JPS5997575A - Manufacture of silicon nitride sintered body - Google Patents

Manufacture of silicon nitride sintered body

Info

Publication number
JPS5997575A
JPS5997575A JP57205218A JP20521882A JPS5997575A JP S5997575 A JPS5997575 A JP S5997575A JP 57205218 A JP57205218 A JP 57205218A JP 20521882 A JP20521882 A JP 20521882A JP S5997575 A JPS5997575 A JP S5997575A
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
manufacture
molded body
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57205218A
Other languages
Japanese (ja)
Inventor
石川 敏功
寺西 春夫
宏 市川
早瀬 登久治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP57205218A priority Critical patent/JPS5997575A/en
Publication of JPS5997575A publication Critical patent/JPS5997575A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は窒化ケイ素系焼結体の新規な製造法に関する。[Detailed description of the invention] The present invention relates to a novel method for manufacturing silicon nitride-based sintered bodies.

窒化ケイ素系焼結体は高温電気絶縁材料、電子部品材料
をはじめ多くの用途に使用されて来ている。従来の窒化
ケイ素系焼結体の製造法としては、Si粉末とSi、N
q粒粉末混合粉末あるいはSi粉末のみをアクリル系樹
脂などの結合材とともに成形し、ついで窒素雰囲気下で
1400〜1450°C程度まで加熱して窒化反応焼結
を行うのが常圧焼A〜法として句一般的であった。しか
しながら、前記従来方法による窒化ケ(本系焼結体は結
合材が熱処理過程で大部分気化、消失するため、′+、
fL率を小さくすることは困難であった。さらに、より
高強度でまた焼結による寸法変化がより小さい焼結体の
製造が望まれて来ている。そこで、本発明者等は、研究
の結果ケイ素粉末に結合材としてイ〕機ケイ素高分子化
合物を加えて成形して成形体を得、ついで該成形体を窒
素またはアンモニアガス雰囲気下1400〜1500°
Cで加熱焼結することを特徴とする窒化ケイ素系焼結体
の製造法を発明した。本発明では結合材である有機ケイ
素高分子化合物は、はとんど消失せず、その一部分は熱
処理により(以ト、焼第1冒4・、1いう)を得ること
ができる。本発明に使用するケイ素粉末は1〔1畠市販
のケイ素粉末で良く、その粒度は250〜325メツシ
ユ力(&ri+〜(Cある。結合材の有機ケイ素高分子
化合物は次のような構夕1を)1つものが使用される。
Silicon nitride-based sintered bodies have been used in many applications including high-temperature electrical insulation materials and electronic component materials. The conventional manufacturing method for silicon nitride-based sintered bodies uses Si powder and Si, N
Atmospheric pressure sintering method A~ is a method in which only the q-grain mixed powder or Si powder is molded together with a binder such as acrylic resin, and then heated to about 1400 to 1450°C in a nitrogen atmosphere to perform nitriding reaction sintering. The phrase was common. However, since most of the binder material in the nitrided body produced by the conventional method is vaporized and disappears during the heat treatment process,
It was difficult to reduce the fL rate. Furthermore, there has been a desire to produce a sintered body with higher strength and less dimensional change due to sintering. Therefore, as a result of research, the present inventors added a) organic silicon polymer compound as a binder to silicon powder, molded it to obtain a molded body, and then heated the molded body at 1400 to 1500° in a nitrogen or ammonia gas atmosphere.
We have invented a method for producing a silicon nitride-based sintered body, which is characterized by heating and sintering with C. In the present invention, the organosilicon polymer compound that is the binder hardly disappears, and a part of it can be obtained by heat treatment (hereinafter referred to as sintered material 4.1). The silicon powder used in the present invention may be commercially available silicon powder with a particle size of 250 to 325 meshing force (C). ) one thing is used.

