JPS5998273A - Processing system of graph generation - Google Patents

Processing system of graph generation

Info

Publication number
JPS5998273A
JPS5998273A JP57207998A JP20799882A JPS5998273A JP S5998273 A JPS5998273 A JP S5998273A JP 57207998 A JP57207998 A JP 57207998A JP 20799882 A JP20799882 A JP 20799882A JP S5998273 A JPS5998273 A JP S5998273A
Authority
JP
Japan
Prior art keywords
points
curve
point
inputted
data points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57207998A
Other languages
Japanese (ja)
Inventor
Akio Tamama
玉真 昭男
Atsuko Namiki
南木 厚子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57207998A priority Critical patent/JPS5998273A/en
Publication of JPS5998273A publication Critical patent/JPS5998273A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Complex Calculations (AREA)
  • Image Generation (AREA)
  • Document Processing Apparatus (AREA)

Abstract

PURPOSE:To draw the same desired curve as that described with a curved rule by a person, by giving the function of the conversation with him to a plotter. CONSTITUTION:Experimental data points are inputted with a point position input part 1. A point position display part 2 displays inputted points on a display screen 3. A point position analyzing part 4 analyzes inputted points and transfers a point set to an operating part 5 and a plotting part 8. The operating part 5 generates an interpolating function expression passing each inputted point. A curve describing part 6 uses an interpolating polynomial attained in the operating part 5 to obtain functional points more than normal original data points and connects them with lines to describe an artificial smooth curve on the display screen 3. a deciding part 7 inquires of the operator whether the described curve is a desired curve or not; and if the operator answers with ''YES'', a switch 11 is switched to the plotting part 8. The plotting part 8 describes an attained graph. If the operator answers with ''NO'', the switch 11 is switched to the side of a point operating part 9, and the operator is requested to delete unnecessary points and input dummy points through the operating part 9.

Description

【発明の詳細な説明】 (1)  発明の属する分野の説明 本発明は、グラフ作成処理方式、%に人間と機械との対
話により、所望の曲線グラフを嘩〈た1めのグラフ作成
処理方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Description of the field to which the invention pertains The present invention relates to a graph creation processing method, and a graph creation processing method for creating a desired curve graph through interaction between a human and a machine. It is related to.

(2)  従来の技術の説明 グラフ作成装置としてすでに市販されているものもある
。それらはいずれもグラフのタイトル。
(2) Description of conventional techniques Some graphing devices are already commercially available. They are all graph titles.

X、Y軸のラベル・目盛・スケール、プロットする点の
(x、y)座標値を順に入力していくと図が描けるとい
うものである。点のプロットまでならこれらの装置は十
分な機能を備えているが、それらの点を通る曲線を引く
方法となると不十分卒ものであった。従来の曲線グラフ
を描くためのグラフ作成方法としては、プロットした点
をただ直線で結んで行く方法とか、最小2乗法などの良
く知られた方法を機械的に適用して曲線を描く方法など
があるだけだった。後者の方法なら一応スムース曲線が
描けるものの、多項式の次数の選び方によっては変曲点
が多くなり、第1図のように曲線が必要以上に波打つと
いう問題があった。
A diagram can be drawn by sequentially inputting the labels, graduations, and scales of the X and Y axes, and the (x, y) coordinate values of the points to be plotted. Although these devices were capable of plotting points, they were inadequate when it came to drawing curves through those points. Conventional graph creation methods for drawing curve graphs include simply connecting plotted points with straight lines, and mechanically applying well-known methods such as the least squares method to draw curves. There was just that. Although the latter method allows a smooth curve to be drawn, depending on the degree of the polynomial, there may be many inflection points, causing the curve to be more wavy than necessary, as shown in Figure 1.

低次のSpl ine関数を使えば曲線の変化はゆるや
かで、しかも各点上で微分係数が連続となるため。
If a low-order Spline function is used, the curve will change gradually, and the differential coefficient will be continuous at each point.

波打たないスムース曲線が引ける。これは〆ラフ作成者
が雲形定規を使って描く曲線に近い。しかし、これは逆
にプロット点数が少ない場合に問題になり、第2図で点
線の曲線を引きたいとき実線のようにやはり波打ったシ
する。
You can draw smooth curves without undulations. This is similar to the curve drawn by the creator of the final rough sketch using a cloud-shaped ruler. However, this becomes a problem when the number of plot points is small, and when you want to draw a dotted curve in FIG. 2, it ends up being wavy like a solid line.

