JPS599831B2 - Heat exchanger - Google Patents
Heat exchangerInfo
- Publication number
- JPS599831B2 JPS599831B2 JP3718780A JP3718780A JPS599831B2 JP S599831 B2 JPS599831 B2 JP S599831B2 JP 3718780 A JP3718780 A JP 3718780A JP 3718780 A JP3718780 A JP 3718780A JP S599831 B2 JPS599831 B2 JP S599831B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat pipe
- fins
- pipe
- circumference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
【発明の詳細な説明】
この発明はヒートパイプを用いた熱交換器の改良に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in heat exchangers using heat pipes.
従来、空調や諸工業プロセス等において、例えば廃熱を
回収する手段としてヒートパイプを用いた熱交換器が使
用されている。2. Description of the Related Art Conventionally, heat exchangers using heat pipes have been used in air conditioning and various industrial processes, for example, as a means for recovering waste heat.
この熱交換器は、ヒートパイプを重力方向に或は重力方
向に対して傾斜させて配設し、ヒートパイプの沸騰側(
受熱部)に高温気体を通流接触させ同パイプの凝縮側(
放熱部)に低温気体を通流接触させて各気体間の熱交換
を行なうように構成されている。In this heat exchanger, the heat pipe is arranged in the direction of gravity or inclined with respect to the direction of gravity, and the boiling side of the heat pipe (
High-temperature gas is passed through and in contact with the condensing side (heat receiving part) of the same pipe.
The structure is such that low-temperature gas is brought into contact with the heat dissipating section) to exchange heat between the gases.
そして、最近では上記ヒートパイプの外面の全一周に亘
ってフィンを取着し、ヒートパイプの伝熱性能を高める
どとによって、熱交換器の性能のより一層の向上をはか
ったものが開発されている。Recently, heat exchangers have been developed that further improve the performance of heat exchangers by attaching fins all around the outer surface of the heat pipe to improve the heat transfer performance of the heat pipe. ing.
しかしながらこの種の熱交換器にあっては次のような問
題があった。However, this type of heat exchanger has the following problems.
すなわち、ヒートパイプの外面全周に亘ってフィンを取
付けているため同パイプの伝熱性能は向上するが、ヒー
トパイプの受熱部側では同パイプ内の作動液の蒸気が加
熱され過ぎ、いわゆるドライアウトが起こり易い。In other words, the heat transfer performance of the heat pipe is improved because the fins are attached to the entire outer circumference of the heat pipe, but on the heat receiving part side of the heat pipe, the vapor of the working fluid inside the pipe is heated too much, resulting in a so-called dry state. Outs are likely to occur.
ドライアウトが起こるとヒートパイプの伝熱性能が低下
すると共に作動流体中の不純物がヒートパイプの内面に
析出し、これによりヒートパイプが腐食される等の虞れ
がある。When dryout occurs, the heat transfer performance of the heat pipe decreases, and impurities in the working fluid are deposited on the inner surface of the heat pipe, which may lead to corrosion of the heat pipe.
また、ヒートパイプの外面全周に亘ってフィンを取付け
ているため、ヒートパイプの外面を通過する気体の通過
抵抗が大きくなり、このため熱交換器のブロワの容量が
増大化する等の問題もあった。In addition, since the fins are attached all around the outer surface of the heat pipe, the resistance to gas passing through the outer surface of the heat pipe increases, which causes problems such as an increase in the capacity of the heat exchanger's blower. there were.
本発明は上記事情を考慮してなされたもので、その目的
とするところは、ヒートパイプの伝熱性能の向上をはか
ることは勿論、ヒートパイプ内のドライアウトを防止し
得ると共に、通風抵抗を小さくしてブロワ容量等の低減
をはかり得る熱交換器を提供することにある。The present invention has been made in consideration of the above circumstances, and its purpose is to not only improve the heat transfer performance of the heat pipe, but also to prevent dryout within the heat pipe, and to reduce ventilation resistance. It is an object of the present invention to provide a heat exchanger that can be made smaller to reduce blower capacity and the like.
すなわち、本発明は重力方向に或いは重力方向に対し傾
斜して配設したヒートパイプの外周面に位置するフィン
を、ヒートパイプを中心にしてそれぞれ通流接触させる
流体の通流方向と逆方向へ片寄って設けることにより、
前記目的を達成せんとしたものである。In other words, the present invention provides fins located on the outer peripheral surface of a heat pipe disposed in the direction of gravity or inclined with respect to the direction of gravity, in a direction opposite to the flow direction of the fluid that is brought into flow contact with the heat pipe as the center. By placing it on one side,
The aim was to achieve the above objective.
