JPS599895A - Radio wave sealing device - Google Patents

Radio wave sealing device

Info

Publication number
JPS599895A
JPS599895A JP11894782A JP11894782A JPS599895A JP S599895 A JPS599895 A JP S599895A JP 11894782 A JP11894782 A JP 11894782A JP 11894782 A JP11894782 A JP 11894782A JP S599895 A JPS599895 A JP S599895A
Authority
JP
Japan
Prior art keywords
radio wave
branch path
sealing device
present
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11894782A
Other languages
Japanese (ja)
Other versions
JPS6325476B2 (en
Inventor
等隆 信江
楠木 慈
隆 柏本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11894782A priority Critical patent/JPS599895A/en
Publication of JPS599895A publication Critical patent/JPS599895A/en
Publication of JPS6325476B2 publication Critical patent/JPS6325476B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、高周波加熱装置の改良された電波シール装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved radio wave sealing device for a high frequency heating device.

従来の高周波加熱装置の代表例である電子レンジは、加
熱室開口周辺部と出入れ扉とがつくる間隙(以下電波通
路と呼ぶ)からの電波漏洩を防止する手段として、導電
性ガスケットを用いた接触方式、電波吸収材を用いた方
式、共振を利用したチョーク方式などが提案され、夫々
の組み合わせで実用化されている。
A microwave oven, which is a typical example of a conventional high-frequency heating device, uses a conductive gasket as a means to prevent radio wave leakage from the gap (hereinafter referred to as the radio wave passage) created between the heating chamber opening and the entrance/exit door. Contact methods, methods using radio wave absorbing materials, and choke methods using resonance have been proposed, and combinations of each have been put into practical use.

これらの方式の中で性能面、信頼性の面等を考慮すると
共振を利用したチョーク方式が最良方式と考えられる。
Among these methods, the choke method using resonance is considered to be the best method in terms of performance and reliability.

しかしながらこのチョーク方式は共振を利用するがため
に、必然的に電波通路を伝播し漏洩しようとする電波波
長に関与した構造寸法が必要である。
However, since this choke method uses resonance, it necessarily requires structural dimensions that are related to the wavelength of radio waves that propagate through the radio wave path and are likely to leak.

従来のチョーク方式構成を第1図を参照して説明する。A conventional choke system configuration will be explained with reference to FIG.

第1図(2L)は構成図、(b)はその等価回路、(0
)は(a)図のy方向平面図である。
Figure 1 (2L) is a configuration diagram, (b) its equivalent circuit, (0
) is a plan view in the y direction of figure (a).

この電波シール装置は、加熱室開口フランジ1と出入れ
扉2とがつくる電波通路30入り口Aから漏洩電波波長
の死なる長さの所Bから始まるチョーク空胴4を配した
構成となっており、装置本体外方向である2方向の寸法
は少なくとも漏洩電波波長の偽は必要でありコンパクト
化が難しいのが第1の欠点。
This radio wave sealing device has a configuration in which a choke cavity 4 is arranged starting from the entrance A of a radio wave passage 30 formed by the heating chamber opening flange 1 and the entrance/exit door 2 at a point B at the dead length of the leakage radio wave wavelength. The first drawback is that the dimensions in two directions, which are the outward directions of the device main body, require at least a falsification of the leakage radio wave wavelength, making it difficult to make it compact.

また電波通路3の終端部Cから本体外を見た負荷インピ
ーダンスをzL、  Bよりチョーク空胴側を見たイン
ピーダンスをzBとすると(a)図に示す電波シール機
構はΦ)図の等価回路で示される、すなわちZ’B >
 Zbであれば(a)図に示す構成の電波ソール機構は
A点から入ってきた漏洩しようとする電波を高性能に減
衰させて0点からの漏洩電波を抑止することになる。
Also, if the load impedance seen from the terminal C of the radio wave path 3 outside the body is zL, and the impedance seen from B to the choke cavity side is zB, then the radio wave sealing mechanism shown in figure (a) is the equivalent circuit shown in figure Φ). indicated, i.e. Z'B >
In the case of Zb, the radio wave sole mechanism having the configuration shown in FIG.

