JPS5999961A - Self-excited switching power source - Google Patents

Self-excited switching power source

Info

Publication number
JPS5999961A
JPS5999961A JP8887383A JP8887383A JPS5999961A JP S5999961 A JPS5999961 A JP S5999961A JP 8887383 A JP8887383 A JP 8887383A JP 8887383 A JP8887383 A JP 8887383A JP S5999961 A JPS5999961 A JP S5999961A
Authority
JP
Japan
Prior art keywords
circuit
output
winding
output voltage
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8887383A
Other languages
Japanese (ja)
Inventor
Yoshifumi Ishizaki
石崎 芳文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP8887383A priority Critical patent/JPS5999961A/en
Publication of JPS5999961A publication Critical patent/JPS5999961A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To eliminate the abnormal rises of an oscillating frequency and an output voltage under no load and light load conditions by providing an output stabilizer at a winding of output side. CONSTITUTION:An output stabilizer 7 is provided at a winding N2 of the output side of a transformer T. This output stabilizer 7 has a detector 71 which detects a DC output voltage V0 and a switching circuit 72 which operates to shortcircuit a winding N2 in response to the detection signal of a detector 71 when the DC output voltage V0 becomes the prescribed level or higher. The detector 71 is composed of a reference voltage source or a comparator, and the switching circuit 72 is composed of switching elements such as transistors or thyristors.

Description

【発明の詳細な説明】 産業−1−の利用分野 本発明は、フライバックコンバータ方式の自動式スイッ
チング電源に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of Industry-1- The present invention relates to a flyback converter type automatic switching power supply.

従来技術 スイッチング電源は小型かつ高効率で信頼性が高いとい
う利点があり、従来より、コンビョータやその端末周辺
機器等の直流電源として広く利用されている。スイッチ
ング電源の回路方式としては、他動式のものもあるが、
電源の小型化を上目的とする場合には、主として自動式
の回路構成をとることが多い。この自励式スイッチング
電源において、出力安定化を図る場合、従来は変圧器の
一次側に基準電圧源を設けてスイッチング素子を制御す
る回路方式、または変圧器の二次側に基準電圧源を設け
、絶縁結合素子(変圧器またはフォトカブラ)を通して
前記スイッチング素子を制御する回路方式を取っていた
。スイッチング素子の制御力式としては、変圧器の帰還
巻線に生じるフライバック電圧を前記基準電圧源と比較
する回路方式のもの、直流出力電圧を絶縁結合素子を通
して変圧器の二次側から−・次側に帰還させて、前記基
準電圧源と比較するフィードバック方式のもの、及び直
流出力電圧を基準電圧と比較し、絶縁結合素子を通して
変圧器の二次側から一次側に帰還させるフィードバック
回路方式のもの等が公知である。
Conventional switching power supplies have the advantages of being compact, highly efficient, and highly reliable, and have been widely used as DC power supplies for combyoters and their terminal peripherals. There are passive type switching power supply circuits, but
When the main purpose is to downsize the power supply, an automatic circuit configuration is often adopted. In this self-excited switching power supply, when attempting to stabilize the output, conventionally a circuit system is used in which a reference voltage source is provided on the primary side of the transformer to control the switching elements, or a reference voltage source is provided on the secondary side of the transformer. A circuit system was used in which the switching element was controlled through an insulating coupling element (transformer or photocoupler). The control force method for the switching element includes a circuit system in which the flyback voltage generated in the feedback winding of the transformer is compared with the reference voltage source, and a DC output voltage is transmitted from the secondary side of the transformer through an insulated coupling element. A feedback circuit system compares the DC output voltage with the reference voltage source, and a feedback circuit system that compares the DC output voltage with the reference voltage and returns it from the secondary side of the transformer to the primary side through an insulated coupling element. Things etc. are publicly known.

