JPS599911A - Method of monitoring film quality - Google Patents

Method of monitoring film quality

Info

Publication number
JPS599911A
JPS599911A JP11851182A JP11851182A JPS599911A JP S599911 A JPS599911 A JP S599911A JP 11851182 A JP11851182 A JP 11851182A JP 11851182 A JP11851182 A JP 11851182A JP S599911 A JPS599911 A JP S599911A
Authority
JP
Japan
Prior art keywords
light emitting
plasma
thin film
ratio
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11851182A
Other languages
Japanese (ja)
Inventor
Hisajiro Osada
長田 久二郎
Yutaka Hiratsuka
豊 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11851182A priority Critical patent/JPS599911A/en
Publication of JPS599911A publication Critical patent/JPS599911A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

PURPOSE:To permit to monitor a thin film during its forming by a method wherein a light emitting amount In of light emitting chemical nuclide and a light emitting amount Ii of ion in plasma are measured, and the ratio Ii/In is utilized to monitor quality of the thin film formed using a plasma CVD apparatus. CONSTITUTION:High frequency is applied from a high frequency power source 2 to parallel flat-plate electrodes 3 within a CVD apparatus 1, and a lens 6 is used to condense an emitted light 5 passing through a window 4 of the apparatus 1 among emitted lights from plasma consisted of light emitting nuclides produced through excitation of raw gas passing through the apparatus 1 and of ions having excited those nuclides. Next, the condensed light passes through a filter disc 7, which is varied in its transmission wavelength depending on a set angle and rotated by a motor 9, and it is then detected by a detector 8. Thereafter, the resultant electric signal is digitized to synchronously control both the motor and a changer 13 adapted to be switched in accordance with output signals digitized separately for individual emitted light wavelengths. An light emitting amount of chemical nuclide and that of ion are stored in memories 14, 15, respectively, and the ratio between two amounts are utilized for monitoring.

Description

【発明の詳細な説明】 本発明はプラズマCVD装置で製造する薄膜の膜質を監
視するための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for monitoring the film quality of a thin film produced using a plasma CVD apparatus.

従来、プラズマCVD装置には、膜厚をモニタするため
に、水晶発振子方式による膜厚モニタが使われているが
、膜質に関しては、適切なモニタがなく、原料ガス流量
、装置内圧、装置に印加する高周波出力などを流量計、
圧力計、パワーメータなどで監視しながら薄膜を製造し
、製造後に作った薄膜を赤外吸収スペクトルなどで、膜
質の評価を行なっていた。膜質は、上記ガス流量、内圧
、高周波出力などが複雑にからみ合っているため、膜作
成中に上記の測定値から膜質を推定することは困難であ
った。
Conventionally, a crystal oscillator-based film thickness monitor has been used in plasma CVD equipment to monitor film thickness, but there is no proper monitor for film quality, and there are Apply high frequency output etc. to a flowmeter,
Thin films were manufactured while being monitored using pressure gauges, power meters, etc. After manufacturing, the quality of the thin films was evaluated using infrared absorption spectra. Film quality is determined by a complex interplay of the gas flow rate, internal pressure, high frequency output, etc., so it has been difficult to estimate film quality from the above measured values during film production.

本発明の目的は、プラズマCVD装置で製造される薄膜
の膜質を膜作成中に監視することを可能にする膜質モニ
タ方法を提供することである。
An object of the present invention is to provide a film quality monitoring method that makes it possible to monitor the film quality of a thin film manufactured using a plasma CVD apparatus during film formation.

上記目的を達成するために、本発明による膜質モニタ方
法は、プラズマ中の発光化学種の発光量(In)と前記
発光化学種のイオンの発光量(Ii)とを測定し、その
比(II/In)によってプラズマCVD装置で製造す
る薄膜の膜質を監視することを要旨とする。すなわち、
本発明は、プラズマCVDプロセスで生じているプラズ
マ発光のうち、特定の発光化学種の発光量と、その発光
化学種のイオンの発光量との強度比が、形成される薄膜
の膜質と関係があるという本発明者らの知見に基ずくも
ので、これを利用して、プラズマCVD薄膜の膜質を、
製造中に監視するものである。
In order to achieve the above object, the film quality monitoring method according to the present invention measures the luminescence amount (In) of a luminescent chemical species in the plasma and the luminescence amount (Ii) of the ions of the luminescent chemical species, and measures the ratio (II /In) to monitor the film quality of thin films produced by plasma CVD equipment. That is,
The present invention provides that the intensity ratio between the amount of light emitted by a specific light-emitting chemical species and the amount of light emitted by ions of the light-emitting chemical species in the plasma light emitted during the plasma CVD process is related to the quality of the thin film formed. This is based on the inventors' knowledge that there is a
It is monitored during manufacturing.

