JPS5999214A - Surface state evaluating method - Google Patents

Surface state evaluating method

Info

Publication number
JPS5999214A
JPS5999214A JP20882082A JP20882082A JPS5999214A JP S5999214 A JPS5999214 A JP S5999214A JP 20882082 A JP20882082 A JP 20882082A JP 20882082 A JP20882082 A JP 20882082A JP S5999214 A JPS5999214 A JP S5999214A
Authority
JP
Japan
Prior art keywords
sample
load
torque
water
hydrophilicity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20882082A
Other languages
Japanese (ja)
Inventor
Tsunehiko Todoroki
轟 恒彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20882082A priority Critical patent/JPS5999214A/en
Publication of JPS5999214A publication Critical patent/JPS5999214A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To measure surface roughness and wettability at the same time by loading a discoid sample, and bringing one surface into contact with the surface of liquid, and rotating the sample and detecting torque as a funtion of the load. CONSTITUTION:The rotary measurement part consisting of the sample 7, sample holder 8, torque meter 9, output shaft 10, into shaft 11, and a motor 12 is balanced with the load 15, and while the sample 7 is brought into contact with the surface of the water 17 in a water tank 16, the measurement part is balanced again. The load 15 is adjusted to place a specific test load W on the rotary measurement part and the sample 7 is rotated by the motor 12 to read the fluid resistance between the sample 7 and water 17 on the torque meter 9 as torque T. The load W is varied and the measurement of torque W is repeated as the function of the W, measuring the surface roughness and wettability of the same 7 at the same time.

Description

【発明の詳細な説明】 〔産業上の利用分野と従来技術〕本発明は金属、プラス
チックス、セラミックス等の表面状態、特に親水性と表
面の粗さとを同時に評価する表面状態評価法に関するも
のである。
[Detailed Description of the Invention] [Industrial Field of Application and Prior Art] The present invention relates to a surface condition evaluation method for simultaneously evaluating the surface condition of metals, plastics, ceramics, etc., particularly hydrophilicity and surface roughness. be.

空調機等において広く使用されているプレートフィン付
熱交換器は、所定の間隔をおいて積層したアルミニュー
ムプレートフィンに鋼管全貫通して形成しているが、熱
交換率を向上するためにはプレートフィンの間を通過す
る空気流の通風抵抗(風圧損失)を低減する必要がある
Heat exchangers with plate fins, which are widely used in air conditioners, etc., are made of aluminum plate fins stacked at predetermined intervals, with steel pipes completely penetrating them, but in order to improve the heat exchange efficiency, It is necessary to reduce the ventilation resistance (wind pressure loss) of the airflow passing between the plate fins.

ところでプレートフィンの表面には冷房運転に使用され
る場合に、水滴が付着して風圧損失が増大するのでこれ
を低減するための表、面処理が必要となる。この表面処
理の手段には撥水性処理と親水性処理とがあシ、前者は
水滴を玉状にして滑シ易くし、後者は流れ易くするので
ある。
By the way, when the plate fin is used for cooling operation, water droplets adhere to the surface of the plate fin and wind pressure loss increases, so surface treatment is required to reduce this. There are two types of surface treatment methods: water-repellent treatment and hydrophilic treatment; the former makes water droplets form beads to make them slippery, and the latter makes them easier to run off.

しかし、近年、プレートフィン間の間隔が小さくなる傾
向にあるので親水性処理の方が重視されている。
However, in recent years, as the spacing between plate fins has tended to become smaller, more emphasis has been placed on hydrophilic treatment.

表面状態評価法は撥水性表面処理又は親水性表面処理を
行なった物質の表面がどの程度の撥水性又は親水性を有
するかを評価する方法である。撥水性と親水性とは表裏
の関係があシ、撥水性の大きいことは親水性の小さいこ
とを意味し、親水性の大きいことは撥水性の小さいこと
を意味する。
The surface condition evaluation method is a method for evaluating the degree of water repellency or hydrophilicity of the surface of a substance that has been subjected to water repellent surface treatment or hydrophilic surface treatment. Water repellency and hydrophilicity are two sides of the same coin; high water repellency means low hydrophilicity, and high hydrophilicity means low water repellency.