従来技術の欠点 しかしながら、従来の回路方式のものは、最大負荷時に
効;Vが最大となるように動作するものであって、無負
荷または軽負荷時には発振周波数が異常に高くなり、消
費電力が増大し、効率が悪くなること、また直流出力電
圧が異常に高くなり、出力安定性が悪くなること等の欠
点があった。更に、フィードバック方式のものは、絶縁
変圧器やフォトカプラ等の絶縁結合素子が必要になり1
回路構成が複雑化し、小型化、高密度実装化及びコスト
ダウンを図るのに不利になる。
Disadvantages of the conventional technology However, the conventional circuit system operates so that the effective voltage is maximized at maximum load, and the oscillation frequency becomes abnormally high at no load or light load, resulting in low power consumption. However, there are drawbacks such as increased output voltage, resulting in poor efficiency, and abnormally high DC output voltage, resulting in poor output stability. Furthermore, feedback type systems require insulation coupling elements such as isolation transformers and photocouplers.
The circuit configuration becomes complicated, which is disadvantageous to miniaturization, high-density packaging, and cost reduction.

本発明の目的 そこで本発明は上述する従来の欠点を除去し、無負荷及
び軽負荷時に発振周波数や出力電圧が異常−1−’Aす
ることがなく、消費電力が小さく高効率であり、しかも
絶縁変圧器やフォトカブラ等の絶縁結合手段を必要とし
ない自動式スイッチング電源を提供することを1“1的
とする。
Purpose of the Invention Therefore, the present invention eliminates the above-mentioned drawbacks of the conventional technology, does not cause the oscillation frequency or output voltage to become abnormally -1-'A during no load or light load, has low power consumption and is highly efficient. An object of the present invention is to provide an automatic switching power supply that does not require an insulating coupling means such as an insulating transformer or a photocoupler.

本発明の構成 −1−記[1的を達成するため、本発明は、変圧器の巻
線を介しスイッチング素r−の出力側から入力側に正帰
還をかけて自励発振動作をさせ、その発振出力を前記変
圧器の他の巻線より取出すようにした自動式スイッチン
グ電源において、前記変圧器の前記他の巻線側に、直流
出力電圧を検出する回路と、前記直流出力電圧があるレ
ベル以上になったときの前記回路の検出出力信号に応じ
て前記他の巻線を短絡するように動作する回路とより構
成される出力安定化回路を備えることを特徴とする。
Configuration of the present invention -1- [In order to achieve the first objective, the present invention applies positive feedback from the output side to the input side of the switching element r- through the winding of the transformer to cause self-oscillation operation, In an automatic switching power supply in which the oscillation output is extracted from another winding of the transformer, a circuit for detecting a DC output voltage and a circuit for detecting the DC output voltage are provided on the other winding side of the transformer. The present invention is characterized by comprising an output stabilizing circuit configured with a circuit that operates to short-circuit the other winding in response to a detection output signal of the circuit when the voltage exceeds a level.

実施例 第1図は本発明に係る自動式スイッチング電源の電気回
路接続図である。図において、■及び2は商用交流電源
等を整流して得られた直流入力電圧Vinを入力する入
力端子、3及び4は直流出力端子である。
Embodiment FIG. 1 is an electrical circuit connection diagram of an automatic switching power supply according to the present invention. In the figure, 2 and 2 are input terminals into which a DC input voltage Vin obtained by rectifying a commercial AC power supply or the like is input, and 3 and 4 are DC output terminals.

Tは変圧器、N1.N2及びN3は該変圧器Tの各巻線
である。巻線N1にはスイッチング素子となるトランジ
スタQlが直列に接続されている。巻線N2にはフライ
ツバツク電圧?流用のダイオードD1を直列に接続する
とともに、平滑用のコンデンサC1を並列に接続しであ
る。巻線N3はトランジスタQlに正帰還をかける帰還
巻線であって、一端をトランジスタQlのエミッタに接
続すると共に、他端を結合回路5を通してトランジスタ
Qlのベースに接続しである。6は過電流保護回路であ
る。
T is a transformer, N1. N2 and N3 are respective windings of the transformer T. A transistor Ql serving as a switching element is connected in series to the winding N1. Is there a flyback voltage in winding N2? A diverting diode D1 is connected in series, and a smoothing capacitor C1 is connected in parallel. The winding N3 is a feedback winding that applies positive feedback to the transistor Ql, and has one end connected to the emitter of the transistor Ql, and the other end connected to the base of the transistor Ql through the coupling circuit 5. 6 is an overcurrent protection circuit.