以下に陰口を参照しながら実施例を用いて本発明を一層
詳細に説明するが、それらは例示に過ぎず、本発明の枠
を越えることなしにいろ℃゛為な改良や変形があり得る
ことは勿論である。
The present invention will be explained in more detail below using Examples with reference to the following, but these are merely illustrative, and various improvements and modifications may be made without going beyond the scope of the present invention. Of course.

以下には、平行平板型プラズマCVD装置に、原料ガス
として混合比1:9のSiH,とN2を用い、周波数1
3.56M1zの高周波電力を印加して、Siウェハ上
にSiN薄膜を形成する実施例について述べる。
Below, SiH and N2 with a mixing ratio of 1:9 are used as source gases in a parallel plate plasma CVD apparatus, and a frequency of 1:1 is used.
An example will be described in which a SiN thin film is formed on a Si wafer by applying a high frequency power of 3.56 M1z.

ガス圧0.05〜0.5Torr 、高周波密度0.1
〜I W/Cmlで実験したところ、ガス圧が高いか、
高周波密度が低い場合(1)には、生成した薄膜の赤外
スペクトルには、SiHに基く吸収が見られた。
Gas pressure 0.05-0.5 Torr, high frequency density 0.1
~I When I experimented with W/Cml, I found that the gas pressure was high,
When the radio frequency density was low (1), absorption based on SiH was observed in the infrared spectrum of the produced thin film.

しかしガス圧が低く、高周波密度が高い場合(■)には
、生成した薄膜の赤外スペクトルには、SiHに基く吸
収は見られなかった。
However, when the gas pressure was low and the radio frequency density was high (■), no SiH-based absorption was observed in the infrared spectrum of the formed thin film.

■の場合のプラズマ発光の測定例を第1図に、Hの場合
のプラズマ発光の測定例を第2図に示す。第1図の波長
391.44 nmのN2+の発光ピーク21は、波長
380.49nmのN20発光ピーク22よりも低いが
、第2図の波長391.44nmのN2+の発光ピーク
21′は、波長380.49nmのN20発光ピーク2
2′よりも3倍以上高くなっている。N2+の発光量は
、プラズマ中のN2量に影響を受けたり、発光量測定の
際の窓の汚れ等にも影響を受けるので、N2+の最強発
光ピーク22.22′の発光量をこれに波長が近いN2
の発光ピーク21.21’の発光量との比をとることで
上記の影響をキャンセルすることにした。このN2+と
N2の発光量比を横軸に、生成した薄膜中のSiHの赤
外吸収から見積ったSiH量を縦軸にとったところ、第
3図のような関係のあることがわかった。
FIG. 1 shows a measurement example of plasma emission in case (2), and FIG. 2 shows an example of measurement of plasma emission in case H. The N2+ emission peak 21 at a wavelength of 391.44 nm in FIG. 1 is lower than the N20 emission peak 22 at a wavelength of 380.49 nm, but the N2+ emission peak 21' at a wavelength of 391.44 nm in FIG. .49nm N20 emission peak 2
It is more than three times higher than 2'. The amount of light emitted by N2+ is affected by the amount of N2 in the plasma, as well as by the dirt on the window when measuring the amount of light emitted, so the amount of light emitted by the strongest N2+ light emission peak, 22.22', is determined by the wavelength. is near N2
It was decided to cancel the above influence by taking the ratio of the luminescence amount to the luminescence peak of 21.21'. When the horizontal axis is the ratio of the luminescence amount of N2+ and N2 and the vertical axis is the amount of SiH estimated from the infrared absorption of SiH in the formed thin film, it was found that there is a relationship as shown in FIG.

供給ガスの組成比を一定にしておけば第3図の関係を使
うことにより、プラズマCVD薄膜の8iH含有量が、
着目発光化学種のイオンN2+と着目発光化学種N2の
発光量の比をモニタすることにより可能となった。
If the composition ratio of the supplied gas is kept constant, by using the relationship shown in Figure 3, the 8iH content of the plasma CVD thin film is
This was made possible by monitoring the ratio of the amount of light emitted by the ion N2+ of the luminescent chemical species of interest and the luminescent chemical species of interest N2.

