JPS60100010A - Photoelectric converter - Google Patents

Photoelectric converter

Info

Publication number
JPS60100010A
JPS60100010A JP58207768A JP20776883A JPS60100010A JP S60100010 A JPS60100010 A JP S60100010A JP 58207768 A JP58207768 A JP 58207768A JP 20776883 A JP20776883 A JP 20776883A JP S60100010 A JPS60100010 A JP S60100010A
Authority
JP
Japan
Prior art keywords
light
charge
stored
signal
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58207768A
Other languages
Japanese (ja)
Inventor
Tokuichi Tsunekawa
恒川 十九一
Yuichi Sato
雄一 佐藤
Takashi Kawabata
隆 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58207768A priority Critical patent/JPS60100010A/en
Priority to US06/667,012 priority patent/US4672189A/en
Publication of JPS60100010A publication Critical patent/JPS60100010A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/30Systems for automatic generation of focusing signals using parallactic triangle with a base line
    • G02B7/32Systems for automatic generation of focusing signals using parallactic triangle with a base line using active means, e.g. light emitter

Abstract

PURPOSE:To realize a photoelectric conversion of superior performance, by forming a circulation loop of two charge storage units for one light-receiving unit. CONSTITUTION:An optical charge generated in photosensitive picture element units S1-SN is stored in a charge storage unit ST1. When phiSH1 is of high level, the charge stored in the storage unit ST1 is transmitted temporarily to a charge transmission unit GA, and when phiSH1 is inverted to be of low level, a charge Q is stored in a storage unit ST2. When the charges stored in the storage units ST1 and ST2 are transmitted temporarily to charge transmission units GA and GB and phiSH1 is inverted to be of low level, a charge Q of an information on a surrounding light is stored in the storage unit ST2, while a charge Q on an information at the time of projection of a light is inputted to ST1. These operations are repeated sequentially, and the optical informations obtained when the light is projected and those obtained when no light is projected are added up in circulation. Thereby true projection signals of all the photosensitive picture elements can be obtained, and thus a distance to a remote object can be detected with high accuracy.

Description

【発明の詳細な説明】 本発明は被写体側に光を投光し、被写体からの反射光を
受光器によシ受光して該受光器からの信号によシ遠方の
被写体までの距離を検出する際、有効なる蓄積型の光電
変換装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention projects light toward a subject, receives reflected light from the subject with a light receiver, and detects the distance to a distant subject based on a signal from the light receiver. The present invention relates to an accumulation-type photoelectric conversion device that is effective when doing so.

従来の光電変換装置は、特開昭54−154382号公
報で提示されている如く、1つの受光部に対して別々の
2つの電荷蓄積部を有し、該2つの電荷蓄積部に投光時
の被写体からの反射光から得られる信号と非投光時の被
写体からの反射光から得られる信号(周囲光の信号)を
別々に蓄積し、各々の電荷蓄積部の信号の差を取るとと
Kよシ真の投光信号を検出し、該信号を用いて被写体ま
での距離を検知していた。
As disclosed in Japanese Patent Application Laid-open No. 154382/1982, a conventional photoelectric conversion device has two separate charge accumulation sections for one light receiving section, and when light is emitted to the two charge accumulation sections, The signal obtained from the reflected light from the subject when the light is not emitted and the signal obtained from the reflected light from the subject when the light is not emitted (ambient light signal) are accumulated separately, and the difference between the signals of each charge storage section is calculated. The light emitting signal from K-Yoshima was detected, and the distance to the subject was detected using the signal.

しかしながら、この方法は2つの電荷蓄積部が独立に構
成されているので2つの電荷蓄積部の検出感度が異なる
と、正確に周囲光の情報を除去する事が出来ず、検知能
力が低くなる傾向があった。
However, in this method, the two charge storage sections are configured independently, so if the detection sensitivities of the two charge storage sections differ, it is not possible to accurately remove ambient light information, and the detection ability tends to decrease. was there.

本発明は、性能の良好なる光電変換装置の提供を目的と
する。本発明の目的を達成する為の光電変換装置の特徴
は、1つの受光部に対して2つの電荷蓄積部を循環ルー
プに構成したことである。
An object of the present invention is to provide a photoelectric conversion device with good performance. A feature of the photoelectric conversion device for achieving the object of the present invention is that two charge storage sections are arranged in a circulating loop for one light receiving section.