ところがこのような電波シール機構において、理論的な
解析が困難な主要因として、(C)図に示すように電波
通路の入り口(A点で代表する)は同じでも、電波の進
む方向が2方向に規制されず、2方向に対して任意のθ
なる角度でもって進む漏洩電波が存在することがあげら
れる。
However, the main reason why theoretical analysis is difficult in such a radio wave seal mechanism is that even though the entrance of the radio wave passage (represented by point A) is the same, as shown in Figure (C), the directions in which the radio waves travel are two directions. Any θ in two directions without being restricted by
One example of this is that there are leakage radio waves that travel at certain angles.

このような漏洩電波に対してはzBの値がθ−0なる時
のzBの値より小さくなるだめ電波/−シル機構減衰特
性が悪くなる欠点が存在する。
With respect to such leakage radio waves, there is a drawback that if the value of zB becomes smaller than the value of zB at θ-0, the radio wave/-sill mechanism attenuation characteristics deteriorate.

本発明はこのような事情に鑑み、電波の伝送に用いられ
る平行伝送線路を電波シール機構に導入し、その伝送線
路中に分岐路を設けて新規でコンパクトな機構をとると
ともに、コンパクトな機構構成の性能の安定化、信頼性
の向上を実現させた電波シール装置を提供することを主
目的とするものである。
In view of these circumstances, the present invention introduces a parallel transmission line used for transmitting radio waves into a radio wave seal mechanism, provides a branch path in the transmission line, provides a new and compact mechanism, and has a compact mechanism configuration. The main objective is to provide a radio wave sealing device that achieves stable performance and improved reliability.

以下本発明を図面を参照して説明する。The present invention will be explained below with reference to the drawings.

第2図は本発明の電波シール装置の基本構成図であり、
(&)が構成図、■)がその等価回路である。
FIG. 2 is a basic configuration diagram of the radio wave sealing device of the present invention,
(&) is the configuration diagram, and ■) is its equivalent circuit.

図中第1図と照合するところは同一番号で示す。The parts in the figure that are compared with FIG. 1 are indicated by the same numbers.

加熱室開口フランジ1に対向して近接の伝送線路とSな
るすきま間隔にて配列された幅Wなる装置本体外方向に
伸びる伝送線路群5+L、 5b、 50が形成されて
いる。この伝送線路群を代表させて伝送線路5aに基づ
き以下の説明をする。伝送線路5aは、電波通路3の入
力端ムから11なる長さのところBに分岐路6を有し、
その深さ12は漏洩電波波長λgの約死である。また分
岐路から電波通路の終端Cに至る長さを43とする。
A transmission line group 5+L, 5b, 50 is formed facing the heating chamber opening flange 1 and extending outward from the apparatus main body and having a width W and arranged with a gap S from adjacent transmission lines. The following explanation will be given based on the transmission line 5a as a representative of this transmission line group. The transmission line 5a has a branch path 6 at a length B of 11 from the input end of the radio wave path 3,
The depth 12 is approximately the depth of the leakage radio wave wavelength λg. Further, the length from the branch path to the terminal end C of the radio wave path is 43.

このような伝送線路の等価回路はマイクロ波工学におい
て周知のようにΦ)図のように表わされる。
The equivalent circuit of such a transmission line is expressed as shown in the diagram Φ, as is well known in microwave engineering.

ここで第1図(1))との大きな差違は、伝送線路の幅
がWと制約されているが故に分岐点には誘導性。
The big difference here from Fig. 1 (1)) is that the width of the transmission line is limited to W, so there is inductivity at the branch point.

容量性のパラメータが介在することである。There is a capacitive parameter involved.