(a) n=1.ポリシルメチレンシロキサン n=2.ポリシルエチレンシロキサン n=6.ポリシルフェニレンシロキサン(b) n=1.ポリメチレノオキシシロキ号ンn=2.ボ’J
エチレンオキシンロキナンn−6,ポリフェニレンオキ
シシロキサンn−12,ポリジフェニレンオキシシロキ
サン(c) n=1.ポリシルメチレン n=2.ポリシルエチレン n−3,ポリシルトリメチレン n−6,ポリシルフェニレン n = 12 、ポリシルジフェニレン(d) (e)  前記(a)〜(d)記載の骨格成分を鎖状、
環状およびニー:次元構造のうち少くとも一つの部分構
造として含むもの、または(a)〜(d)の混合物。
(a) n=1. Polysylmethylene siloxane n=2. Polysilethylene siloxane n=6. Polysilphenylenesiloxane (b) n=1. Polymethylenoxysiloquine n=2. Bo'J
Ethylene oxine quinane n-6, polyphenyleneoxysiloxane n-12, polydiphenyleneoxysiloxane (c) n=1. Polysylmethylene n=2. Polysilethylene n-3, polysiltrimethylene n-6, polysilphenylene n = 12, polysildiphenylene (d) (e) The skeleton components described in (a) to (d) above are chained,
Cyclic and knee: those containing as a partial structure of at least one of the dimensional structures, or a mixture of (a) to (d).

1だ、該品分1′化合物は、そのまま粉末状または液状
であるいは必要に応ししこJtらをiil溶する溶剤例
えばベンゼン、トルエ/、ヤ/1/ノ、・\1サン、エ
ーテル、テトラヒドロフラン、ジオ覧−ナノ、クロロ1
ルノ1、メチレンクロリド、石油エーテル、石油・\ン
ンノ、す//’ L、lイン、 DMSOl DMF、
  DVB、その他有機ケイ素高分子11Z八″1)り
なπi kVする溶奴を用いて、粘稠な液状となし、ケ
イ素粉末の結合材として使用出来る。ケイ素粉末に対す
る混合割合は、ljA l’:6分子化合物のSi/C
比、平均分子量ならひにケイ素粉末のあ“L Ia T
’によって調節されるが平均分子量800〜5000の
主としで1ミリンルメチレンからなる有機ケイ素高分子
化合物、主としてポリシラプロピレンからなる有機ケイ
素高分子化合物あるいは主としてポリフェニールボロシ
ロキサンからなる有機ケイ素高分子化合物を250〜3
25メツシユのケイ素粉末と混合する場合lO〜20重
:■シ≦か好ましい。これらは混合の際、加熱する必要
はなく、常温でIIシ合するだけで1−分である。成形
は型造圧縮成形、ロール圧縮成形なとを用い成11jE
F 1〜2ton/ crn’で圧縮成形する。こうし
゛(摺られた成形体は仝素またはアンモニアカス雰囲気
下で1400〜1500°Cまで加熱して焼結する。加
熱に際しての+11温は室温から10110’o程度ま
では3〜6時間で行ない、ついで1000℃近辺で30
〜120分間保持したのちio〜60分で1400〜1
500℃までy1温することが低気孔率でかつ高強度の
焼結体を肖るため番こ有効である。また最終の焼結温度
で4oニ−tzo分間保持すること番こより窒化ケイ木
への変換率は大となるので好ましい。焼結温度か140
0℃より低いと窒化反応が不七分で高強度のものが得難
く、また1500°Cをこえると結合材の強度劣化が著
しい。本発明は従来方法に比して空孔率が小で、高強度
でありかつ、寸法変化の小さl、)焼結体を得ること力
咄来るので工業的にきわめて有用である。
1, the compound 1' can be used as it is in powder or liquid form, or as necessary, in a solvent that dissolves the compound, such as benzene, toluene, y/1/no, \1san, ether, etc. Tetrahydrofuran, Georan-nano, Chloro 1
Luno 1, methylene chloride, petroleum ether, petroleum・\nnnnno,su//' L, lin, DMSOl DMF,
DVB and other organosilicon polymers 11Z8''1) Using a melt with πi kV, it can be made into a viscous liquid and used as a binder for silicon powder.The mixing ratio with respect to silicon powder is ljA l':6 Molecular compound Si/C
If the ratio and average molecular weight are silicon powder,
An organosilicon polymer compound mainly composed of 1 methylene lumethylene, an organosilicon polymer compound mainly composed of polysilapropylene, or an organosilicon polymer mainly composed of polyphenylborosiloxane, with an average molecular weight of 800 to 5000, adjusted by Compound 250-3
When mixed with 25 mesh silicon powder, it is preferable that the weight is 10 to 20 weight: ■≦. When mixing these, there is no need to heat them, and it only takes 1 minute to mix them at room temperature. Molding is done using mold compression molding or roll compression molding.
Compression molding at F 1-2 ton/crn'. The molded body thus printed is sintered by heating to 1400 to 1500°C in an atmosphere of nitrogen or ammonia scum.Heating is carried out from room temperature to about 10110°C in 3 to 6 hours. Then at around 1000℃ 30
After holding for ~120 minutes, io~1400~1 in ~60 minutes
It is effective to increase the temperature to 500° C. in order to obtain a sintered body with low porosity and high strength. Further, it is preferable to hold the final sintering temperature for 40 minutes because the conversion rate to silicon nitride is higher than that at the final sintering temperature. Sintering temperature: 140
If the temperature is lower than 0°C, the nitriding reaction will be uneven and it will be difficult to obtain a high strength product, and if the temperature exceeds 1500°C, the strength of the binder will deteriorate significantly. The present invention is industrially extremely useful since it is possible to obtain a sintered body with lower porosity, higher strength, and smaller dimensional change than conventional methods.