第1図は従来から行なわれている一般的な表面状態評価
法であって、水滴1の表面2に対する接触角θを計測す
ることによって親水性(撥水性)を評価する方法である
。この方法は接触角θの測定が表面の小部分であって、
表面全体のデータにバラツキがあるため、信頼性に乏ぼ
しい。第2図は従来の他の表面状態評価法であって、水
中5にサンダル4を浸漬するための圧力を測定5、記録
6することによって、サンプル4の親水性の度合(圧力
)を評価する方法である。この方法は第1図の方法に比
べてデータにバラツキがなく、サンプルデータの実物へ
の再現性が良好ではあるが、これを熱交換器用プレート
フィンの表面評価に適用する場合は考慮を要する問題が
ある。
FIG. 1 shows a conventionally used general method for evaluating surface conditions, in which hydrophilicity (water repellency) is evaluated by measuring the contact angle θ of a water droplet 1 with respect to a surface 2. In this method, the contact angle θ is measured on a small part of the surface;
It is unreliable because the data varies over the entire surface. FIG. 2 shows another conventional surface condition evaluation method, in which the degree of hydrophilicity (pressure) of the sample 4 is evaluated by measuring 5 and recording 6 the pressure for dipping the sandals 4 in water 5. It's a method. This method has less variation in data and better reproducibility of sample data to the actual object than the method shown in Figure 1, but there are issues that need to be considered when applying this method to surface evaluation of plate fins for heat exchangers. There is.

〔発明の目的〕熱交換器用プレートフィンの風圧損失は
、その表面の謂れの度合と凹凸によって定まる。親水性
表面処理によって濡れ性が増大すれば風圧損失は減少す
るが、親水性表面処理の経時変化によって表iJに凹凸
が発生すれば風圧損失は増大する。したがって熱交換器
用プレートフィンの表面状態を評価するに当っては、前
記第2図の装置による親水性の度合の測定のほかに、表
面の凹凸(表面の粗さ)を測定する必要がある。本発明
はこの表面の凹凸状態の測定と濡れ性とを同時に測定す
ることのできる表面状態評価法を提供することを目的と
するものである。
[Object of the Invention] The wind pressure loss of a plate fin for a heat exchanger is determined by the degree of roughness and unevenness of its surface. If the wettability is increased by the hydrophilic surface treatment, the wind pressure loss will be reduced, but if the surface iJ becomes uneven due to the aging of the hydrophilic surface treatment, the wind pressure loss will increase. Therefore, in evaluating the surface condition of a plate fin for a heat exchanger, it is necessary to measure the surface irregularities (surface roughness) in addition to measuring the degree of hydrophilicity using the apparatus shown in FIG. The object of the present invention is to provide a surface condition evaluation method that can simultaneously measure the unevenness of the surface and the wettability.

〔発明の構成〕本発明の表面状態評価法は、円板状のサ
ンダルの片面を液体の表面に荷重をかけて接触させ、該
サンプルをその中心を軸として回転させ、その回転に必
要なトルクを前記荷重の大きさを変化させてその都度測
定し、前記トルクとその荷重との関係式から前記サンプ
ルの表面状態を評価することを特徴とする。以下これを
具体的に第5図ないし第5図によって説明する。
[Structure of the Invention] The surface condition evaluation method of the present invention involves bringing one side of a disc-shaped sandal into contact with the surface of a liquid under a load, rotating the sample around its center, and measuring the torque required for the rotation. is measured each time the magnitude of the load is changed, and the surface state of the sample is evaluated from the relational expression between the torque and the load. This will be specifically explained below with reference to FIGS.