また、求める曲線が常に与えた点上、ヌはその近傍を「
必ず通る」曲線であるとは限らない。例えば、実験デー
タ点とこれを結ぶスムース曲線を描くグラフの場合には
、誤差の特に大きい点をはずしであるいは無視して1曲
線を引きたいことも多い。最、112乗法で曲線を引く
場合には、他の点の傾向から著しくはずれた点があると
、それに引きずられて他の点を大きくはずれた曲線にな
ってしまう。従って、第6図の点aのように、実験の状
況によりこの点は明らかに誤差が大きいという場合には
、この点を飛ばして曲線lを引かなくてはいけない。ま
た、実験装置の限界のため実験データは点すまでしかな
いが2点線のように理論的推察からこの上はかくあるは
ずだ、と曲線をデータ点の範囲を越えて引きたい場合も
ある。
Also, on the point always given by the sought curve, Nu is the neighborhood of "
It is not necessarily a curve that will always pass. For example, in the case of a graph that draws a smooth curve connecting experimental data points, it is often desirable to draw a curve by removing or ignoring points with particularly large errors. When drawing a curve using the 112 power law, if there is a point that deviates significantly from the trend of other points, it will be dragged by it and the curve will deviate significantly from the other points. Therefore, if the error at this point is obviously large due to experimental conditions, such as point a in FIG. 6, this point must be skipped and curve l drawn. In addition, there are cases where you want to draw a curve beyond the range of data points, such as a two-dotted line, where the experimental data is limited to a certain point due to the limitations of the experimental equipment, but based on theoretical inference, it should be more than this.

いずれにせよ、何らかの曲線近似式を機械的。In any case, use some kind of curve approximation formula mechanically.

画一的に適用して望み通りの曲線が得られることはむし
ろ少ないので、修正方法1%にグラフ作成者の意向を反
映する仕方に重点を置いたグラフ作成方法が必要である
。しかし、従来この種の方法は無かった。
Since it is rather rare that a desired curve can be obtained by uniform application, a graph creation method is needed that focuses on how to reflect the intention of the graph creator in the 1% correction method. However, this type of method has not been available in the past.

(3)  発明の目的 本発明は、これらの欠点を解決するため2作図機械に人
間との対話機能をもたせ、その機能を使って人間が機械
に描きたい曲線又は直線の通過位置、データ点の処理方
法などを教えることKより。
(3) Purpose of the Invention In order to solve these drawbacks, the present invention provides a drawing machine with a human interaction function, and uses this function to allow the human to tell the machine the passing position of the curve or straight line that the machine wants to draw, and the data points. From K, teaching how to process etc.

所望の曲線又は直線を描けるようにすることを目的とし
ており、以下図面について詳細に説明する。
The purpose is to be able to draw a desired curve or straight line, and the drawings will be described in detail below.

(4)  発明の構成および作用の説明第4図は本発明
の構成例であって、1は点位置入力部、2は点位置表示
部、3は表示画面、4は点位置解析部、5は演算部、6
は曲線(又は直線)描画部、7は判定部、8は作図部、
9は点操作部。
(4) Description of structure and operation of the invention FIG. 4 shows an example of the structure of the present invention, in which 1 is a point position input section, 2 is a point position display section, 3 is a display screen, 4 is a point position analysis section, and 5 is the calculation section, 6
is a curve (or straight line) drawing section, 7 is a judgment section, 8 is a drawing section,
9 is a point operation section.

10.11はスイッチである。なお、直線は曲線の特殊
な一形態であると考え、以下では曲線と言えば直線も含
むことにする。
10.11 is a switch. Note that a straight line is considered to be a special form of a curved line, and in the following, the term curved line will also include a straight line.