実施例1 ケイ素粉末(市販品、粒度250メツシユ以下)80東
量部に平均分子4j111300のポリシルメチレン粉
末(粒度250メンシユート)を20重量部の割合(2
0重量%)で室温下で混合した。ついで成形圧力1to
n/cm′で型造圧縮成形してlO10X60X5の成
形体を得た。この成形体のカサ密度は1.77g/ c
m!であった。この成形体を室温〜1000℃までを5
時間でA温し、1000℃にて60分間保持後、+40
0’0まで30分で昇温し1400℃で60分間保持し
て焼結した。f、iられた焼結体はX線回折の結果S 
13L(14H)と微φのSiCで構成されていること
が確認された。また、焼結体の特性は表−■に示す通り
であり、従来の窒化反応焼結法によるものに比して、高
強度で気密性に優れたものであった。
Example 1 Silicon powder (commercially available, particle size 250 mesh or less) was mixed with 20 parts by weight (2
0% by weight) at room temperature. Then molding pressure 1to
Compression molding was performed at a pressure of n/cm' to obtain a molded body of lO10x60x5. The bulk density of this molded body is 1.77 g/c
m! Met. This molded body was heated from room temperature to 1000℃ for 5
After heating at A for 60 minutes and holding at 1000℃ for 60 minutes, +40
The temperature was raised to 0'0 in 30 minutes and held at 1400°C for 60 minutes for sintering. The results of X-ray diffraction of the sintered body f, i
It was confirmed that it was composed of SiC with 13L (14H) and a fine diameter. Further, the properties of the sintered body are as shown in Table 1, and the sintered body had higher strength and excellent airtightness than those produced by the conventional nitriding reaction sintering method.