更に詳細に説明すると、被写体側に投光する為の投光用
光源と被写体からの反射光を受光する為の受光部を有す
る感光手段と、前記投光用光源の投光時と非投光時に前
記感光手段よシ得られる信号を各々蓄積する第1と第2
の蓄積部、と、 前記第1と第2の蓄積部に蓄積された信号を互いに循環
させるべく信号循環手段と 前記第1及び第2の蓄積部に蓄えられた信号を各々記録
する為のレジスタ一手段と 前記第1若しくは第2の蓄積部に蓄えられた信号を順次
前記レジスタ一手段に移送する為の信号移送手段とを有
していることである。そして更に好ましくは1本発明の
後述する実施例の如く、前記感光手段よシ得られる信号
が電荷であシ、前記投光用光源の投光と非投光に同期さ
せて、前記第1と第2の蓄積部に前記感光手段からの電
荷を順次蓄積させることである。そしてよシ好ましくは
More specifically, there is a photosensitive means having a light source for projecting light toward the subject, a light receiving section for receiving reflected light from the subject, and a light source for projecting light when the light source is projecting light and when not projecting light. a first and a second one each storing a signal obtained from said photosensitive means;
a storage section, a signal circulation means for mutually circulating the signals stored in the first and second storage sections, and a register for recording the signals stored in the first and second storage sections, respectively. and a signal transfer means for sequentially transferring the signals stored in the first or second storage section to the register means. More preferably, as in the later-described embodiment of the present invention, the signal obtained by the photosensitive means is an electric charge, and the first and second signals are synchronized with the emission and non-emission of the light source. The second storage unit sequentially stores charges from the photosensitive means. And preferably.

前記信号移送手段は 前記第1若しくは第2の蓄積部に蓄積された信号が所定
値に達したか否かを非破壊的に検知する検知手段をする
ことであシ、この検知手段から信号に基づいて 前記第1若しくは第2の蓄積部に蓄えられた信号を順次
前記レジスタ一手段に移送することである。
The signal transfer means is a detection means for non-destructively detecting whether or not the signal accumulated in the first or second accumulation section has reached a predetermined value. Based on this, the signals stored in the first or second storage section are sequentially transferred to the register means.

次に本発明の実施例を各図を用いて説明する。Next, embodiments of the present invention will be described using the respective figures.

第1図は従来の被写体側に光を投光し、被写体からの反
射光を利用して被写体距離を検出するときの距離検出の
ブロック図である。パルスφIRによシバツファBPを
介して光源1例えば発光ダイオードLEが変調発光し、
投光レンズLNIで被写体OB上に光が投光され、反射
光が受光レンズLN2で光電変換素子SD上に投光スポ
ット像PSとして結像する。そして光電変換素子SD上
の投光スポット像の位置を検知することによって被写体
までの距離を検出するものである。光電変換素子SD上
には投光スポット像以外にも被写体からの反射光として
の光情報が重畳されておシ、この被写体からの光情報(
周囲光の情報)を効率良く除去することが被写体距離を
精度よく検出する際重要となる。
FIG. 1 is a block diagram of conventional distance detection when light is projected onto the subject and the distance to the subject is detected using reflected light from the subject. The light source 1, for example, the light emitting diode LE emits light in a modulated manner via the buffer BP by the pulse φIR,
Light is projected onto the subject OB by the light projecting lens LNI, and reflected light is imaged as a projected spot image PS on the photoelectric conversion element SD by the light receiving lens LN2. The distance to the subject is detected by detecting the position of the projected light spot image on the photoelectric conversion element SD. In addition to the projected spot image, optical information as reflected light from the subject is superimposed on the photoelectric conversion element SD.
It is important to efficiently remove ambient light information when accurately detecting object distance.

第2図は前述の特開昭54−154382号公報に開示
されている鳳受光装置を簡略化した説明図である。例え
ば、投光時に感光部Sで発生した電荷は蓄積部AK蓄積
され、非投光時に感光部Sで発生した電荷は、蓄積部B
に蓄積され。
FIG. 2 is a simplified explanatory diagram of the optical receiver disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 54-154382. For example, charges generated in the photosensitive section S when light is emitted are accumulated in the accumulation section AK, and charges generated in the photosensitive section S when the light is not emitted are accumulated in the accumulation section B.
accumulated in.