第3図において、7は表面状態が評価されるはトルクメ
ータ9の出力軸10が取付けられ、トルクメータ9の入
力軸11けモータ12の回転軸と結合されている。モー
タ12はカンチレバー16を介して支点14の反対端に
荷重15を有する。16は水槽、17は水である。上記
の構成において、まず回転測定部(サンプル7、サンプ
ルホルダー8、トルクメータ9、出力軸10、入力軸1
1、モータ12)と荷重15とをバランスさせ、次に水
ta16の水17の表面にサンプル7を接触させて再び
荷重15とバランスさせる。かくしてセットが終了した
後、荷重15を調節して所定のテスト荷重Wを回転測定
部に与え、モータ12を駆動してサンプル7と水17と
の間の流体抵抗をトルクメータ9の目盛18からトルク
Tとして読みとる。この操作を同一サンダルにつき荷重
Wを変化させて繰返して行ない、その都度トルクTを測
定する。
In FIG. 3, the output shaft 10 of a torque meter 9 is attached to the output shaft 7 whose surface condition is to be evaluated, and the input shaft 11 of the torque meter 9 is connected to the rotating shaft of a motor 12. The motor 12 has a load 15 at the opposite end of the fulcrum 14 via a cantilever 16 . 16 is an aquarium, and 17 is water. In the above configuration, first, the rotation measuring section (sample 7, sample holder 8, torque meter 9, output shaft 10, input shaft 1
1. Balance the motor 12) and the load 15, and then bring the sample 7 into contact with the surface of the water 17 of the water ta 16 to balance the load 15 again. After the setting is completed, the load 15 is adjusted to apply a predetermined test load W to the rotation measuring section, and the motor 12 is driven to measure the fluid resistance between the sample 7 and the water 17 from the scale 18 of the torque meter 9. Read as torque T. This operation is repeated for the same sandal while changing the load W, and the torque T is measured each time.

−5= 第4図は異なるサンプルα、bについて計測されたW−
Tの値を示しており、T=AW+Bの関係式で表現する
ことができ、この関係式から表面状態を評価することが
できる。いまサンプルαの関係式をTα= AIZW 
+ Bα、サンプルbの関係式をTh = AhH+B
bとすれば、W=OのときAα〉hh、Bh=Tb>B
α=Tαとなp、TA>Tαによシサンプルαがサンプ
ルbよシも親水性の大きいことがわかシ、A(Z>AA
によシサンプルαがサンプルbよシも表面の粗さに起因
する抵抗の大きいことがわかる。
-5= Figure 4 shows W- measured for different samples α and b.
It shows the value of T, which can be expressed by the relational expression T=AW+B, and the surface condition can be evaluated from this relational expression. Now, the relational expression for sample α is Tα= AIZW
+ Bα, the relational expression for sample b is Th = AhH + B
b, when W=O, Aα〉hh, Bh=Tb>B
Since α=Tα, p, TA>Tα, it can be seen that sample α is more hydrophilic than sample b, and A(Z>AA
It can be seen that sample α has a higher resistance than sample B due to surface roughness.

WとTの関係からえられる一般的な知見を第5図によっ
て説明する。親水性の度合は本質的には荷重Wによって
影響を受けない。表面の凹凸状態が同じであれば、親水
性のよいものほど凹凸への水の浸入度が増加してトルク
Tは大きくなる。したがってW=OのトルクTOが親水
性の度合を示し、TOの大きい方が親水性が良好である
。一方、表面状態は荷重Wによって影 6− 響を受ける。すなわち、親水性の度合が同じであれば、
荷重Wが増加するほど光面凹凸への水の浸入度が増加し
、それに伴ってトルクTは大きくなる。第5図において
直線lとmとを比較すると、親水性は同じであるがmは
lよシも表面が粗いことを示している。tfC直線mと
ルとを比較すると、表面の粗さは同じであるが、nはm
よシも親水性がよいことを示している。
The general findings obtained from the relationship between W and T will be explained with reference to FIG. The degree of hydrophilicity is essentially unaffected by the load W. If the unevenness of the surface is the same, the more hydrophilic the material, the greater the degree of water penetration into the unevenness and the larger the torque T. Therefore, the torque TO when W=O indicates the degree of hydrophilicity, and the larger TO is, the better the hydrophilicity is. On the other hand, the surface condition is affected by the load W. That is, if the degree of hydrophilicity is the same,
As the load W increases, the degree of water penetration into the unevenness of the optical surface increases, and the torque T increases accordingly. Comparing straight lines l and m in FIG. 5 shows that although they have the same hydrophilicity, m has a rougher surface than l. Comparing the tfC straight line m and le, the surface roughness is the same, but n is m
Yoshi also shows good hydrophilicity.