表−1 実施例2.3、比較例工、2.3.4、実施例1で使用
したと同一・のケイ素粉末に表−2に示す割合で数、′
ンの結合材を泥合し2ton/crIfの成形圧で型造
圧縮成形して20X130X5mmの成形体を得た。こ
の成形体をアンモニアカス中で室て焼にルだ。得られた
焼結体の特性を表−2に示す。
Table-1 The same silicon powder as used in Example 2.3, Comparative Example, 2.3.4, and Example 1 was mixed with the number, '
A molded body of 20 x 130 x 5 mm was obtained by combining the binder materials of the mold and compression molding at a molding pressure of 2 tons/crIf. This molded body is baked indoors in ammonia scum. Table 2 shows the properties of the obtained sintered body.

Claims (1)

【特許請求の範囲】[Claims] ケイ素粉末に結合材として有機ケイ素高分子化合物を加
えて成形して成形体を得、ついで該成形体を窒素または
アンモニアガス雰囲気下1400〜1500°Cで加熱
焼結することを特徴とする窒化ケイ素系焼結体の製造法
A silicon nitride characterized by adding an organosilicon polymer compound as a binder to silicon powder, molding it to obtain a molded body, and then heating and sintering the molded body at 1400 to 1500°C in a nitrogen or ammonia gas atmosphere. Method for manufacturing sintered body.
JP57205218A 1982-11-22 1982-11-22 Manufacture of silicon nitride sintered body Pending JPS5997575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57205218A JPS5997575A (en) 1982-11-22 1982-11-22 Manufacture of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57205218A JPS5997575A (en) 1982-11-22 1982-11-22 Manufacture of silicon nitride sintered body

Publications (1)

Publication Number Publication Date
JPS5997575A true JPS5997575A (en) 1984-06-05

Family

ID=16503358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57205218A Pending JPS5997575A (en) 1982-11-22 1982-11-22 Manufacture of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS5997575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236068A (en) * 1985-08-05 1987-02-17 株式会社日立製作所 Manufacture of composite ceramics

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120574A (en) * 1979-11-30 1981-09-21 Kurosaki Refractories Co Siccsi3n4 type compounded specific heat resistant ceramic material and manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120574A (en) * 1979-11-30 1981-09-21 Kurosaki Refractories Co Siccsi3n4 type compounded specific heat resistant ceramic material and manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236068A (en) * 1985-08-05 1987-02-17 株式会社日立製作所 Manufacture of composite ceramics
JPH0510294B2 (en) * 1985-08-05 1993-02-09 Hitachi Ltd

Similar Documents

Publication Publication Date Title
JPH09175865A (en) Production of alpha-type silicon carbide powder composition and its sintered compact
JPS5844630B2 (en) silicone carbide material
JPS62292675A (en) Manufacture of nitride base ceramic
JPH06128035A (en) Silicon filled polymer precursor for sic-a1n ceramic
JPS62288167A (en) Manufacture of silicon carbide sintered body
JPS5997575A (en) Manufacture of silicon nitride sintered body
JPS6048473B2 (en) Flexible graphite material and its manufacturing method
JPS63123868A (en) Manufacture of silicon nitride base sintered body
JPH02175658A (en) New ceramic composition, production thereof and forming assistant
JPS62108719A (en) Preparation of silicon nitride
JPS59207873A (en) Manufacture of high density silicon carbide sintered body
JPS5950077A (en) High heat conductivity aluminum nitride sintered body
JPS61136962A (en) Manufacture of ceramic material from polycarbosilane
JPS62123070A (en) Manufacture of boron nitride base sintered body
JPS61215253A (en) Chromium oxide base ceramic material
JPS5951514B2 (en) Manufacturing method of heat-resistant carbon and graphite products
JPS61201662A (en) Manufacture of composite ceramics
JPS6328873B2 (en)
JP2984757B2 (en) Fluorine-containing organosilicon compound and method for producing ceramics
JPS5848504B2 (en) Shutoshite SIC Yolinal Silicon carbide construction
JPS5895660A (en) Silicon nitride sintered body and manufacture
JPH0566902B2 (en)
JP2916934B2 (en) Method for producing sialon-based sintered body
JPH0224785B2 (en)
JPH0545553B2 (en)