以下、この発明の詳細を図示の実施例によって説明する
。The details of this invention will be explained below with reference to illustrated embodiments.
第1図は一実施例の概略構成を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing the schematic configuration of one embodiment.
図中1は通風ダクトを形成する角筒体で、この角筒体1
はその軸心線が重力方向Aに対し略4ジ傾斜するように
配設されている。In the figure, 1 is a rectangular cylinder forming a ventilation duct, and this rectangular cylinder 1
is arranged so that its axis line is inclined by approximately 4 degrees with respect to the direction of gravity A.
角筒体1の内部には、この角筒体1内を2分する形に仕
切板2が設けられ、この仕切板2により熱風通路1a及
び冷風通路1bが形成されている。A partition plate 2 is provided inside the rectangular cylinder 1 to divide the inside of the rectangular cylinder 1 into two, and the partition plate 2 forms a hot air passage 1a and a cold air passage 1b.
また、角筒体1の内部には上記仕切板2を垂直に貫通し
たヒートパイプ3が第2図にも示すように通路に沿う方
向および上記方向と直交する方向に一定の間隔で多数配
設されている。Furthermore, inside the rectangular cylinder 1, a large number of heat pipes 3 are arranged at regular intervals in the direction along the passage and in the direction orthogonal to the above direction, as shown in FIG. has been done.
各ヒートパイプ3の外周面には第3図に拡大して示す如
く半円環板状のフイン4a,4bがそれぞれ取着されて
いる。As shown enlarged in FIG. 3, semicircular plate-shaped fins 4a and 4b are attached to the outer peripheral surface of each heat pipe 3, respectively.
すなわち、ヒートパイプ3の受熱部Xのいわゆる下面に
は同パイプ3の軸方向に沿って一定の間隔毎に多数のフ
イン4bが取着されている。That is, a large number of fins 4b are attached to the so-called lower surface of the heat receiving portion X of the heat pipe 3 at regular intervals along the axial direction of the heat pipe 3.
そして、前記熱風通路1aには図示しないブロワ等によ
り斜下方から廃熱等の高温ガスが導入され、前記冷風通
路1bには斜上方から常温空気等の低温ガスが導入され
るものとなっている。High-temperature gas such as waste heat is introduced into the hot-air passage 1a from diagonally below by a blower or the like (not shown), and low-temperature gas such as room-temperature air is introduced into the cold-air passage 1b from diagonally above. .
このような構成であれば、いま熱風通路1aに高温ガス
を送風すると共に、冷風通路1bに低温空気を送風する
と、まず上記高温ガスは上記通路1aを通過する際特に
受熱部Xのフイン4aにて熱を奪われる。With such a configuration, when high-temperature gas is blown into the hot-air passage 1a and low-temperature air is blown into the cold-air passage 1b, the high-temperature gas first hits the fins 4a of the heat receiving section X when passing through the passage 1a. It takes away the heat.
すなわち、高温ガスの熱は受熱部Xのフイン4aに伝達
される。That is, the heat of the high-temperature gas is transferred to the fins 4a of the heat receiving section X.
そして、このフイン4aに伝達された熱がヒートパイプ
3内の作動液体5に伝えられることになる。The heat transferred to the fins 4a is then transferred to the working liquid 5 within the heat pipe 3.
したがって、ヒートパイプ3の受熱部X内では第4図a
に示す如く重力により下方に集められた作動液体5が上
記フイン4aの作用により加熱され一部蒸発して蒸気6
となる。Therefore, in the heat receiving part X of the heat pipe 3, as shown in FIG.
As shown in the figure, the working liquid 5 collected downward by gravity is heated by the action of the fins 4a and partially evaporates to form a vapor 6.
becomes.
この蒸気6は上方へ移動し、さらにヒートパイプ3の放
熱部Yに移動する。This steam 6 moves upward and further moves to the heat radiation part Y of the heat pipe 3.
このとき、蒸気6は常にヒートパイプ3内の上方、つま
りフイン4aが取着されていない側に存在するので、蒸
気6が過熱され過ぎることなくドライアウトが生じ難く
なる。At this time, since the steam 6 always exists above the heat pipe 3, that is, on the side where the fins 4a are not attached, the steam 6 is not overheated and dry-out is less likely to occur.