これら2つの蓄積部A、Bの蓄積部に蓄積された電荷の
差を差動回路りで演算し、真の投光信号のみを検出する
様構成されている。
The difference between the charges accumulated in these two accumulation sections A and B is calculated by a differential circuit, and only the true light emitting signal is detected.

しかしながら、蓄積部Aと蓄積部Bとが別々に配置され
ているので、蓄積部A側と蓄積部B側から差動回路DI
C電荷を電圧に変換して信号を入力するとき変換系の特
性によシ誤差を生じてくる。このように、蓄積部A、H
の感度の違いによシ、出力感度が異なると、特に投光時
の反射光量が少ない場合には、差動回路りの出力は、真
の投光信号に対応しなくなシ精度の良い検出が困難とな
る。
However, since the storage section A and the storage section B are arranged separately, the differential circuit DI is connected from the storage section A side and the storage section B side.
When converting C charge into voltage and inputting a signal, errors occur due to the characteristics of the conversion system. In this way, storage parts A, H
Due to the difference in sensitivity, if the output sensitivity differs, the output of the differential circuit will no longer correspond to the true light emission signal, especially if the amount of reflected light during light emission is small. becomes difficult.

第3図は本発明の一実施例の説明図である。FIG. 3 is an explanatory diagram of one embodiment of the present invention.

同図において、81〜SNは光感元画素部、ST1は第
1の電荷蓄積部、Sr1は第2の電荷蓄積部、SHI、
SN2は電荷移送ゲートDCI。
In the figure, 81 to SN are photosensitive pixel parts, ST1 is a first charge storage part, Sr1 is a second charge storage part, SHI,
SN2 is a charge transfer gate DCI.

DC2はDC電圧が印加されているバリアゲート、GA
、GBは電荷転送部、 TCGI 、 TeO2は不必
要電荷のクリアゲ−)、FGは第1の電荷蓄積部STI
に蓄積される。電荷を非破壊に検出するフローティング
ゲートであシ、これらは各画素に配設されている。AS
Rは信号読み出し用のCCD等のアナログシフトレジス
タ、FTI〜FT4は電界効果型トランジスタ、R1−
R4は抵抗%CIはコンデンサ、OPlは非反転入力端
子に基準電源VRFが印加され、帰還器にFT4が配設
されている演算増幅器であり。
DC2 is a barrier gate to which a DC voltage is applied, GA
, GB is a charge transfer unit, TCGI, TeO2 is a clear gate for unnecessary charges), FG is a first charge storage unit STI
is accumulated in Floating gates that non-destructively detect charges are arranged in each pixel. A.S.
R is an analog shift register such as a CCD for signal reading, FTI to FT4 are field effect transistors, R1-
R4 is a resistor %CI is a capacitor, OP1 is an operational amplifier to which a reference power supply VRF is applied to a non-inverting input terminal, and FT4 is provided as a feedback device.

PAGは各70−テイングゲー)FCの出力の最大値が
一定の基準レベルに達すると1例えば信号読み出し情報
をφPよシ発生するAGC回路である。
PAG is an AGC circuit that generates, for example, signal read information from φP when the maximum value of the output of FC (70 - 50%) reaches a certain reference level.

φPはAGL回路PAGの出力端子、φICGI yφ
SHI rφA、φICG2 rφ’aiiiは各々I
CGI 、 S H1゜GA(QB)、ICG2 、S
N2を制御するだめの制御端子であシ、φ7.φ2はア
ナログシフトレジスタASRを制御する制御端子である
φP is the output terminal of the AGL circuit PAG, φICGI yφ
SHI rφA, φICG2 rφ'aiii are each I
CGI, S H1゜GA (QB), ICG2, S
This is the control terminal for controlling N2, φ7. φ2 is a control terminal that controls the analog shift register ASR.

また、φR8はアナログシフトレジスタASRから出力
され、不必要になった電荷をリセットするリセット端子
、φTはゲート手RFT4を短・ 絡制御するための制
御端子であJ) * VOUT(1) +VOUT (
2)は図示の点の出力電圧である。
In addition, φR8 is a reset terminal that is output from the analog shift register ASR and resets unnecessary charges, and φT is a control terminal for shorting and controlling gate hand RFT4.) *VOUT (1) +VOUT (
2) is the output voltage at the indicated point.