本実施例の動作を、この種の「曲線グラフ」の中で最も
多い実験データグラフを例にとり説明する。なお2点と
点との間を直線で結んだグラフを「折れ線グラフ」と呼
ぶのにならって2点どうしをスムース曲線で結んだグラ
フを「曲線グラフ」と呼ぶことにする。これを動作する
にはまず実験データ点を点位置入力部1を使って入力す
る。これには各種の方法がある。描きたいグラフのY軸
およびY軸の設定に従って、データ点の数値を入力する
方法、デジタイザを使って下省き図面から直接X、Yの
値を読みとる方法、CRT画面上でカーソルやライトベ
ンを使って入力する方法、などがある。点位置表示部2
は、上記の如く入力されたデータ点を○、×、Δなどの
記号を使って。
The operation of this embodiment will be explained by taking as an example an experimental data graph which is the most common among this kind of "curve graph". Note that a graph that connects two points with a straight line is called a "line graph," and a graph that connects two points with a smooth curve is called a "curve graph." To operate this, first, experimental data points are input using the point position input section 1. There are various ways to do this. You can input numerical values for data points according to the Y-axis and Y-axis settings of the graph you want to draw, read the X and Y values directly from the rough drawing using a digitizer, or use the cursor or light ben on the CRT screen. There are many ways to enter information, etc. Point position display section 2
For the data points input as above, use symbols such as ○, ×, Δ.

表示画面6上に表示する。It is displayed on the display screen 6.

点位置解析部4は、入力された点が生データ点であるか
ダミ一点であるかを解析し、演算部5゜作図部8にそれ
ぞれの点集合を渡す部分である。
The point position analysis section 4 analyzes whether the input points are raw data points or dummy points, and passes each point set to the calculation section 5 and drawing section 8.

作図部8に渡す点集合は生データ点の集合である。The point set passed to the plotter 8 is a set of raw data points.

演算部5に設す点集合は、生データ点とダミ一点とから
成る全体の集合から、(1)点操作部9を使って消去さ
れた点と+ (tri同じく点操作部9を使って入力さ
れたダミ一点に同じX座標をもつ生データ点とを除いた
点集合である。演算部5は入力された各点を通る補間関
数式を発生させる。補間関数式としては最小2乗法に基
づく近似多項式。
The point set provided in the arithmetic unit 5 consists of (1) points erased using the point operation unit 9 and + (tri) from the entire set consisting of raw data points and one dummy point; This is a point set excluding one input dummy point and a raw data point having the same X coordinate.The calculation unit 5 generates an interpolation function formula that passes through each input point.The interpolation function formula is based on the least squares method. Approximate polynomial based on.

Bezierの式、 5pline関数などがあるが、
3次の5pline関数が最も良い。3次曲線を、接続
した曲線となるため、不要な変曲線の出る回数が少なく
There are Bezier's formula, 5line function, etc.
A cubic 5-line function is best. Since it is a curve that connects cubic curves, there are fewer unnecessary curves.

かつすべての点で微分係数が連続であるため、スムーズ
な曲線が得られるからである。生データの誤差が太きい
ときには、各(Xl、Yi)に対し最小2乗法を適用し
てより確からしい(X’i 、 Yi )を求め、これ
を上記Spl ine関数で補間すれば良い。
Moreover, since the differential coefficients are continuous at all points, a smooth curve can be obtained. When the error in the raw data is large, the least squares method is applied to each (Xl, Yi) to find a more probable (X'i, Yi), and this can be interpolated using the Spline function described above.

曲線描画部6は、演算部5で得られた補間多項式を使っ
て通常生データ点より多い関数点(x。
The curve drawing unit 6 uses the interpolation polynomial obtained by the calculation unit 5 to draw function points (x) which are more than normal raw data points.

f (Xl ’)を求め、その間を直線で結んで表示画
面3上に疑似スムース曲線を描画する。判定部7祉。
f (Xl') is determined, and a pseudo-smooth curve is drawn on the display screen 3 by connecting them with a straight line. Judgment Department 7 welfare.

得られた曲線が望みのものであるかどうかを操作者に問
いかけ、操作者の返事が“YB8”のときにはスイッチ
11を作図部8側に切り換える。作図部8はXYグロツ
タ、ペンレコーダ等ヲ使って。
The operator is asked whether the obtained curve is the desired one, and when the operator's reply is "YB8", the switch 11 is switched to the drawing section 8 side. The drawing section 8 uses an XY grocer, pen recorder, etc.

得られたグラフの描画を行う。なお、上述のようにデー
タ点のプロットは生データ点についてのみ行ない、ダミ
一点のプロットはしない。操作者の返事が“NO”のと
きは、スイッチ11を点操作部9側に切り換え、該点操
作部9を介して不要点の削除、及びダミ一点の入力を操
作者に要求する。
Draw the obtained graph. Note that, as described above, plotting of data points is performed only for raw data points, and plotting of single dummy points is not performed. When the operator's answer is "NO", the switch 11 is switched to the point operating section 9 side, and the operator is requested to delete unnecessary points and input a dummy point via the point operating section 9.