また、熱風による加熱は主として作動液体5を介してな
されるので、上面にフィンがある場合に比してもヒート
パイプ3の伝熱性能はほとんど変わらない。Further, since heating by hot air is mainly performed via the working liquid 5, the heat transfer performance of the heat pipe 3 is almost unchanged compared to the case where there are fins on the upper surface.
゛ 一方、ヒートパイプ3の放熱部Y側では、第4図b
に示す如く蒸発により上昇してきた蒸気6がフイン4b
により熱を奪われ冷却されヒートパイプ3内の上方で凝
縮され液体5となる。゛ On the other hand, on the heat radiation part Y side of the heat pipe 3,
As shown in the figure, the steam 6 rising due to evaporation reaches the fin 4b.
The heat is removed from the liquid, cooled, and condensed above the heat pipe 3 to form a liquid 5.
この液体5は重力によりヒートパイプ3の内面を伝わり
下方に移動し、さらにヒートパイプ3の受熱部X側へと
移動する。This liquid 5 moves downward along the inner surface of the heat pipe 3 due to gravity, and further moves to the heat receiving section X side of the heat pipe 3.
この場合、放熱部Yのフイン4bが位置する部分内面の
液膜は常に薄いものとなり、冷風による冷却は主として
作動液体5の蒸気6を介してなされるので、上記液膜が
薄いことからしてヒートパイプ3の伝熱性能が低下する
ことなく蒸気6の凝縮作用が行なわれる。In this case, the liquid film on the inner surface of the portion of the heat dissipating section Y where the fins 4b are located is always thin, and cooling by cold air is mainly achieved through the vapor 6 of the working liquid 5. The condensation action of the steam 6 is performed without deteriorating the heat transfer performance of the heat pipe 3.
また、このとき、放熱部Yの下方つまりフイン4bの設
けられていない部分では液膜が厚いためほとんど凝縮作
用はなされない。Further, at this time, the liquid film is thick in the lower part of the heat dissipating part Y, that is, in the part where the fins 4b are not provided, so that almost no condensation action is performed.
したがって、下部にもフィンがあるものに比してヒート
パイプ3の伝熱性能はほとんど低下しない。Therefore, the heat transfer performance of the heat pipe 3 hardly deteriorates compared to a heat pipe that also has fins at the bottom.
かくして、ヒートパイプ3内の作動液体5が蒸発及び凝
縮を繰り返し同パイプ3内を循環し、熱風と冷風との間
で熱交換が行なわれることになる。In this way, the working liquid 5 within the heat pipe 3 repeatedly evaporates and condenses and circulates within the pipe 3, resulting in heat exchange between the hot air and the cold air.
このように、本実施例では重力方向に対し傾斜して配設
したヒートパイプ3の受熱部Xにはいわゆる下面のみに
フイン4aを取着し、すなわちヒートパイプ3を中心に
して流体の通流方向とは逆方向へ片寄る関係に受熱部X
側のフィンを設けている。As described above, in this embodiment, the fins 4a are attached only to the so-called lower surface of the heat receiving part X of the heat pipe 3, which is arranged at an angle with respect to the direction of gravity, so that fluid can flow around the heat pipe 3. The heat receiving part X is biased in the opposite direction.
It has side fins.
したがって、ヒートパイプ3内の作動液体5の蒸気6が
過度に加熱されることによるドライアウトを未然に防止
することができる。Therefore, dryout due to excessive heating of the vapor 6 of the working liquid 5 in the heat pipe 3 can be prevented.
またヒートパイプ3の受熱部Xで特に伝熱に寄与する部
分は下面側であるため、ヒートパイプ3の伝熱性能を低
下させることなく通風抵抗を小さくでき、ブロワ容量の
低減等をはかり得る。Further, since the part of the heat receiving part X of the heat pipe 3 that particularly contributes to heat transfer is the lower surface side, the ventilation resistance can be reduced without reducing the heat transfer performance of the heat pipe 3, and the blower capacity can be reduced.
すなわち、同一のブロワ容量に対してはヒートパイプの
伝熱性能の向上をはかり得ると云う効果を奏する。That is, the heat transfer performance of the heat pipe can be improved for the same blower capacity.