〔発明の効果〕本発明の効果を確認するために空調機の
熱交換器用アルミニュームプレートフィンの表面状態を
第2図の従来の方法と本発明の方法とによって比較評価
を行にっだ。比較評価の方法は、親水性表面処理α、b
を施したアルミニュームサンプルおよびこれを施さない
サンプルにつき、これらを1分間の水中浸漬、9分間の
大気中放置を数回繰返したものについて行なった表面評
価と、熱交換器として8時間冷房と12時間休止の運転
を数回繰返した実動状態における風圧損失との相関性に
おいて検討した。結果は次のとおシであった。
[Effects of the Invention] In order to confirm the effects of the present invention, the surface condition of aluminum plate fins for heat exchangers of air conditioners was compared and evaluated using the conventional method shown in FIG. 2 and the method of the present invention. The comparative evaluation method is as follows: hydrophilic surface treatment α, b
Surface evaluation was conducted on aluminum samples with and without aluminum immersion in water for 1 minute and left in the air for 9 minutes several times. We investigated the correlation with wind pressure loss during actual operation after repeated periods of time-stop operation. The results were as follows.

上記の表において○、△、×はサンプルテストの結果と
実動との間の相関性が良好なもの(○)、相関性がある
と認められるもの(△)、相関性が全くないもの(×)
である。
In the above table, ○, △, and × indicate that there is a good correlation between the sample test results and actual operation (○), there is a correlation (△), and there is no correlation at all ( ×)
It is.

以上の実験結果が示すように、本発明の方法は従来法よ
如も実動時と相関性のあるデータかえられる点において
すぐれている。これは本発明の表面状態評価法がT=A
W十Bの関係式において、W=oにおけるトルクT(l
と微分係数人に着目し、TOとAから表面状態を判定し
ているのに対し従来法は’foの変化のみを対象として
いるからである。
As shown by the above experimental results, the method of the present invention is superior to the conventional method in that it can change data that correlates with actual operation. This means that the surface condition evaluation method of the present invention is T=A
In the relational expression of W×B, the torque T(l
This is because the conventional method focuses only on changes in 'fo' and determines the surface condition from TO and A.

以上述べたように本発明の表面状態評価法は、実動時と
相関性のある信頼度の高いデータをうることかできるの
で熱交換器用プレートフィン等の設計に寄与するところ
がきわめて大である。
As described above, the surface condition evaluation method of the present invention can obtain highly reliable data that correlates with actual operation, and therefore greatly contributes to the design of plate fins for heat exchangers, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図:従来の表面状態評価法の説明図第2図:従来の
他の表面状態評価法の説明図画3因二本発明の表面状態
評価法の説明同第4因二本発明の作用説明図 第5N:本発明の原理説明図 〔記号〕7・・・サンプル、8・・・サンプルホルダー
、9・・・トルクメータ、1o・・・出力軸、11・・
・入力軸、12・・・モータ、13・・・カンチレ、(
−114・・・支点、15・・・荷重、16・・・水槽
、17・・・水、18・・・目盛  9−
Figure 1: Explanation diagram of conventional surface condition evaluation method Figure 2: Explanation diagram of other conventional surface condition evaluation methods Figure 5N: Diagram explaining the principle of the present invention [Symbols] 7...Sample, 8...Sample holder, 9...Torque meter, 1o...Output shaft, 11...
・Input shaft, 12...Motor, 13...Cantilever, (
-114...Fully point, 15...Load, 16...Water tank, 17...Water, 18...Scale 9-