この付帯パラメータを考慮して、分岐路6の深さを%波
長とし、端子A−ム′から見たインピーダンス2ムを計
算すると、l、が短いほど2ムは零に近づく結果を得た
。これは、すなわち11が短いほど本発明の基本構成に
て示した電波シール装置は電波減衰特性が高まることを
示している。これを実証すべく l+を3Q1nmと1
2mmとして減衰特性を実測するとβ、:127nmの
方が11=30mmに比して恥〜狛低い電波漏洩量結果
を得、本発明基本構成の電波シール装置の特性を理論的
かつ実験的に立証することができた。
Taking this incidental parameter into consideration, and calculating the impedance 2m as seen from the terminal A-m' with the depth of the branch path 6 as % wavelength, we obtained a result that the shorter l, the closer 2m is to zero. This indicates that the shorter 11 is, the higher the radio wave attenuation characteristic of the radio wave sealing device shown in the basic configuration of the present invention is. To prove this, l+ is 3Q1nm and 1
When the attenuation characteristics were actually measured with a diameter of 2 mm, β:127 nm yielded a shamefully low radio wave leakage result compared to 11=30 mm, and the characteristics of the radio wave sealing device of the basic configuration of the present invention were theoretically and experimentally verified. We were able to.

この結果、従来周知の事実として用いられていたチョー
ク方式における電波の入り口からチョーク空胴に至る寸
法を%波長とする事実が、本発明基本構成に示すように
、チョーク空胴に対応する分岐路を有する伝送線路をす
きまSを介して周期的に配列した電波シール装置構成を
採名ことにより、その分岐路に至るまでの長さをA波長
よりも十分小さい寸法にて構成できるため、2方向の電
波シール装置寸法を従来のチョーク方式に比してよりコ
ンパクトに構成することができる特長が示された。
As a result, the fact that the dimension from the entrance of the radio wave to the choke cavity in the choke system, which has been used as a well-known fact in the past, is the % wavelength has been changed from the fact that the branching path corresponding to the choke cavity, as shown in the basic configuration of the present invention, By adopting a configuration of a radio wave sealing device in which transmission lines having a wavelength of It has been shown that the radio wave seal device can be made more compact in size compared to the conventional choke method.

そしてこの電波シール装置は、分岐路の深さを漏洩電波
波長のはt’Aにとればよいことから、誘電材を分岐路
内に介在して分岐路における漏洩電波波長の圧縮化を行
ない、分岐路の実寸法(第2図(2L)のy方向寸法)
のコンパクト化をはかるのが本発明の原点である。
In this radio wave sealing device, since the depth of the branch path should be set to t'A of the leakage radio wave wavelength, a dielectric material is interposed in the branch path to compress the leakage radio wave wavelength in the branch path. Actual dimensions of the branch road (dimensions in the y direction in Figure 2 (2L))
The origin of the present invention is to make it more compact.

第3図は本発明の電波シール装置の概念構成図である。FIG. 3 is a conceptual diagram of the radio wave sealing device of the present invention.

(a)は分岐路6を空気層7のみで構成した図であり、
分岐路の深さ12は漏洩電波波長の約Aである。
(a) is a diagram in which the branch path 6 is composed of only an air layer 7,
The depth 12 of the branch path is approximately A of the leakage radio wave wavelength.

この分岐路内を1例として比誘電率が4なる誘電体層8
で満たせば、分岐路内を伝搬する波長は捧に圧縮される
ため分岐路の深さp4は(+L)図構成に比して汐でよ
いことになる。これを示したのが第3図(b)である。
A dielectric layer 8 with a relative dielectric constant of 4 is taken as an example inside this branch path.
If it is satisfied, the wavelength propagating in the branch path is greatly compressed, so the depth p4 of the branch path can be equal to the depth p4 compared to the (+L) diagram configuration. This is shown in FIG. 3(b).

なお第3図において第2図と照合する部分は同一番号で
示す。
In addition, in FIG. 3, parts that are compared with FIG. 2 are indicated by the same numbers.