1−記の回路構成は従来より公知のものであるが、本発
明においては、出力側の巻線N2に出力安定化回路7を
設けたことが4、ν徴となっている。
Although the circuit configuration described in 1- is conventionally known, the main feature of the present invention is that the output stabilizing circuit 7 is provided on the output side winding N2.

この出力安定化回路7は、直流出力電圧vOを検出する
検出回路71と、直流出力電圧■0があるレベル以I−
になったとき、該検出回路71の検出出力信号に応じて
、巻線N2を短絡するように動作するスイッチング回路
72とを備えて構成されている。前記検出回路71は、
一般には、直流出力電圧vOの所定値からのズレな比較
検出するための基準電圧源、比較器等を備えて構成され
、また前記スイッチング回路72はトランジスタやサイ
リスタ等のスイッチング素子を備えて構成される。
This output stabilization circuit 7 includes a detection circuit 71 that detects a DC output voltage vO, and a DC output voltage 20 that exceeds a certain level I-
The switching circuit 72 operates to short-circuit the winding N2 in response to the detection output signal of the detection circuit 71 when The detection circuit 71 is
Generally, it is configured to include a reference voltage source, a comparator, etc. for comparing and detecting deviations of the DC output voltage vO from a predetermined value, and the switching circuit 72 is configured to include switching elements such as transistors and thyristors. Ru.

4二記の回路構成において、変圧器Tの巻線N1及びN
3によりトランジスタQ1のコレクタ側からベース側に
正帰還をかけて、トランジスタQlにブロッキング発振
動作をさせ、入力端子l及び2に与えられる直流人力V
inをスイッチングし、そのスイッチング出力を変圧器
Tの巻線N2側に取出す。この実施例に示すスイッチン
グ電源はフライバック、コンバータ方式となっており、
トランジスタQ1のオン時に巻線N2に誘起する電圧を
ダイオードD1によってβ■市して巻線N2に電磁エネ
ルギーとして蓄え、トランジスタQlがオフになった時
にフライバックエネルギーとして放出する。巻線N2に
発生したフライバック電圧は、ダイオードDi、コンデ
ンサCtによって直流に変換され、出力端子3及び4か
ら負荷RLに対して直流出力電圧vOが供給される。直
流出力電圧vOが所定値より低い範囲では、前記出力安
定化回路7は動作せず、従ってこの範囲ではト述の回路
作用が継続して行なわれ、直流出力電圧VOがl: I
Iするる。
In the circuit configuration shown in No. 42, windings N1 and N of transformer T
3 applies positive feedback from the collector side to the base side of the transistor Q1, causing the transistor Q1 to perform blocking oscillation operation, and direct current power V applied to the input terminals 1 and 2.
in, and the switching output is taken out to the winding N2 side of the transformer T. The switching power supply shown in this example is a flyback converter type.
The voltage induced in the winding N2 when the transistor Q1 is turned on is converted to β by the diode D1, stored as electromagnetic energy in the winding N2, and released as flyback energy when the transistor Q1 is turned off. The flyback voltage generated in the winding N2 is converted into DC by the diode Di and the capacitor Ct, and a DC output voltage vO is supplied from the output terminals 3 and 4 to the load RL. In a range where the DC output voltage vO is lower than a predetermined value, the output stabilizing circuit 7 does not operate, and therefore, the above-mentioned circuit operation continues in this range, and the DC output voltage VO becomes l:I.
I will do it.