さらに、ヒートパイプ3の放熱部Yではいわゆる上面側
のみにフイン4bを設けているが、放熱部Yで伝熱に寄
与する部分はほとんど上面側のみであるため、ヒートパ
イプ3の伝熱性能を低下させることなく、より一層の通
風抵抗の減少をはかり得る等の利点がある。Furthermore, in the heat dissipation part Y of the heat pipe 3, the fins 4b are provided only on the so-called upper surface side, but since the part of the heat dissipation part Y that contributes to heat transfer is almost only on the upper surface side, the heat transfer performance of the heat pipe 3 is There are advantages such as being able to further reduce ventilation resistance without lowering it.
なお、上述した実施例では前記ヒートパイプ3を重力方
向に対し45゜傾斜して配設しているが、ヒートパイプ
3を重力方向に沿って配設しても前記した効果、つまり
ドライアウトが生じ難くヒートパイプ3の伝熱性能の向
上およびブロワ容量の低減をはかり得る等の効果は得ら
れる。In the above-described embodiment, the heat pipe 3 is arranged at an angle of 45 degrees with respect to the direction of gravity, but even if the heat pipe 3 is arranged along the direction of gravity, the above-mentioned effect, that is, dryout, does not occur. Effects such as improving the heat transfer performance of the heat pipe 3 and reducing the blower capacity can be obtained.
本発明者等の実験によれば、垂直全周フインP1垂直半
周フインQおよび45゜傾斜半周フインRの3種のヒ一
トパイプを用いて、これらの受熱部側の比熱伝達率P1
,Q1,R1および放熱部側の比熱伝達率P2,Q2
1 R2を測定したところそれぞれ第5図および第6図
に示すような結果が得られた。According to experiments conducted by the present inventors, using three types of human pipes: a vertical full-circumference fin P1, a vertical half-circumference fin Q, and a 45° inclined half-circumference fin R, the specific heat transfer coefficient P1 on the heat receiving part side of these
, Q1, R1 and the specific heat transfer coefficient P2, Q2 on the heat radiation part side
1 R2 was measured, and the results shown in FIGS. 5 and 6 were obtained, respectively.
なお、第5図で横軸は比熱流束(無次元化した熱交換量
)、縦軸は比熱伝達率(無次元化した沸騰熱伝達率)を
示している。In FIG. 5, the horizontal axis shows the specific heat flux (non-dimensional heat exchange amount), and the vertical axis shows the specific heat transfer coefficient (non-dimensional boiling heat transfer coefficient).
この図から明らかなように垂直全周フインPでは比熱流
束が1.1でドライアウトを生じているが、垂直半周フ
インQではその2倍の比熱流束となるまでドライアウト
が生じない。As is clear from this figure, dryout occurs in the vertical full-circumference fin P when the specific heat flux is 1.1, but dryout does not occur in the vertical half-circumference fin Q until the specific heat flux reaches twice that.
すなわち、垂直半周フインQの方が垂直全周フインPよ
りも高い比熱流束まで用いることができると云う効果が
判る。That is, it can be seen that the vertical half-circumference fin Q can be used up to a higher specific heat flux than the vertical full-circumference fin P.
さらに、45゜傾斜半周フインRではその効果は一層大
きなものとなった。Furthermore, the effect was even greater with the 45° inclined half-circumferential fin R.
同様に、放熱部に関しては第6図に示すように垂直全周
フインPに比して垂直半周フインQではその比熱伝達率
(無次元化した凝縮熱伝達率)が70係程向上した。Similarly, regarding the heat dissipation part, as shown in FIG. 6, the specific heat transfer coefficient (dimensionalized condensation heat transfer coefficient) of the vertical half-circumference fin Q was improved by 70 points compared to the vertical full-circumference fin P.
さらに、45゜傾斜半周フインRでは垂直全周フインP
に比してその比熱伝達率が2倍以上にも向上した。Furthermore, in the 45° inclined half-circumference fin R, the vertical full-circumference fin P
Its specific heat transfer coefficient has been improved by more than twice that of the previous one.
また、一列当りの圧力損失に対するフィン側熱伝達率を
全周フィンおよび半周フィンに関して測定したところ、
第7図に示す如く半周フィンの熱伝達率を示す曲線Tの
方が全周フィンの熱伝達率を示す曲線Sより上方になっ
た。In addition, when the fin-side heat transfer coefficient with respect to pressure loss per row was measured for full-circumference fins and half-circumference fins,
As shown in FIG. 7, the curve T showing the heat transfer coefficient of the half circumference fin is higher than the curve S showing the heat transfer coefficient of the full circumference fin.