ところでこの分岐路内に誘電材を挿入して分岐路の電波
に対する実効長は同じで、実寸法を小さくする機構は、
第3図に示すように理論的には簡11j、明瞭であるが
実設計に対しては以下のような困難さが生ずる。
By the way, the mechanism for inserting a dielectric material into this branch path to reduce its actual size while keeping the effective length of the branch path for radio waves the same is as follows.
As shown in FIG. 3, although theoretically it is simple and clear, the following difficulties arise in actual design.

成形されだ誘電材を分岐路内へ挿入装荷する組立てにお
いては、分岐路を構成する導体と誘電材との間に少なか
らずのすきま(空気層)を生ずる。
In the assembly process in which the formed dielectric material is inserted and loaded into the branch path, a considerable gap (air layer) is created between the conductor and the dielectric material forming the branch path.

まだ分岐路導体を金型として樹脂を流し込む成形構成に
おいても、樹脂収縮のために金型である導体と収縮後の
樹脂(誘電材)の間に少なからずのすきまが生じ得る。
Even in a molding configuration in which resin is poured using a branch path conductor as a mold, a considerable gap may occur between the conductor as a mold and the contracted resin (dielectric material) due to resin contraction.

このすきま(空気層)の影響を第4図、第5図を参照し
て説明する。
The influence of this gap (air layer) will be explained with reference to FIGS. 4 and 5.

第4図は、本発明の電波シール装置の分岐路における空
気層の影響を説明する図であり、第5図は、誘電体層と
空気層とを組み合わせだ時の分岐路における実効誘電率
特性を示すもの゛である。
FIG. 4 is a diagram illustrating the influence of an air layer on the branch path of the radio wave sealing device of the present invention, and FIG. 5 shows the effective permittivity characteristics in the branch path when a dielectric layer and an air layer are combined. It is something that shows.

第4図(a)は本発明の電波シール装置における電界分
布を示すものである、 人より入力された高周波は図に示すように分岐路6内へ
伝搬される。この図において線路導体は9、接地導体は
10である、分岐路中、円11で囲む部分を拡大した図
が第4図中)である。
FIG. 4(a) shows the electric field distribution in the radio wave sealing device of the present invention. High frequency waves input by a person are propagated into the branch path 6 as shown in the figure. In this figure, the line conductor is 9 and the ground conductor is 10. An enlarged view of the part surrounded by a circle 11 in the branch path is shown in FIG. 4).

第4図(b)において、接地導体10と線路導体9とは
所望の比誘電率をもつ厚さhの誘電体層12と厚さどの
空気層13とを仲介としてdなる間隔で隔てられている
。図中矢印は電界の方向を示す。
In FIG. 4(b), the ground conductor 10 and the line conductor 9 are separated by a distance d through a dielectric layer 12 having a desired dielectric constant and a thickness h and an air layer 13 having a certain thickness. There is. Arrows in the figure indicate the direction of the electric field.

このような2層構造からなる分岐路の漏洩電波実効波長
を知るためには、この誘電体層12と空気層13を合成
した分岐路における実効誘電率を知らねばならない。こ
の実効誘電率εeffは、第4図(C)に第4図(b)
の等節回路を示すように誘電体層の容量C1と空気層の
容量C2の直列接続の合成容量よシ求められる。すなわ
ち C1−εo・εr”H+’2−60g ε0は真空の誘電率、Sは単位対向面積よりで与えられ
る。なお空気層の比誘電率は1とした。
In order to know the effective wavelength of leakage radio waves in a branch path having such a two-layer structure, it is necessary to know the effective permittivity of the branch path in which the dielectric layer 12 and the air layer 13 are combined. This effective permittivity εeff is shown in Fig. 4(C) and Fig. 4(b).
As shown in the equinodal circuit shown in FIG. That is, C1-εo·εr"H+'2-60g ε0 is the permittivity of vacuum, and S is given by the unit facing area. Note that the dielectric constant of the air layer is 1.

式(1)よりh :=:3 mJ  tr= 4とした
時のgとεeffの特性を示したものが第5図である。
FIG. 5 shows the characteristics of g and εeff when h :=:3 mJ tr=4 from equation (1).