操作者は以下の手順に従い5本処理を行なう。The operator processes five lines according to the following procedure.

例えば、第5図(alの生データ点(○印)に対して、
基本演算により実線の曲線が得られたとする。
For example, for the raw data points (○ marks) in Figure 5 (al),
Assume that a solid curve is obtained by basic calculations.

図中2点a、b、cは実験誤差を含んでおり2曲線はこ
れらの点上を通過して欲しくない場合には。
The two points a, b, and c in the figure include experimental errors, so if you do not want the two curves to pass over these points.

例えはダミ一点として点A、Bを入力し、又点す。For example, input points A and B as one dummy point, and then point again.

Cを削除する。なお2点Aは点aと同じX座標値をもつ
とする。点位置解析部4は、これらの指示に従い5点a
、b、cを除く生データ点と点A。
Delete C. Note that two points A have the same X coordinate value as point a. The point position analysis unit 4 calculates the five points a according to these instructions.
, b, c and raw data points except for point A.

Bからなる点集合を演算部5に出力する。演算部5は、
この集合上の各点を通過する補間関数式を発生させ1曲
線描画部乙に渡して表示画面3上に曲線を描画させる。
A point set consisting of B is output to the calculation unit 5. The calculation unit 5 is
An interpolation function formula passing through each point on this set is generated and passed to the first curve drawing section B to draw a curve on the display screen 3.

かくして2表示画面上には第5図(blの実線が描かれ
る。描かれた曲線がなお不満である場合には、操作者は
判定部7を介して。
In this way, the solid line shown in FIG.

NO″の意志表示をし、上記手順に従って点操作部9を
介して再び点の削除・追加を行なう。演算部5で発生す
る補間関数式が、与えた各点を通るスムースな曲線を与
えるものである以上9本手順の繰り返しによって必ず望
みの曲線に到達できる。
"NO" and delete/add points again via the point operation unit 9 according to the above procedure.The interpolation function formula generated by the calculation unit 5 gives a smooth curve passing through each given point. Therefore, by repeating the above nine steps, the desired curve can be definitely reached.

曲線を生データ点の範囲外に引くことも本発明の方法に
よれば極めて簡単で、引きたい部分にダミ一点を追加す
るだけで良いことは、今更述べるまでもあるまい。
It goes without saying that it is extremely easy to draw a curve outside the range of raw data points using the method of the present invention, and all you need to do is add a dummy point to the part you want to draw.

まだ、特に直線を引きたい場合には2本方法に従って不
要な点を除去し5通るべき2点を残してその間を結んで
も、生データ点とは別に最初から通るべき2点を指定し
てその間を結んでも、どちらでも良い。
If you still want to draw a straight line, you can remove unnecessary points by following the 2-line method, leaving 2 points that should pass through 5, and connect them. It doesn't matter which one you tie.

生データの誤差が犬きく、−#最小2乗法を適用してか
らSpl ine関数を求める方法では必ずしもダミ一
点上を通るとは限らない。しかし、この操作を何度か繰
り返すことで傾向を予測できるようになるため、この場
合でも所望のスムース曲線を描くことはさほど困難では
ない。
The error in the raw data is significant, and the method of calculating the Spline function after applying the -# least squares method does not necessarily pass over one dummy point. However, by repeating this operation several times, it becomes possible to predict the trend, so it is not so difficult to draw a desired smooth curve even in this case.

曲線の変更・修正方法には、上記「不要点削除・ダミ一
点追加法」以外にも「曲線スイープ法」。
In addition to the "unnecessary point deletion/dummy point addition method" mentioned above, there is also the "curve sweep method" for changing/correcting curves.

「曲線完全指定法」などが考えられる。「曲線スイープ
法」では、最初得られた曲線の不満な部分に近い生デー
タ点を点操作部9を介して選択し。
A method such as "curve complete specification method" may be considered. In the "curve sweep method", raw data points near the unsatisfactory portion of the initially obtained curve are selected via the point operation section 9.

かつその点の移動範囲を指定する。演算部5は。and specify the movement range of that point. The calculation section 5 is.