アナログシフトレジスタASHの内部に示したQAI 
F GA2 、・・・・・・QAN は光感元画素部S
l、S2、・・・・・・、SNで生じた投光時の光情報
としての信号1QBI ? GB2−″・・・・・−Q
BNは光感元画素部81.82.・・・・・・、SNで
生じた非投光時の光情報としての信号の転送状態を示し
たものである。これらの端子φICG1+φSHI・・
・・・・は第4図に示スタイミングパルスで制御される
ように構成されている。
QAI shown inside analog shift register ASH
F GA2 ,...QAN is the photosensitive pixel section S
l, S2,..., signal 1QBI as optical information at the time of light projection generated at SN? GB2-″・・・・・・-Q
BN is the photosensitive source pixel portion 81.82. . . . shows the transfer state of a signal as optical information when no light is emitted, which occurs in the SN. These terminals φICG1+φSHI...
. . . are configured to be controlled by timing pulses shown in FIG.

第4図は第3図の主要部のタイミングチャート及び出力
波形である。
FIG. 4 is a timing chart and output waveform of the main part of FIG. 3.

時刻らに於いてφICGt +φTCG2が低レベルに
反転すると光感元画素部81〜8Nで発生した光電荷が
電荷蓄積部STIで蓄積される。φIRが高レベルのL
AXの間は発光ダイオードLEは発光し、光感元画素上
に投光スポット像PSを結像し、投光と周囲光の和の電
荷QLAIが蓄積部STIに蓄積され、φ8H1とφA
が高レベルになると蓄積部STIに蓄積されている電荷
が電荷転送部GAに一時転送され、φSHIとφAが低
レベルに反転すると蓄積部ST2に電荷QLAIが蓄積
される。
When φICGt+φTCG2 is inverted to a low level at a time point, photocharges generated in the photosensitive pixel sections 81 to 8N are accumulated in the charge storage section STI. φIR is high level L
During AX, the light emitting diode LE emits light and forms a projected light spot image PS on the photosensitive pixel, and the charge QLAI, which is the sum of the projected light and ambient light, is accumulated in the storage section STI, and φ8H1 and φA
When φSHI and φA become high level, the charges accumulated in the storage section STI are temporarily transferred to the charge transfer section GA, and when φSHI and φA are inverted to low level, the charges QLAI are accumulated in the accumulation section ST2.

φIRが低レベルのLBIの間は発光ダイオードLEは
消灯し、光感元画素上には周囲光の情報のみが入シ電荷
QLBIがSTIに蓄積され。
During LBI when φIR is at a low level, the light emitting diode LE is turned off, only ambient light information enters the photosensitive source pixel, and charge QLBI is accumulated in STI.

φEiH1とφAが高レベルになると、蓄積部STI 
When φEiH1 and φA become high level, the storage section STI
.

8T2に蓄積されている電荷が電荷転送部GA。The charge accumulated in 8T2 is transferred to the charge transfer section GA.

GBに一時転送され、φSHIとφAが低レベルに反転
すると、蓄積部ST2には電荷QLBIが蓄積され蓄積
部STIには、前回の投光時の情報の電荷QLAIが入
jD、LA2の区間に於いて今回の投光時の信号との加
算が行われる。順次本動作が繰シ返され、投光時の光情
報と非投光時の光情報とが循環加算される。また1時刻
tAK於いてフローテイグゲー)FGの出力の一つが基
準レベルに達すると、φPは高レベル側に反転し、信号
読み出しパルスパルスφSH2を発生する。時刻tBで
φ8H2パルスが発生すると、電荷蓄積部ST2に蓄え
られていた投光時の電荷QLAI+LA2即ちQAI 
v GA2 t・・・・・・p QANをアナログシフ
トレジスタASRに移送する。更に、時刻tc テφ8
H2パルスが発生すると非投光時の電荷QLB1+LB
2即ちQnt * GB2 +・・・・・・r QBN
をアナログシフトレジスタASRに移送する。また時刻
tcK於いてはφ1パルスの立上シに同期して、電荷Q
AIが電界効果型トランジスターFTIと抵抗R1から
成る電荷電圧変換回路を介して読み出され、出力VOU
T (1)に電圧VQAIが発生する。φ1が低レベル
の時にはリセットパルスφR1l+が高レベルにな、り
、FT3を介して前回読み出された情報がクリアされる
。これを繰り返し。
When φSHI and φA are temporarily transferred to GB and reversed to low level, the charge QLBI is accumulated in the accumulation section ST2, and the charge QLAI of the information from the previous light emission is input to the accumulation section STI in the interval jD, LA2. At this point, the signal is added to the signal from the current light projection. This operation is sequentially repeated, and the light information when the light is emitted and the light information when the light is not emitted are cyclically added. Further, at time tAK, when one of the outputs of the floating gate FG reaches the reference level, φP is inverted to the high level side and a signal read pulse pulse φSH2 is generated. When the φ8H2 pulse is generated at time tB, the charge QLAI+LA2, that is, QAI, stored in the charge storage section ST2 at the time of light emission is
v GA2 t...p Transfer QAN to analog shift register ASR. Furthermore, time tc teφ8
When the H2 pulse occurs, the charge QLB1+LB during non-light emission
2, that is, Qnt * GB2 +...r QBN
is transferred to analog shift register ASR. Also, at time tcK, in synchronization with the rising edge of the φ1 pulse, the charge Q
AI is read out via a charge-voltage conversion circuit consisting of a field effect transistor FTI and a resistor R1, and the output VOU
A voltage VQAI is generated at T (1). When φ1 is at a low level, the reset pulse φR1l+ goes to a high level, and the information read last time via FT3 is cleared. Repeat this.