第5図かられかることは、3朋厚で成形された比誘電率
4の誘電材を分岐路内へ挿入する時、この誘電材と分岐
路導体(線路導体あるいは接地導体)とのすきまが0.
2 mmあったとすると分岐路の実効誘電率は約3.4
となり、分岐路を伝搬する漏洩電波波長はすきまが零の
場合と比べて約10係長くなる。
What can be seen from Figure 5 is that when inserting a dielectric material molded to a thickness of 3 mm and a dielectric constant of 4 into a branch path, the gap between this dielectric material and the branch conductor (line conductor or ground conductor) is 0.
If it is 2 mm, the effective permittivity of the branch path is approximately 3.4.
Therefore, the wavelength of the leakage radio wave propagating through the branch path becomes about 10 times longer than when the gap is zero.

この波長が10%長くなる影響を第6図に示す本発明の
電波シール装置の分岐路長12に対する電波減衰量特性
図を用いて説明する。
The effect of increasing the wavelength by 10% will be explained using the radio wave attenuation amount characteristic diagram with respect to the branch path length 12 of the radio wave sealing device of the present invention shown in FIG.

図中14で示す曲線が分岐路を空気層のみで構成した時
の理論曲線であシ黒丸が実測値である。
The curve indicated by 14 in the figure is a theoretical curve when the branch path is composed of only an air layer, and the black circles are actual measured values.

なお用いた周波数は24s □ MHzである。The frequency used was 24s□MHz.

この分岐路を比誘電率4の誘電体で完全充てんした時の
理論曲線が15である。いま空気層0.2mmが存在す
ると、約1o%波長が長くなることから電波ソール装置
の減衰量は10dB以上も悪化することになる。このた
め分岐路の深さの実寸法を実質的に最小にすべく分岐路
内へ誘電体を完全充てん挿入する手段は、実設計におい
て精度の高い管理が派生しかつ性能バラツキが大きくな
りやすい欠点を奏する。
The theoretical curve when this branch path is completely filled with a dielectric material having a relative dielectric constant of 4 is 15. If an air layer of 0.2 mm exists, the wavelength will become longer by about 10%, and the attenuation of the radio wave sole device will deteriorate by more than 10 dB. For this reason, the method of completely filling and inserting dielectric material into the branch path in order to substantially minimize the actual depth of the branch path has the disadvantage that highly accurate control is required in the actual design and performance variation tends to be large. play.

この空気層の影響を逆に利用したのが本発明である。The present invention takes advantage of the influence of this air layer.

第7図は本発明一実施例を示す電波シール装置の構成図
である。図中第2図と照合する部分は同一番号にて示す
FIG. 7 is a block diagram of a radio wave sealing device showing one embodiment of the present invention. Portions in the figure that correspond to those in FIG. 2 are designated by the same numbers.

分岐路6の接地導体1oと線路導体9とは厚みh −)
の誘電体層12と予じめ積極的に設けた厚みg Qnr
n)からなる空気層13の二層にて隔てられ、さらに接
地導体1oと線路導体1oは分岐路終端にて短絡されて
いる。
The thickness of the ground conductor 1o of the branch path 6 and the line conductor 9 is h −)
The dielectric layer 12 and the thickness g Qnr actively provided in advance
The ground conductor 1o and the line conductor 1o are further short-circuited at the end of the branch path.

いま1例として比誘電率4の誘電体層の厚みhを3朋と
し、空気層の厚みgを1.5朋とすると、理想的には実
効誘電率εeffは2となり、電波減衰量特性は第6図
の16で示す曲線になる。
As an example, if the thickness h of the dielectric layer with a relative dielectric constant of 4 is 3 mm, and the thickness g of the air layer is 1.5 mm, then ideally the effective permittivity εeff is 2, and the radio wave attenuation characteristic is This results in a curve indicated by 16 in FIG.