その移動範囲内で適当な間隔で該被選択点を順次移動さ
せ、それぞれに対する補間関数式を発生させる。曲線描
画部6はそれに基づき5表示画面上に曲線を次々に描画
する。かくしてスイープされた曲線のうち所望のものを
判定部7を使って選択゛し2作図部8に出力する。被選
択点は複数であっても良い。「曲線完全指定法」では9
点位置入力部1を使って生データ点の他に、これとは独
立な曲線決定用の点集合を入力する。演算部5はこの「
曲線決定点」のみを使って補間多項式を求める。
The selected points are sequentially moved at appropriate intervals within the movement range, and interpolation function expressions are generated for each of them. The curve drawing section 6 draws curves one after another on the five display screens based on the information. Among the curves thus swept, a desired one is selected using the determining section 7 and outputted to the second drawing section 8. There may be a plurality of selected points. 9 in "curve complete specification method"
Using the point position input unit 1, in addition to the raw data points, a set of points for determining a curve, which is independent of the raw data points, is input. The arithmetic unit 5 calculates this “
Find the interpolation polynomial using only the curve decision points.

生データ点は表示画面39作図部8で描画するが。The raw data points are drawn on the display screen 39 by the drawing section 8.

曲線計算には最初から一切使わない。曲線の変更・修正
は曲線決定点の追加・削除、又はスイープにより行う。
It is not used at all in curve calculations from the beginning. Changes and corrections to the curve are made by adding or deleting curve determination points or by sweeping.

(5)効果の説明 以上説明したように7本発明によれば9人間が雲形定規
を使って描くのと同じ望み通りの曲線が引けるので、デ
ータ図面などの清書の機械化が初めて可能になる。デー
タ点数にもよるが、製図ペンを使って曲線グラフ図面1
枚清書するのに手作業では平均1時間か\るのに対して
本発明の場合には機械化により高速化が図れるとともに
表示画面上で簡単に修正できるので5手作業で清書する
のと違って「ミスしたら直すのが大変だ。」という心理
的負担が無くなり35図面作成者を図面清書の苦労から
解放できる。また、記憶装置と組合わせることにより図
面データの保存ができ、一度図面を作成しておけば、い
つでも取り出して使うことが可能になる。データの追加
・修正や、清書図面の拡大・縮少も可能になるなど2機
械化の効果は計りしれない根太である。
(5) Description of Effects As explained above, according to the present invention, a desired curve can be drawn in the same way as a human being can draw with a cloud-shaped ruler, making it possible for the first time to mechanize the fine-printing of data drawings, etc. Depending on the number of data points, use a drafting pen to draw a curve graph 1.
It takes an average of 1 hour to copy a sheet manually, but in the case of the present invention, the speed can be increased by mechanization, and corrections can be easily made on the display screen, so it is different from manual copying. The psychological burden of ``It's hard to fix a mistake'' is eliminated, and drawing creators can be freed from the trouble of drafting drawings. Furthermore, by combining it with a storage device, drawing data can be saved, and once a drawing is created, it can be taken out and used at any time. The effects of mechanization are immeasurable, as it makes it possible to add and modify data, and to enlarge and reduce printed drawings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来のグラフ作成態様による曲線の描
画態様を説明する説明図、第6図は実験データグシフに
おける所望の曲線例を示す説明図。 第4図は本発明の一構成例を示すブロック図、第5図は
本発明において所望のスムース曲線を得るだめの手順を
説明する説明図である。 1・・・点位置入力部、2・・・点位置表示部、3・・
・表示画面、4・・点位置解析部、5・・・演算部、6
・・・曲線描画部、7・・・判定部、8・・・作図部、
9・・・点操作部、10.11・・・スイッチ、a、b
、c・・・生データ点。 A、B・・・ダミ一点、e・・・曲線。 特許出願人  日本電信電話公社 代理人弁理士 森 1)  寛 テ エ 図 tz  図
FIGS. 1 and 2 are explanatory diagrams illustrating how a curve is drawn by a conventional graph creation method, and FIG. 6 is an explanatory diagram showing an example of a desired curve in an experimental data graph. FIG. 4 is a block diagram showing a configuration example of the present invention, and FIG. 5 is an explanatory diagram illustrating the procedure for obtaining a desired smooth curve in the present invention. 1... Point position input section, 2... Point position display section, 3...
・Display screen, 4... Point position analysis section, 5... Calculation section, 6
... Curve drawing section, 7... Judgment section, 8... Drawing section,
9... Point operation section, 10.11... Switch, a, b
,c...Raw data points. A, B... one dummy point, e... curve. Patent Applicant: Nippon Telegraph and Telephone Public Corporation Patent Attorney Mori 1) Hirote E Figure tz Figure