ところが、直流出力電圧VOが所定レベルより上y1す
ると、それが検出回路71によって検出され、その検出
信号が検出回路71からスイッチング回路72にIj−
えられる。スイッチング回路72に前記検出信号が入力
されている状態で、トランジスタQ1がオンになろうと
すると、その時巻線N2に誘起する電圧によってスイッ
チング回路72が巻線N2を短絡するようにす1作する
。巻線N2が短絡されると、帰原巻線N3にトランジス
タQlをオンさせるのに充分なベース電流を流す電圧が
誘起しないため、トランジスタQlはオンできなくなる
。この結果、+l’[流出力布圧Voが低下する。直流
出力電圧vOが所定値より低下すると、スイッチング回
路72がオフとなるので、通常の動作状態に戻る。この
回路作用の繰返しにより、直流出力電圧vOが一定の値
となるように安定化制御されることとなる。
However, when the DC output voltage VO exceeds a predetermined level y1, it is detected by the detection circuit 71, and the detection signal is sent from the detection circuit 71 to the switching circuit 72 as Ij-
available. When the transistor Q1 is about to turn on while the detection signal is input to the switching circuit 72, the switching circuit 72 short-circuits the winding N2 by the voltage induced in the winding N2 at that time. When the winding N2 is short-circuited, the transistor Ql cannot be turned on because no voltage is induced in the return winding N3 to cause a base current sufficient to turn on the transistor Ql. As a result, +l'[outflow force cloth pressure Vo decreases. When the DC output voltage vO falls below a predetermined value, the switching circuit 72 is turned off, and the normal operating state returns. By repeating this circuit action, stabilization control is performed so that the DC output voltage vO becomes a constant value.

第2図は本発明に係る自動式スイッチング電源の更に1
1体的な実施例における電気回路接続図である。図にお
いて、第1図と同一の参照符号は同一性ある構成部分を
示している。この実施例では、検出回路71は直流出力
電圧■0を分圧する抵抗R1及びR2、抵抗R1の両端
に並列に接続された抵抗R3及び基準電圧用ツェナーダ
イオードD2の直列回路、抵抗R3をベース、エミッタ
間に挿入接続したトランジスタQ2及びコレクタ抵抗R
4#を備えて構成されている。また、スイッチング回路
72は、巻線N2に並列に接続されたトランジスタQ3
、このトランジスタQ3に直列に接続された逆阻庄用の
ダイオードD3及びI・ランジスタQ3のベース、エミ
ッタ間に接続された抵抗R5等を備えて構成されている
。なお、Q4は過電流保護回路を構成するトランジスタ
、R6は電流検出用の抵抗、D4は抵抗R7と共に帰還
巻線N3からトランジスタQlのベースに対する直流帰
還回路を構成するダイオード、C2は抵抗R8と共に交
流結合回路を構成するコンデンサである。R9は抵抗で
ある。
FIG. 2 shows a further example of the automatic switching power supply according to the present invention.
It is an electric circuit connection diagram in an integrated embodiment. In the figure, the same reference numerals as in FIG. 1 indicate the same components. In this embodiment, the detection circuit 71 includes resistors R1 and R2 that divide the DC output voltage 0, a series circuit consisting of a resistor R3 connected in parallel to both ends of the resistor R1, and a reference voltage Zener diode D2, and a base with the resistor R3. Transistor Q2 and collector resistor R inserted and connected between emitters
4#. The switching circuit 72 also includes a transistor Q3 connected in parallel to the winding N2.
, a reverse blocking diode D3 connected in series to the transistor Q3, a resistor R5 connected between the base and emitter of the I transistor Q3, and the like. Note that Q4 is a transistor that constitutes an overcurrent protection circuit, R6 is a resistor for current detection, D4 is a diode that together with resistor R7 constitutes a DC feedback circuit from the feedback winding N3 to the base of transistor Ql, and C2 is a diode that together with resistor R8 constitutes an AC This is a capacitor that constitutes a coupling circuit. R9 is a resistor.

1−記の回路構成において、直流出力電圧vOが低く、
抵抗R1及びR2によって分圧された電圧がツェナーダ
イオードD2を導通させる値に達しないときは、トラン
ジスタQ2及びトランジスタQ3がオフとなるので、出
力安定化作用は行なわれず、従来と同様の動作となる。
In the circuit configuration described in 1-, the DC output voltage vO is low;
When the voltage divided by resistors R1 and R2 does not reach a value that makes Zener diode D2 conductive, transistor Q2 and transistor Q3 are turned off, so the output stabilization effect is not performed and the operation is the same as before. .