空気層の厚みgが−Q、 21RIILばらつくとする
と、実効誘電率εeffは1.9〜2.1となる。この
結果、減殺鼠は高々3dB はど劣化するだけとなり十
分に製造バラツキを吸収した高性能かつコンパクトな電
波ンール装置を提供することができる。
Assuming that the thickness g of the air layer varies by -Q, 21RIIL, the effective dielectric constant εeff will be 1.9 to 2.1. As a result, the deterioration is only 3 dB at most, and it is possible to provide a high-performance and compact radio wave control device that sufficiently absorbs manufacturing variations.

なお以上の説明においては数値の明白化を示すべく誘電
材の比誘電率として4を代表例に述べた。  が、比誘
電率が高い誘電材はど本発明の効用は助長されたとえば
アルミナを用いれば、本発明の効用は一層助長されると
ともに分岐路寸法のよりコンパクト化が達成できる 以上本発明は、短絡終端された分岐路を有する伝送線路
を加熱室開口周辺部と出入れ扉とがつくる電波通路の装
置本体外方向に周期配列した高周波加熱装置の電波シー
ル装置において、分岐路は所望の比誘電率を有する所定
厚みの誘電体層と所定厚みの空気層の二層にて線路導体
と接地導体とを隔てた構成の電波シール装置を提供する
ものであり、 (1)分岐路の誘電体層による効用を杷握しゃすく設計
および製造管理が容易である。
In the above description, 4 was used as a representative example as the relative dielectric constant of the dielectric material in order to clarify the numerical values. However, if a dielectric material with a high relative dielectric constant is used, the effect of the present invention will be enhanced.For example, if alumina is used, the effect of the present invention will be further enhanced and the size of the branch path can be made more compact. In a radio wave sealing device for a high frequency heating device in which a transmission line having a terminated branch path is arranged periodically in the direction outside the device main body of the radio wave path created by the heating chamber opening periphery and the entrance/exit door, the branch path has a desired dielectric constant. The present invention provides a radio wave sealing device having a configuration in which a line conductor and a ground conductor are separated by two layers: a dielectric layer of a predetermined thickness and an air layer of a predetermined thickness, and (1) by the dielectric layer of the branch path. It is easy to design and manage manufacturing to ensure effectiveness.

舜)誘電体を装荷することにより機構のコンパクト化が
はかれる。
Shun) By loading dielectric material, the mechanism can be made more compact.

(3)誘電材と分岐路材との製造バラツキが、両者の組
み合わせで吸収できる。、 専の効果を奏する1、
(3) Manufacturing variations in the dielectric material and branch path material can be absorbed by a combination of the two. , 1 with special effects,

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電波シール装置であり、(a)は構成図
、(b)はその等価回路、(C)は(a)図のy方向平
面図、第2図は本発明の電波ソール装置の基本構成図で
あり(a)が構成図、(b)がその等価回路、第3図は
本発明の電波シール装置の概念構成図、第4図は本発明
の電波シール装置の分岐路における空気層の影響を説明
する図、第6図は分岐路における空気層に対する実効誘
電率特性図、第6図は本発明の電波シール装置の分岐路
長に対する電波減衰量特性図、第7図は本発明一実施例
を示す電波シール装置の構成図である。 1・・・・・・加熱室開口フランジ(加熱室開口周辺部
p、2・・・・・・出入れ扉、3・・・・・・電波通路
、5a、 5b、 50・・・・・・伝送線路、6・・
・・・・短絡終端された分岐路、9・・・・・・線路導
体、10・・・・・・接地導体、12・・・・・・誘電
体層、13・・・・・・空気層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 (OJ)(b) 第4図 第5図 第6図 一/!e夏mml 第7図
Fig. 1 shows a conventional radio wave seal device, (a) is a block diagram, (b) is its equivalent circuit, (C) is a plan view in the y direction of Fig. (a), and Fig. 2 is a radio wave sole of the present invention. 3 is a conceptual diagram of the radio wave sealing device of the present invention, and FIG. 4 is a branching path of the radio wave sealing device of the present invention. FIG. 6 is an effective permittivity characteristic diagram for the air layer in the branch path, FIG. 6 is a radio wave attenuation characteristic diagram with respect to the branch path length of the radio wave sealing device of the present invention, and FIG. FIG. 1 is a configuration diagram of a radio wave sealing device showing an embodiment of the present invention. 1... Heating chamber opening flange (heating chamber opening periphery p, 2... Access door, 3... Radio wave passage, 5a, 5b, 50...・Transmission line, 6...
... Short circuit terminated branch path, 9 ... Line conductor, 10 ... Ground conductor, 12 ... Dielectric layer, 13 ... Air layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 (OJ) (b) Figure 4 Figure 5 Figure 6 Figure 1/! e summer mml Figure 7