Claims (1)

【特許請求の範囲】[Claims] 生データ点位置入力部、与えられた点集合の点を通る補
間関数式を発生させる演算部、該補間関数式から所定の
数の関数点を求めその間を線で結ぶ曲線描画部、当該曲
線を表示する表示画面、得られた近似曲線が所望のもの
かどうかを操作者に問い合わせる判定部2表示画面上で
所望の点の追加争削除を可能にする点処理部をそなえ、
データ点の仮の消去・追加により生データ点の位置にと
られれない曲線を得ることを可能にしたことを特徴とす
るグラフ作成処理方式。
A raw data point position input unit, a calculation unit that generates an interpolation function formula passing through the points of a given point set, a curve drawing unit that calculates a predetermined number of function points from the interpolation function formula and connects them with a line, and a curve drawing unit that draws the curve. A display screen to be displayed, a determination unit that inquires of the operator whether the obtained approximate curve is the desired one, and a point processing unit that enables addition and deletion of desired points on the display screen;
A graph creation processing method characterized by making it possible to obtain a curve that cannot be taken at the position of raw data points by temporarily erasing or adding data points.
JP57207998A 1982-11-26 1982-11-26 Processing system of graph generation Pending JPS5998273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57207998A JPS5998273A (en) 1982-11-26 1982-11-26 Processing system of graph generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57207998A JPS5998273A (en) 1982-11-26 1982-11-26 Processing system of graph generation

Publications (1)

Publication Number Publication Date
JPS5998273A true JPS5998273A (en) 1984-06-06

Family

ID=16548978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57207998A Pending JPS5998273A (en) 1982-11-26 1982-11-26 Processing system of graph generation

Country Status (1)

Country Link
JP (1) JPS5998273A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323696A2 (en) * 1987-12-01 1989-07-12 Hewlett-Packard Company Tracking and resampling method and apparatus for monitoring the performance of rotating machines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140866A (en) * 1979-04-19 1980-11-04 Tokyo Shibaura Electric Co Graph input display method in display unit
JPS57125405A (en) * 1981-01-28 1982-08-04 Fujitsu Ltd System for interpolating curve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140866A (en) * 1979-04-19 1980-11-04 Tokyo Shibaura Electric Co Graph input display method in display unit
JPS57125405A (en) * 1981-01-28 1982-08-04 Fujitsu Ltd System for interpolating curve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323696A2 (en) * 1987-12-01 1989-07-12 Hewlett-Packard Company Tracking and resampling method and apparatus for monitoring the performance of rotating machines

Similar Documents

Publication Publication Date Title
JP2806961B2 (en) Image coding method
EP0559708A1 (en) Image synthesis and processing
JPS61150573A (en) Method for copying picture
JPH10164370A (en) Method and device for interpolating gradation of image, image filtering method and image filter
JPS5998273A (en) Processing system of graph generation
US5302967A (en) Figure processing apparatus and method aided by display with ruled lines
JPH0812668B2 (en) Handwriting proofreading method
JPH06274149A (en) Method and device for varying width of outline font
JP3155753B2 (en) Graphic processing apparatus and method
JPH0634237B2 (en) Image clipping method
JP3727768B2 (en) Computer image display method and display device
JPS6093339A (en) Electrophoretic device
JP2684609B2 (en) Graphic display method in graphic data processing device
JP2005025605A (en) System and method for generating physical data fitting coefficient
JPS59145970A (en) Displaying method of spectrum
JP3182347B2 (en) Stroke information processing method
JPH07160873A (en) Method for converting picture data including bezier curve
JP3334989B2 (en) Figure creation apparatus and method
JPH0816834B2 (en) Curve generation method
JP3067198B2 (en) Method and apparatus for creating gradation
JPH0449474A (en) Method and device for generating thick line
JP3130720B2 (en) Map overlay information display system
JP2984336B2 (en) Figure processing method
JPH0786935B2 (en) Contour data compression method
Seo et al. Line Selection Tool for 3D Artists