第4図は本発明による方法を実施するための装置の一例
のブロック図である。プラズマCVD装置1内の平行平
板型電極乙に高周波電源2がらの高周波を印加し、上記
装置内に通気する原料ガスの励起で生じた発光化学種と
その発光化字種をさらに励起したイオンなどから成るプ
ラズマ発光のうち、上記プラズマCVD装置嵌着の窓4
を透過するプラズマ発光5をレンズ6で集光して、透過
波長が角度方向に変化し、モータ9で回転させられるフ
ィルタ円板7を透過させ一検出器8で検出する。このよ
うにして得られた電気信号を増幅器11で増幅し、AD
変換器12でアナログ信号をデジタル化し、モータ9と
各発光波長別にデジタル化した出力信号を対応させて切
換える切換器130両者を同期制御する制御器10によ
り、発光化学種の発光量とその発光化学種のイオンの発
光量とを個別に記憶するメモ1JA14とメモリB15
とに蓄え、その両者の値の比を割算器16で計算し、そ
の結果を表示装置17に出力する。
FIG. 4 is a block diagram of an example of an apparatus for carrying out the method according to the invention. A high frequency wave from a high frequency power source 2 is applied to a parallel plate type electrode B in the plasma CVD device 1, and luminescent chemical species generated by excitation of the raw material gas vented into the device and ions generated by further exciting the luminescent species are generated. Of the plasma emission consisting of
The transmitted plasma light 5 is focused by a lens 6, the transmitted wavelength changes in the angular direction, and is transmitted through a filter disk 7 rotated by a motor 9 and detected by a detector 8. The electrical signal obtained in this way is amplified by the amplifier 11, and the AD
The converter 12 digitizes the analog signal, and the motor 9 and the switch 130 switch the digitized output signals for each emission wavelength in correspondence.The controller 10 synchronously controls both of the output signals, and the amount of light emitted by the light-emitting species and its luminescence chemistry are determined. Memo 1JA14 and memory B15 that individually store the amount of light emission of seed ions
The ratio of the two values is calculated by the divider 16, and the result is output to the display device 17.

第3図の関係は以下のような理由で他のプラズマCVD
プロセスへの拡大が可能である。
The relationship shown in Figure 3 is similar to that of other plasma CVDs for the following reasons.
Expansion to processes is possible.

プラズマCV I)プロセスでは、原料となる多原子分
子ガスが、プラズマにより原子または、二原子分子程度
に分解し、これが基板上で再構成して薄膜を形成するプ
ロセスである。このプラズマによる原料ガスの分解は、
プラズマを構成する電子の運動エネルギーにより起こる
とさねている。この電子は、先の例で述べれば、SiH
を分解し、SiやSiHを生成するが、一方、N2を電
離してN2+を生成する。したがってN2+とN2の発
光強度比でモニタする方法は、反応の曲進力となるプラ
ズマ中の電子の数やエネルギー分布などを含めた電子の
活動度を間接的にではあるが、モニタしていることにな
る。
In the plasma CV I) process, a polyatomic molecular gas serving as a raw material is decomposed into atoms or diatomic molecules by plasma, and these are reconstituted on a substrate to form a thin film. The decomposition of the raw material gas by this plasma is
It is said that this is caused by the kinetic energy of the electrons that make up the plasma. In the previous example, this electron is SiH
decomposes to produce Si and SiH, while ionizing N2 to produce N2+. Therefore, the method of monitoring the emission intensity ratio of N2+ and N2 indirectly monitors the activity of electrons, including the number and energy distribution of electrons in the plasma, which are the driving force of the reaction. It turns out.

本発明により、膜作成中にプラズマ中の電子の活動度が
間接的ではあるがモニタできるので、これにより電子の
活動度に影響されるプラズマCVD薄膜の膜質のモニタ
が可能となる。
According to the present invention, the activity level of electrons in plasma can be monitored, albeit indirectly, during film formation, so that it is possible to monitor the film quality of plasma CVD thin films, which is affected by the activity level of electrons.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSiH結合のあるSiN薄膜形成時の発光スペ
クトル、第2図はSiH結合のないSiN薄膜形成時の
発光スペクトル、第3図はN2+とN2−の発光量比と
生成したSiN薄膜内のSiH量の関係を示すダイヤグ
ラム、第4図は本発明による方法を実施するための装置
の一例のブロック図である。 1・・・プラズマCVD装置、 2・・・高周波電源、   6・・・平行平板型電極、
4・・・窓、       5・・・プラズマ発光、6
・・・レンズ、     7・・・フィルタ円板、8・
・・検出器、     9・・・モータ、10・・・制
御装置、   11・・・増幅器、12・・・AD変換
器、   13・・・切換器、14.15・・・メモリ
、  16・・・割算器、17・・・表示装置。 オ 1 z 波長(?−L?72) 才2図 350   360   370   3δ0 3飽 
  40υ液畏Cnyn’) 才 3 匿
Figure 1 shows the emission spectrum when forming a SiN thin film with SiH bonds, Figure 2 shows the emission spectrum when forming a SiN thin film without SiH bonds, and Figure 3 shows the ratio of the amount of light emission between N2+ and N2- and the inside of the formed SiN thin film. FIG. 4 is a block diagram of an example of an apparatus for carrying out the method according to the present invention. 1... Plasma CVD device, 2... High frequency power supply, 6... Parallel plate type electrode,
4...Window, 5...Plasma emission, 6
... Lens, 7... Filter disk, 8.
...Detector, 9...Motor, 10...Control device, 11...Amplifier, 12...AD converter, 13...Switcher, 14.15...Memory, 16... - Divider, 17...display device. O 1 z Wavelength (?-L?72) 350 360 370 3δ0 3 Saturation
40υ liquid fear Cnyn') Sai 3 Hidden