順次画像情報としての電圧VQBI 、 VQA2 、
 VQB2.−1・・・が読み出される。時刻tc K
於いてクロックφTが高レベル側に反転すると、演算増
幅器OPIの帰還路が形成され、出力VOUT(2)に
は基準電源VRFとほぼ同じ電圧が発生し、コンデンサ
CIKVQA、とVRFの差に対応する電圧が蓄えられ
る。
Voltages VQBI, VQA2, as sequential image information
VQB2. -1... is read out. Time tc K
When the clock φT is inverted to the high level side, a feedback path for the operational amplifier OPI is formed, and a voltage almost the same as the reference power supply VRF is generated at the output VOUT (2), which corresponds to the difference between the capacitors CIKVQA and VRF. Voltage is stored.

次にφTが低レベルに反転しVQBIが読み出されると
、図の如く光感元画素S1の投光時と非投光時の光情報
の差である真の投光信号VQAI −’VQBIが得ら
れる。順次本方式の読み出しを繰り返すことによル光感
光画素S1からSNまでの全ての光感元画素の真の投光
信号を得ることが出来る。
Next, when φT is inverted to a low level and VQBI is read out, the true light emitting signal VQAI -'VQBI, which is the difference in light information between light emitting and non-emitting times of the photosensitive pixel S1, is obtained as shown in the figure. It will be done. By sequentially repeating the reading according to this method, it is possible to obtain true light projection signals of all the light-sensitive pixels S1 to SN.

このように本発明を使用すると同一のループの第11図
の如き方式を用いることによシ遠距離の被写体まで距離
検出を精度良く行うことが出来る著しい効果がある。
As described above, when the present invention is used, there is a remarkable effect that distance detection can be performed with high precision even to a distant object by using the same loop method as shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の被写体距離を検出する為の距離検出のブ
ロック図。 第2図は従来の受光装置の簡略化した説明図。 第3図、第4図は各々本発明の一実施例の説明図とタイ
ミングフローチャートである。 図中 81〜SNは光感元画素部 STI 、Sr1は第1.第2の電荷蓄積部SHI 、
SN2は電荷移送ゲート ASRはアナログシフトレジスター FGはフローティングゲート PAGはAGC回路である。
FIG. 1 is a block diagram of a conventional distance detection system for detecting object distance. FIG. 2 is a simplified explanatory diagram of a conventional light receiving device. FIGS. 3 and 4 are an explanatory diagram and a timing flowchart of an embodiment of the present invention, respectively. In the figure, 81 to SN are photosensitive source pixel portions STI, and Sr1 is the first photosensitive pixel portion STI. second charge storage section SHI,
SN2 is a charge transfer gate, ASR is an analog shift register FG, and floating gate PAG is an AGC circuit.

