) * 1989-11-14 1991-05-17 Sangi Kk ANTIBACTERIAL CERAMIC MATERIAL.
JPH03218765A (en) * 1989-11-14 1991-09-26 Sangi:Kk Antimicrobial ceramics material
JPH0558829A (en) * 1991-05-27 1993-03-09 Sakuramoto Plast Kogyo Kk Germicidal deodorant
JPH05192378A (en) * 1991-10-01 1993-08-03 Becton Dickinson & Co Patch filled with medicine of which preservation period is prolonged
JPH06154030A (en) * 1993-07-06 1994-06-03 Dentaru Kagaku Kk Antimicrobial apatite and antimicrobial resin containing the same
US5556699A (en) * 1987-06-30 1996-09-17 Shingawa Fuel Co. Ltd. Antibiotic zeolite-containing film
WO2001072642A1 (en) * 2000-03-31 2001-10-04 Jeon In Soo Silver ion-containing solution and use thereof
CN1086270C (en) * 1998-11-12 2002-06-19 中国科学院化学研究所 Antifungal composition and its preparation method
JP2003522734A (en) * 1999-06-25 2003-07-29 アーチ ケミカルズ,インコーポレイテッド Pyrithione biocides enhanced by silver, copper, or zinc ions
US6929705B2 (en) 2001-04-30 2005-08-16 Ak Steel Corporation Antimicrobial coated metal sheet
WO2012077721A1 (en) 2010-12-08 2012-06-14 Nakamura Kenji Antimicrobial water treatment agent

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020632A (en) 2000-07-07 2002-01-23 Kanebo Ltd Antibacterial resin composition
US7202293B2 (en) 2003-01-23 2007-04-10 Fuji Chemical Industries, Ltd. Antimicrobial resin composition
JP2005314281A (en) * 2004-04-28 2005-11-10 Kitasato Gakuen Bactericide for bacteria living in environmental water and bactericidal method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506717A (en) * 1973-05-31 1975-01-23
JPS5679610A (en) * 1979-11-30 1981-06-30 Hokko Chem Ind Co Ltd Agricultural and horticultural germicidal composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506717A (en) * 1973-05-31 1975-01-23
JPS5679610A (en) * 1979-11-30 1981-06-30 Hokko Chem Ind Co Ltd Agricultural and horticultural germicidal composition

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190536A (en) * 1984-12-28 1986-08-25 ジヨンソン マツセイ パブリツク リミテイド カンパニ− Antibacterial composition
JPS63239205A (en) * 1986-10-15 1988-10-05 Kanebo Ltd Zeolite-active carbon composite material having antibacterial, mildew-proofing and cod lowering function and production thereof
US4938958A (en) * 1986-12-05 1990-07-03 Shinagawa Fuel Co., Ltd. Antibiotic zeolite
JPS63154746A (en) * 1986-12-19 1988-06-28 Kanebo Ltd Antibacterial film
US4938955A (en) * 1987-04-22 1990-07-03 Shingawa Fuel Co., Ltd Antibiotic resin composition
US5556699A (en) * 1987-06-30 1996-09-17 Shingawa Fuel Co. Ltd. Antibiotic zeolite-containing film
JPH01164720A (en) * 1987-12-21 1989-06-28 Shinagawa Nenryo Kk Antibacterial amorphous aluminosilicate salt
US4906464A (en) * 1987-12-26 1990-03-06 Shinagawa Fuel Co., Ltd. Method for preparing dispersions containing antibiotic power
JPH03218765A (en) * 1989-11-14 1991-09-26 Sangi:Kk Antimicrobial ceramics material
FR2654426A1 (en) * 1989-11-14 1991-05-17 Sangi Kk ANTIBACTERIAL CERAMIC MATERIAL.
JPH0558829A (en) * 1991-05-27 1993-03-09 Sakuramoto Plast Kogyo Kk Germicidal deodorant
JPH05192378A (en) * 1991-10-01 1993-08-03 Becton Dickinson & Co Patch filled with medicine of which preservation period is prolonged
JPH06154030A (en) * 1993-07-06 1994-06-03 Dentaru Kagaku Kk Antimicrobial apatite and antimicrobial resin containing the same
CN1086270C (en) * 1998-11-12 2002-06-19 中国科学院化学研究所 Antifungal composition and its preparation method
JP2003522734A (en) * 1999-06-25 2003-07-29 アーチ ケミカルズ,インコーポレイテッド Pyrithione biocides enhanced by silver, copper, or zinc ions
WO2001072642A1 (en) * 2000-03-31 2001-10-04 Jeon In Soo Silver ion-containing solution and use thereof
US6929705B2 (en) 2001-04-30 2005-08-16 Ak Steel Corporation Antimicrobial coated metal sheet
WO2012077721A1 (en) 2010-12-08 2012-06-14 Nakamura Kenji Antimicrobial water treatment agent

Also Published As

Publication number Publication date
JPS6328402B2 (en) 1988-06-08

Similar Documents

Publication Publication Date Title
JPS60100504A (en) Antibacterial composition and its production
JPS60181002A (en) Antimicrobial composition containing zeolite as carrier and production thereof
JP2532887B2 (en) Sustained release composition of chlorine dioxide
WO1985000537A1 (en) Deoxidant
JPS6270221A (en) Amorphous aluminosilicate having antimicrobial and/or germicidal action
JP2519143B2 (en) Bactericidal ceramic composition
KR0143396B1 (en) Dentifrice containing antibacterial material
JP6674344B2 (en) Water treatment material and method for producing the same
JP3548728B2 (en) Silver antibacterial agent and method for producing the same
JPH0655276B2 (en) Method for producing ammonium ion-selective adsorbent
JPS59193134A (en) Water purifying material
JPH02111709A (en) Powdery antibacterial and antimycotic agent and production thereof
JP4059326B2 (en) Inorganic antibacterial agent
JP2909676B2 (en) Antibacterial and antifungal ceramics and method for producing the same
JP2965488B2 (en) Antimicrobial composition
JP2524893B2 (en) Antibacterial / antifungal phosphate double salt and method for producing the same
JP2851051B2 (en) Freshness preservative
JP3264040B2 (en) Antibacterial agent
JPH05345703A (en) Antibacterial activated carbon
JPH01306473A (en) Expandable thermoplastic resin composition
JPS6324738B2 (en)
JPH0748213A (en) Antibacterial mildew-proofing porous ceramic and its production
JP2711552B2 (en) Water sterilization method
JPH0256407A (en) Germicidal composition
JPH0412041A (en) Joint material composition having antifungal and antimicrobial property