ところが、直流出力電圧VOが所定レベルより高くなる
と、抵抗R1及びR2によって分圧された電圧によって
ツェナーダイオードD2が導通し、抵抗R3の両端に電
圧降下を生じ、トランジスタQ2がオンとなる。ここで
、スイッチングトランジスタQ1がオフからオンに移行
しようとすると、トランジスタQ3のエミッタが負電圧
になり、トランジスタQ3がオンし、巻線N2が短絡さ
れる。このため、トランジスタQ1をオンさせる充分な
ベース電流を流すための電圧が帰還巻線N3に誘起され
ず、トランジスタQlはオンになることができない。従
って、直流出力電圧Voは低下する。直流出力電圧VO
が低ドしツェナーダイオ・−ドD2がオフになると、ト
ランジスタQ2、Q3もオフとなるので、通常の動作に
戻る。このような回路作用により、直流出力電圧Voは
一定伯に安定化制御されることとなる。
However, when the DC output voltage VO becomes higher than a predetermined level, the voltage divided by the resistors R1 and R2 makes the Zener diode D2 conductive, causing a voltage drop across the resistor R3, and turning on the transistor Q2. Here, when the switching transistor Q1 is about to shift from off to on, the emitter of the transistor Q3 becomes a negative voltage, turning on the transistor Q3 and shorting the winding N2. Therefore, a voltage sufficient to cause a base current to flow to turn on the transistor Q1 is not induced in the feedback winding N3, and the transistor Q1 cannot be turned on. Therefore, the DC output voltage Vo decreases. DC output voltage VO
When the Zener diode D2 is turned off due to the low voltage, the transistors Q2 and Q3 are also turned off, returning to normal operation. Due to such circuit action, the DC output voltage Vo is stabilized and controlled to a constant value.

第3図は本発明に係る自助式スイッチング電源の電圧安
定化作用を示す波形図で、第3図(a)はトランジスタ
Qlのコレクタ電圧波形、第3図(b)は直流出力電圧
VOの波形図である。今、検出レベルをVdとすると、
トランジスタQ1がオフしたtl時から、負荷に対する
放電により直流出力電圧vOがVd≧■0となる12時
までの(t2−tl)時間の間、トランジスタQlはオ
ンとなることができず、オフ状態を保持する。前記(t
2−tB待時間負荷が軽くなるほど長くなるから、無負
荷または軽負荷蒔にはトランジスタQ1がオンとなる時
間間隔が長くなる。この結果、消費電力が従来の約17
10程度まで減少し、効率が著しく向−Iニする。第4
図は本発明に係る自動式スイッチング電源の出力−効率
特性を、従来のものと比較して示す図である0曲線T、
 lが本発明に係る自動式スイッチング電源の特性、曲
線L2が従来のものの特+)1を示す。図示するように
、従来のものは出力が最大になったときに効率が最も高
くなるが、本発明に4ffiiる1″1励式スイッチン
グ電源は出力の増減による効率上の差が殆どなく、極め
て高い効率を小す。
FIG. 3 is a waveform diagram showing the voltage stabilizing effect of the self-help switching power supply according to the present invention, where FIG. 3(a) is the collector voltage waveform of the transistor Ql, and FIG. 3(b) is the waveform of the DC output voltage VO. It is a diagram. Now, if the detection level is Vd,
During the time (t2 - tl) from time tl, when transistor Q1 is turned off, to 12:00, when the DC output voltage vO becomes Vd≧■0 due to discharge to the load, transistor Ql cannot be turned on and remains in the off state. hold. Said (t
Since the 2-tB waiting time becomes longer as the load becomes lighter, the time interval during which transistor Q1 is turned on becomes longer for no-load or light-load operation. As a result, power consumption is reduced to about 17% compared to conventional
It decreases to about 10, and the efficiency is significantly improved. Fourth
The figure shows the output-efficiency characteristics of the automatic switching power supply according to the present invention in comparison with the conventional one.
1 shows the characteristics of the automatic switching power supply according to the present invention, and curve L2 shows the characteristics of the conventional one. As shown in the figure, the conventional type has the highest efficiency when the output is maximum, but the 1" single excitation switching power supply according to the present invention has almost no difference in efficiency due to increase or decrease in output, and is extremely high. Reduce efficiency.