これにより、同一圧力損失では半周フィンの方が全周フ
ィンよりもその熱伝達率が大きいことが判る,逆に言え
ば、同じ熱伝達率を得るには半周フィンの方が全周フィ
ンよりも小さい圧力損失、つまり小さなブロワ容量で済
むことになる。This shows that for the same pressure loss, half-circumference fins have a higher heat transfer coefficient than full-circumference fins.Conversely, to obtain the same heat transfer coefficient, half-circumference fins are better than full-circumference fins. This results in a small pressure drop, which means a small blower capacity.
このように、前記半周フィンを有するヒートパイプ3は
重力方向に対して傾斜して設けるのが最も好ましいもの
であるが、重力方向に沿って設けたものであっても従来
の全周フィンと比較すると格段の効果が得られる。As described above, it is most preferable that the heat pipe 3 having the half-circumference fins be installed at an angle with respect to the direction of gravity, but even if it is installed along the direction of gravity, the heat pipe 3 having the half-circumference fins is not as good as the conventional full-circumference fins. This will give you a great effect.
なお、この発明は上述した実施例に限定されるものでは
ない。Note that this invention is not limited to the embodiments described above.
例えば、前記フィンは製造上の都合によりヒートパイプ
の前記通流接触させる流体の流れ下流側にも設けてもよ
いが、この場合このフィンは流体の流れ上流側のフィン
より低くしたり、表面積を小さくする必要がある。For example, the fins may be provided on the downstream side of the heat pipe where the fluid to be brought into contact with the heat pipe flows due to manufacturing reasons. It needs to be made smaller.
また、フィンの形状及び材質等は、仕様に応じて適宜定
めればよいのは勿論のことである。Moreover, it goes without saying that the shape, material, etc. of the fins may be determined as appropriate depending on the specifications.
さらに、ヒートパイプの傾斜角も仕様に応じて変更でき
る。Furthermore, the inclination angle of the heat pipe can also be changed according to specifications.
その他、この発明の要旨を逸脱しない範囲で、種々変形
して実施することができる。In addition, various modifications can be made without departing from the gist of the invention.
以上詳述したように本発明によれば、重力方向或いは重
力方向に対し傾斜して配設したヒートパイプのフィンを
、ヒートパイプを中心としてそれぞれ上記パイプに通流
接触させる流体の通流方向と逆方向に片寄って設けるよ
うにしているので、ヒートパイプ内の伝熱性能の向上を
はかることは勿論、ドライアウトを生じ難くシ、かつブ
ロワ容量の低減等をはかり得る熱交換器を提供すること
ができる。As described in detail above, according to the present invention, the fins of the heat pipe disposed in the direction of gravity or inclined with respect to the direction of gravity are arranged in the direction of flow of the fluid that is caused to flow into contact with the heat pipe, respectively, with the heat pipe as the center. To provide a heat exchanger which not only improves the heat transfer performance within the heat pipe but also prevents dry-out from occurring and reduces the blower capacity because the heat exchanger is installed offset in the opposite direction. I can do it.
第1図はこの発明の一実施例の概略構成を示す断面模式
図、第2図は第1図のB−B方向矢視図、第3図は上記
実施例の要部構成を示す斜視図、第4図a,bはそれぞ
れ上記実施例の作用を説明するための図、第5図乃至第
7図は本発明の効果を説明するための図で第5図は比熱
流束に対する受熱部側の比熱伝達率を示す特性図、第6
図は(1/比熱流束)に対する放熱部側の比熱伝達率を
示す特性図、第7図は圧力損失に対する熱伝達率を示す
特性図である。
1・・・・・・角筒体、2・・・・・・仕切板、3・・
・・・・ヒートパイプ、4a,4b・・・・・・フィン
、5・・・・・・作動液体、6・・・・・・蒸気、X・
・・・・・受熱部、Y・・・・・・放熱部。FIG. 1 is a schematic cross-sectional view showing a schematic configuration of an embodiment of the present invention, FIG. 2 is a view taken along the arrow B-B in FIG. 1, and FIG. 3 is a perspective view showing the main configuration of the above embodiment. , FIGS. 4a and 4b are diagrams for explaining the effects of the above-mentioned embodiment, and FIGS. 5 to 7 are diagrams for explaining the effects of the present invention. FIG. Characteristic diagram showing the specific heat transfer coefficient of the side, No. 6
The figure is a characteristic diagram showing the specific heat transfer coefficient on the heat radiation part side with respect to (1/specific heat flux), and FIG. 7 is a characteristic diagram showing the heat transfer coefficient with respect to pressure loss. 1... Square tube body, 2... Partition plate, 3...