Claims (2)

【特許請求の範囲】[Claims] (1)円板状のサンプルの片面を液体の表面に荷重をか
けて接触させ、該サンプルをその中心を軸として回転さ
せ、その回転に必要なトルクを前記荷重の大きさを変化
させてその都度測定し、前記トルクとその荷重との関係
式から前記サンプルの表面状態を評価することを特徴と
する表面状態評価法
(1) One side of a disk-shaped sample is brought into contact with the surface of the liquid under a load, the sample is rotated around its center, and the torque required for the rotation is applied by changing the magnitude of the load. A surface state evaluation method characterized in that the surface state of the sample is evaluated from the relational expression between the torque and its load by measuring each time.
(2)前記トルクとその荷重との関係式の荷重が00と
きのトルクの値からサンプル表面の親水性を評価し、前
記関係式の微分係数からサンプル表面の粗さを評価する
ことを特徴とする特許請求の範囲(1)の表面状態評価
(2) The hydrophilicity of the sample surface is evaluated from the torque value when the load in the relational expression between torque and its load is 00, and the roughness of the sample surface is evaluated from the differential coefficient of the relational expression. Surface condition evaluation method according to claim (1)
JP20882082A 1982-11-29 1982-11-29 Surface state evaluating method Pending JPS5999214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20882082A JPS5999214A (en) 1982-11-29 1982-11-29 Surface state evaluating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20882082A JPS5999214A (en) 1982-11-29 1982-11-29 Surface state evaluating method

Publications (1)

Publication Number Publication Date
JPS5999214A true JPS5999214A (en) 1984-06-07

Family

ID=16562655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20882082A Pending JPS5999214A (en) 1982-11-29 1982-11-29 Surface state evaluating method

Country Status (1)

Country Link
JP (1) JPS5999214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114323810A (en) * 2022-03-16 2022-04-12 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) Hydrogeology is with water level observation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114323810A (en) * 2022-03-16 2022-04-12 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) Hydrogeology is with water level observation device

Similar Documents

Publication Publication Date Title
EP0313540A1 (en) Method and apparatus for rheological testing
Daillant et al. Final stages of spreading of polymer droplets on smooth solid surfaces
JPS5999214A (en) Surface state evaluating method
Furukawa et al. Quenched-in vacancies in aluminium
US20090126474A1 (en) Traction pad for device testing adhesion of a coating on a substrate
JP2000310587A (en) Method for evaluating slurry for slicing and slurry
DK174172B1 (en) Method and apparatus for measuring the viscosity of substances
McKennell The influence of viscometer design on non-Newtonian measurements
US9664666B2 (en) Apparatus and methods for qualifying compositions
CN111307674B (en) Particle system particle size and pore throat size matching research method
Liu et al. The effects of hydrophilicity on water drainage and condensate retention on air-conditioning evaporators
Gibson et al. Dip-coating method for fabricating thin photoresist films
CA1155107A (en) Heat transfer boiling surface
SU1245978A1 (en) Method of detecting local flaws in polymeric films
CN1076777A (en) The measuring method of gas (vapour) liquid two-phase amount and mass gas content rate
JPH05157681A (en) Method for measuring and testing air and water permeability of soil
CN207198009U (en) A kind of coupon alternation of wetting and drying week leaching corrosion testing apparatus
JPH1114471A (en) Minute torque measuring instrument
SU890160A1 (en) Porous material mass-exchange characteristic determination method
SU1185279A1 (en) Method of determining magnetic moment of ferromagnetic particle
US6343501B1 (en) System and method for determining the process viscosity of a fluid in a film metering device
RU1810098C (en) Method of determining gel time of diluted sols
Gorski et al. pH measurements of agar culture media by using a flat-bottom electrode
SU970186A1 (en) Structure material destruction toughness determination method
KR101694589B1 (en) Apparatus for in-situ observation of phase transitions of piezoelectric polymer films during stretching, xrd system using thereof