また、無負荷または軽負4;■時に41トランジスタQ
1がオフとなっている時間(t、2−tL)が長くなる
ので、トランジスタQ、 1のスイッチング周波数が低
くなり、発振周波数の毀常トy1がなくなると共に、出
力電圧の異常1シ1も確実に防1トされることとなる。
Also, when there is no load or light load 4; ■, 41 transistor Q
Since the time (t, 2 - tL) during which transistor 1 is off becomes longer, the switching frequency of transistor Q, 1 becomes lower, eliminating disturbances in the oscillation frequency and also eliminating abnormalities in the output voltage. This will definitely get you 1 defense.

しかも、本発明に係る自励式スイッチング電源は、二次
側制御方式にも拘わらず、従来のものと児なって、絶縁
変圧器やフォトカプラ等の絶縁結合r一段が全く不要で
あり、小型で、高密度実装の要求に合い、コストも安価
になる。
Moreover, despite the secondary side control method, the self-excited switching power supply according to the present invention is different from conventional ones in that it does not require a single stage of insulation coupling such as an isolation transformer or a photocoupler, and is small and compact. , it meets the requirements for high-density packaging and is inexpensive.

本発明の効果 以上述べたように、本発明は、変圧器の巻線を介しスイ
ッチング素子の出力側から入力端に正帰電をか+1で自
助発振動作をさせ、その発振出力1 を前記変Fト器の他の巻線より取出すようにした自励式
スイッチング電源において、前記変圧器の前記他の巻線
側に、直流出力電圧を検出する回路と、前記直流出力電
圧がある)/ベル以I−になったときの前記回路の検出
出力信号に応じて前記他の巻線を短絡するように動作す
る回路とより構成される出力安定化回路を備えることを
特徴とするから、無負荷及び軽負荷時に発振周波数や出
力電圧が異常)−、jtすることがなく、消費電力が小
さく高効率であり、しかも絶縁変圧器やフォトカプラ等
の絶縁結合手段を必要としない自助式スイッチング電源
を提供することができる。
Effects of the Present Invention As described above, the present invention causes self-sustaining oscillation by applying positive feedback from the output side of the switching element to the input terminal via the winding of the transformer at +1, and the oscillation output 1 is In a self-excited switching power supply that is taken out from the other winding of the transformer, there is a circuit for detecting a DC output voltage on the other winding side of the transformer, and a circuit that detects the DC output voltage. The present invention is characterized by comprising an output stabilizing circuit constituted by a circuit that operates to short-circuit the other winding in response to a detection output signal of the circuit when the state becomes I-, so that no load and no load can be caused. Provides a self-help switching power supply that does not cause abnormal oscillation frequency or output voltage (- or jt) at light loads, has low power consumption, is highly efficient, and does not require insulation coupling means such as isolation transformers or photocouplers. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る自動式スイッチング電源の電気回
路接続図、第2図は本発明に係る自動式スイッチング電
源の更に几体的な実施例における電気回路接続図、第3
図(a)はトランジスタQ1のコレクタ電圧波形、第3
図(b)は直流出力電圧■0の波形図、第4図は本発明
に係る自動式スイッチング電源の出力−効率特性を、従
来のも2 のと比較して示す図である。 Ql、Q2、Q3・φ−トランジスタ ’r 1−φ・変圧器 N 1 、  N 2 、  N 3 φ  ―  ・
 ンら線7・・・出力安定化回路 71・・・検出回路 72・φ−スイッチング回路 状A通 −L〜  系”zt”;  負f’、?   【E  
 二SIF閘”d’t’Th年12 /:]271.1
牡、j/In′長官 上材 和犬 殿 昭和58年特訂願第88873号 3、補11をする者 !1%ヂ1との関係  特許出願人
FIG. 1 is an electric circuit connection diagram of an automatic switching power supply according to the present invention, FIG. 2 is an electric circuit connection diagram of a more detailed embodiment of the automatic switching power supply according to the present invention, and FIG.
Figure (a) shows the collector voltage waveform of transistor Q1,
FIG. 4(b) is a waveform diagram of the DC output voltage 10, and FIG. 4 is a diagram showing the output-efficiency characteristics of the automatic switching power supply according to the present invention in comparison with the conventional one. Ql, Q2, Q3・φ-transistor 'r 1-φ・transformer N 1 , N 2 , N 3 φ - ・
Line wire 7... Output stabilization circuit 71... Detection circuit 72, φ-switching circuit A-L~ System "zt"; Negative f', ? [E
2 SIF lock"d't'Th year 12 /:] 271.1
Male, j/In' Director General Wainu, Special Request No. 88873 of 1988, Supplement 11! Relationship with 1%ji1 Patent applicant