Claims (3)

【特許請求の範囲】[Claims] (1)被写体側に投光する為の投光用光源と被写体から
の反射光を受光する為の感光手段と、前記投光用光源の
投光時と非投光時に前記感光手段より得られる信号を各
々蓄積する第1と第2の蓄積部と、 前記第1と第2の蓄積部に蓄積され之信号を互いに循環
させるべく信号循環手段と、前記第1及び第2の蓄積部
に蓄えられた信号を各々記録する為のレジスタ一手段と
、前記第1若しくは第2の蓄積部に蓄えられた信号を順
次前記レジスタ一手段に移送する為の信号移送手段とを
有することを特徴とする光電変換装置。
(1) A light source for projecting light to the subject side, a photosensitive means for receiving reflected light from the subject, and light obtained from the photosensitive means when the light source for projecting emits light and when not projecting light. first and second storage sections for storing signals, respectively; signal circulation means for circulating the signals stored in the first and second storage sections; It is characterized by comprising a register means for recording each of the stored signals, and a signal transfer means for sequentially transferring the signals stored in the first or second storage section to the register means. Photoelectric conversion device.
(2) 前記感光手段よ〕得られる信号は電荷であり、 ′前記投光用光源の投光と非投光に同期させてThM記
第1と第2の蓄積部に前記感光手段からの電荷を順次蓄
積させた事を特徴とする特許請求の範囲第1項記載の光
電変換装置。
(2) The signal obtained from the photosensitive means is an electric charge, and the electric charge from the photosensitive means is transferred to the first and second storage sections of ThM in synchronization with the emission and non-emission of the light source. The photoelectric conversion device according to claim 1, characterized in that the photoelectric conversion device sequentially accumulates.
(3)前記信号移送手段は。 前記第1若しくは第2の蓄積部に蓄積された信号が所定
値に達したか否かを非破壊的に検知する検知手段を有し
ておシ、 前記検知手段から信号に基づいて 前記第1若しくは第2の蓄積部に蓄えられた信号を順次
前記レジスタ一手段に移送するこを特徴とする特許請求
の範囲第1項記載の光電変換装置。
(3) The signal transfer means. and a detection means for non-destructively detecting whether or not the signal accumulated in the first or second accumulation section has reached a predetermined value; Alternatively, the photoelectric conversion device according to claim 1, wherein the signals stored in the second storage section are sequentially transferred to the register means.
JP58207768A 1983-11-04 1983-11-04 Photoelectric converter Pending JPS60100010A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58207768A JPS60100010A (en) 1983-11-04 1983-11-04 Photoelectric converter
US06/667,012 US4672189A (en) 1983-11-04 1984-11-01 Device for sensing light and providing electrical readout

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58207768A JPS60100010A (en) 1983-11-04 1983-11-04 Photoelectric converter

Publications (1)

Publication Number Publication Date
JPS60100010A true JPS60100010A (en) 1985-06-03

Family

ID=16545208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58207768A Pending JPS60100010A (en) 1983-11-04 1983-11-04 Photoelectric converter

Country Status (1)

Country Link
JP (1) JPS60100010A (en)

Similar Documents

Publication Publication Date Title
US4963985A (en) Video camera using interpolating focus control
US4368978A (en) Image scanning system
EP0175580B1 (en) Automatic focusing apparatus for camera
JPS6314553B2 (en)
US6963368B1 (en) Digital camera and image capturing control apparatus including a delay device
US4527891A (en) Rangefinder device with serial readout linear image sensor and peak detector with threshold setting means
US20130314571A1 (en) Photoelectric conversion device and camera system
JP3525500B2 (en) Solid-state imaging device
JP2893687B2 (en) Focus detection device
JPS60100010A (en) Photoelectric converter
US4710816A (en) Picture signal generating apparatus
JPH06311441A (en) Solid-state image pickup device
JPS60100011A (en) Difference signal generating circuit
US4857996A (en) Image pickup device with reduced fixed pattern noise
JP2563370B2 (en) Photoelectric conversion device for focus detection
US4672189A (en) Device for sensing light and providing electrical readout
JP2001275132A (en) Three-dimensional image detector and image pickup element drive circuit
JPH0522843B2 (en)
JP2000083260A (en) Three-dimensional image input device
JPS6364112B2 (en)
KR910006610B1 (en) Automatic focusing device
US6104476A (en) Distance measuring apparatus and computer readable storage medium
JP2001112026A (en) Three-dimensional image detector
SU1413585A1 (en) Device for monitoring and correcting film position in cine camera film channel
JP2001275133A (en) Three-dimensional image detector