Claims (1)

【特許請求の範囲】[Claims] 加熱室開口周辺部と出入れ扉とがつくる電波通路の装置
本体外方向に短絡終端された分岐路を有する伝送線路を
周期配列し、前記分岐路は、所定の厚みを有する誘電体
層と所定の厚みを有する空気層の二層にて線路導体と接
地導体とを隔てだ構成とした電波シール装置1)
A transmission line having a branch path short-circuited toward the outside of the device main body of the radio wave path created by the heating chamber opening periphery and the entrance/exit door is periodically arranged, and the branch path is formed by connecting a dielectric layer having a predetermined thickness and a predetermined thickness. A radio wave sealing device 1) in which a line conductor and a ground conductor are separated by two layers of air having a thickness of
JP11894782A 1982-07-07 1982-07-07 Radio wave sealing device Granted JPS599895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11894782A JPS599895A (en) 1982-07-07 1982-07-07 Radio wave sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11894782A JPS599895A (en) 1982-07-07 1982-07-07 Radio wave sealing device

Publications (2)

Publication Number Publication Date
JPS599895A true JPS599895A (en) 1984-01-19
JPS6325476B2 JPS6325476B2 (en) 1988-05-25

Family

ID=14749184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11894782A Granted JPS599895A (en) 1982-07-07 1982-07-07 Radio wave sealing device

Country Status (1)

Country Link
JP (1) JPS599895A (en)

Also Published As

Publication number Publication date
JPS6325476B2 (en) 1988-05-25

Similar Documents

Publication Publication Date Title
US3714608A (en) Broadband circulator having multiple resonance modes
US2812502A (en) Transposed coaxial conductor system
US4254318A (en) Door seal arrangement for high-frequency heating apparatus
JPH08125412A (en) Transmission line and its manufacture
JPS6387801A (en) Filter whose passing band can be adjusted freely
JPS6232841B2 (en)
JPH09321482A (en) Line radiation prevention element
JPS599895A (en) Radio wave sealing device
JPS6358482B2 (en)
JPS5963801A (en) Dielectric filter
JPS63269509A (en) Through-type high-voltage capacitor
JPS61131391A (en) Riod sealer
CN1264187A (en) Dielectric filter, dielectric duplexer and carriage communication installation
Rassokhina et al. Analysis of Symmetric Two-Layer Discontinuity in Microstrip Line: Capacitive Section in Microstrip Line And Comb Slot Resonator in Ground Plane
Moraud et al. A new planar type dielectric resonator for microwave filtering
US3508170A (en) Directional couplers having directivity enhancing means
JP3377932B2 (en) Method of manufacturing multilayer wiring board for high frequency
JPS5844698A (en) Sealing unit for high frequency heater
Nosich et al. Accurate computation of mode characteristics for open‐layered circular cylindrical microstrip and slot lines
JPH0652986A (en) Radio wave sealing device
JPS6216004Y2 (en)
Chang et al. Flexibility in the choice of Green's function for the boundary element method (planar transmission line analysis)
JPS582051Y2 (en) Coaxial capacitor for high frequency and high voltage
JPS645354Y2 (en)
JPS59139704A (en) Dielectric resonator