Claims (1)

【特許請求の範囲】[Claims] (1) 変圧器の巻線を介しスイッチング素子の出力側
から入力側に正帰還をかけて自励発振動作をさせ、その
発振出力を前記変圧器の他の巻線より取出すようにした
自動式スイッチング電源において、前記変圧器の前記他
の巻線側に、直流出力電圧を検出する回路と、前記直流
出力電圧があるレベル以I−になったときの前記回路の
検出出力信号に応じて前記他の巻線を短絡するように動
作する回路とより構成される出力安定化回路を備えるこ
とを特徴とする自助式スイッチング電源。
(1) Automatic type in which positive feedback is applied from the output side to the input side of the switching element via the transformer winding to cause self-excited oscillation, and the oscillation output is extracted from the other winding of the transformer. In the switching power supply, a circuit for detecting a DC output voltage is provided on the other winding side of the transformer, and the circuit detects the DC output voltage in response to a detection output signal of the circuit when the DC output voltage exceeds a certain level I-. A self-help switching power supply characterized by comprising an output stabilizing circuit consisting of a circuit that operates to short-circuit other windings.
JP8887383A 1983-05-20 1983-05-20 Self-excited switching power source Pending JPS5999961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8887383A JPS5999961A (en) 1983-05-20 1983-05-20 Self-excited switching power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8887383A JPS5999961A (en) 1983-05-20 1983-05-20 Self-excited switching power source

Publications (1)

Publication Number Publication Date
JPS5999961A true JPS5999961A (en) 1984-06-08

Family

ID=13955123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8887383A Pending JPS5999961A (en) 1983-05-20 1983-05-20 Self-excited switching power source

Country Status (1)

Country Link
JP (1) JPS5999961A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008145622A1 (en) * 2007-05-29 2008-12-04 Abb Technology Ag Power supply apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008145622A1 (en) * 2007-05-29 2008-12-04 Abb Technology Ag Power supply apparatus
US8072192B2 (en) 2007-05-29 2011-12-06 Abb Technology Ag Auxiliary power supply with a coupling capacitor between a high voltage line and ground

Similar Documents

Publication Publication Date Title
US5675485A (en) Switching mode power supply controller
US4680688A (en) DC/DC converter
US5457622A (en) AC-DC converter
KR100296635B1 (en) Smps having low voltage protection circuit
EP1118150A1 (en) A resonant mode power supply having over-power and over-current protection
US5570277A (en) Switching power supply apparatus
JPH0527346B2 (en)
US6583998B2 (en) Power supply regulating having novel charging circuitry
JPS5999961A (en) Self-excited switching power source
JP3244424B2 (en) Power circuit
JPH041587B2 (en)
JP2736059B2 (en) Inverter device
JP3273572B2 (en) DC power supply
JP3129036B2 (en) Switching power supply
JP2003348846A (en) Power circuit
JPH0261232B2 (en)
JPS62193515A (en) Service interruption free electric source
JPH0116389Y2 (en)
JPH06284714A (en) Insulated dc-dc converter
KR200156513Y1 (en) Apparatus for protecting a smps in a monitor
JPS642503Y2 (en)
JP3501147B2 (en) Switching power supply
KR0185105B1 (en) Apparatus for stabilizing power of a smps using a forward converter
JPH0595672A (en) Starting circuit for multiple output power supply
JPH0624439B2 (en) Switching Regulator