Claims (1)

【特許請求の範囲】[Claims] プラズマ中の発光化学種の発光量(In)と前記発光化
学種のイオンの発光量(Ii)とを測定し、その比(I
i/In)によってプラズマCVD装置で製造する薄膜
の膜質を監視することを特徴とする膜質モニタ方法。
The amount of luminescence (In) of the luminescent species in the plasma and the amount of luminescence (Ii) of the ions of the luminescent species are measured, and the ratio (I
A film quality monitoring method characterized by monitoring the film quality of a thin film produced in a plasma CVD apparatus using i/In).
JP11851182A 1982-07-09 1982-07-09 Method of monitoring film quality Pending JPS599911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11851182A JPS599911A (en) 1982-07-09 1982-07-09 Method of monitoring film quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11851182A JPS599911A (en) 1982-07-09 1982-07-09 Method of monitoring film quality

Publications (1)

Publication Number Publication Date
JPS599911A true JPS599911A (en) 1984-01-19

Family

ID=14738441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11851182A Pending JPS599911A (en) 1982-07-09 1982-07-09 Method of monitoring film quality

Country Status (1)

Country Link
JP (1) JPS599911A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2719120A1 (en) * 1994-04-22 1995-10-27 Innovatique Sa Measuring and controlling reactive gas during physico-chemical treatment of substrate
JP2007216951A (en) * 2006-02-17 2007-08-30 Valeo Systemes Thermiques Heating element support frame for electric heater in ventilating, heating or air-conditioning equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2719120A1 (en) * 1994-04-22 1995-10-27 Innovatique Sa Measuring and controlling reactive gas during physico-chemical treatment of substrate
JP2007216951A (en) * 2006-02-17 2007-08-30 Valeo Systemes Thermiques Heating element support frame for electric heater in ventilating, heating or air-conditioning equipment

Similar Documents

Publication Publication Date Title
CA1194385A (en) Device fabrication using gas-solid processes
Okabe Photochemistry of acetylene at 1470 Å
Perrin et al. Emission cross sections from fragments produced by electron impact on silane
JPS61222534A (en) Method and apparatus for surface treatment
Matsumi et al. Laser diagnostics of a silane plasma—SiH radicals in an a‐Si: H chemical vapor deposition system
Umemoto et al. Catalytic decomposition of PH3 on heated tungsten wire surfaces
JPS599911A (en) Method of monitoring film quality
JPS6189627A (en) Formation of deposited film
Freivogel et al. Electronic absorption spectra of C 4− and C 6− chains in neon matrices
Wada et al. Analysis of decomposition process of BrCN with microwave discharge flow of Ar
Mutsukura et al. The analyses of an SiF4 plasma in an RF glow discharge for preparing fluorinated amorphous silicon thin films
Tachibana et al. Spectroscopic Measurements of the Production and the Transport of CH Radicals in a Methane Plasma Used for the CVD of aC: H
Hancock et al. Absolute number densities of vibrationally excited) produced in a low pressure rf plasma
JPS6314421A (en) Plasma chemical vapor deposition method
Hata et al. Neutral radical detection in silane glow-discharge plasma using coherent anti-stokes raman spectroscopy
US7875199B2 (en) Radical generating method, etching method and apparatus for use in these methods
JPH06151421A (en) Formation of silicon nitride thin film
Liu et al. Infrared Laser Spectrum of the Si 2− Anion in a Silane Plasma
Motohashi et al. Optical emission spectroscopy of glow discharge plasma from SiH4− CH4 system
CA2202697A1 (en) Vapor phase growth method and growth apparatus
Lushchik et al. VUV-Induced Multiple Excitations and Defect Stabilization in a KCI Crystal
Kajiyama et al. CARS study of SiH 4− NH 3 reaction process in glow discharge plasma
Tezaki et al. Reaction of NH (a1. DELTA.) with SiH4: Comparison with CH4 and C3H8
Tiee et al. Time-resolved fluorescence measurements of KrF emission produced by vacuum ultraviolet photolysis of KrF2 and Kr/F2 mixtures
JPH0754293B2 (en) Particle measuring device