... Heat pipe, 4a, 4b ... Fin, 5 ... Working liquid, 6 ... Steam, X.
... Heat receiving section, Y ... Heat dissipating section.
Claims (1)
置する受熱部に高温流体を通流接触させると共に上記ヒ
ートパイプの上方に位置する放熱部に低温流体を通流接
触させて上記各流体間の熱交換を行なう熱交換器におい
て、前記ヒートパイプのフィンのうち少なくとも前記受
熱部外周面に位置するフィンを上記ヒートパイプを中心
にして前記通流接触させる流体の通流方向とは逆方向へ
片寄って設けたことを特徴とする熱交換器。 2 前記ヒートパイプは、重力方向に対し傾斜して配設
されたものであることを特徴とする特許請求の範囲第1
項記載の熱交換器。 3 前記ヒートパイプの受熱部側および放熱部側に位置
するフィンを、それぞれ前記通流接触させる流体の通流
方向とは逆方向へ片寄って設けたことを特徴とする特許
請求の範囲第1項記載の熱交換器。[Claims] 1. A high temperature fluid is passed through and brought into contact with a heat receiving part located below a heat pipe having fins attached to the outer peripheral surface thereof, and a low temperature fluid is brought into contact with a heat radiating part located above the heat pipe. In the heat exchanger for exchanging heat between the respective fluids, the fluid is caused to flow and contact at least one of the fins of the heat pipe located on the outer peripheral surface of the heat receiving part with the heat pipe as the center. A heat exchanger characterized by being installed offset in the opposite direction. 2. Claim 1, wherein the heat pipe is arranged obliquely with respect to the direction of gravity.
Heat exchanger as described in section. 3. Claim 1, characterized in that the fins located on the heat receiving part side and the heat radiating part side of the heat pipe are provided offset in a direction opposite to the flow direction of the fluid to be brought into contact with the heat pipe. Heat exchanger as described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3718780A JPS599831B2 (en) | 1980-03-24 | 1980-03-24 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3718780A JPS599831B2 (en) | 1980-03-24 | 1980-03-24 | Heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56133594A JPS56133594A (en) | 1981-10-19 |
JPS599831B2 true JPS599831B2 (en) | 1984-03-05 |
Family
ID=12490572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3718780A Expired JPS599831B2 (en) | 1980-03-24 | 1980-03-24 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS599831B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62296219A (en) * | 1986-06-16 | 1987-12-23 | Nec Corp | Input system for blind person |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6065699U (en) * | 1983-10-14 | 1985-05-09 | 株式会社日立製作所 | fuel assembly |
-
1980
- 1980-03-24 JP JP3718780A patent/JPS599831B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62296219A (en) * | 1986-06-16 | 1987-12-23 | Nec Corp | Input system for blind person |
Also Published As
Publication number | Publication date |
---|---|
JPS56133594A (en) | 1981-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5111876A (en) | Heat exchanger plate fin | |
JP2006284144A (en) | Exhaust heat recovery device | |
CA2954533A1 (en) | Heat exchanger | |
JP2006284004A (en) | Condenser | |
JP2008057820A (en) | Heat exchanger | |
JP2008215694A (en) | Heat exchanger with fin | |
JPS599831B2 (en) | Heat exchanger | |
JPH11183076A (en) | Heat exchanger | |
KR101111282B1 (en) | Water drain type heat exchanger | |
JPS6352310B2 (en) | ||
JPS61140790A (en) | Refrigerant vaporizer | |
CN205843142U (en) | A kind of condenser used for automobile air conditioning | |
JP2015152209A (en) | heat exchanger | |
JPS6252238B2 (en) | ||
JPH04222363A (en) | Room heat exchanger for heat pump air conditioner | |
JP2544150B2 (en) | Heat transfer tube for latent heat recovery | |
CN114440675B (en) | Gravity heat pipe with multiple heat release ends communicated | |
CN218884137U (en) | Novel heat exchanger | |
JP4306158B2 (en) | Heat exchanger | |
JPH0241498Y2 (en) | ||
JPS5922151B2 (en) | Condenser | |
JPS5812058Y2 (en) | Fins for heat exchanger | |
JPS5916688Y2 (en) | Heat exchanger | |
CZ37715U1 (en) | Plateless heat exchanger | |
JPS6344689Y2 (en) |