JPS5996859A - Brushless motor - Google Patents

Brushless motor

Info

Publication number
JPS5996859A
JPS5996859A JP57205175A JP20517582A JPS5996859A JP S5996859 A JPS5996859 A JP S5996859A JP 57205175 A JP57205175 A JP 57205175A JP 20517582 A JP20517582 A JP 20517582A JP S5996859 A JPS5996859 A JP S5996859A
Authority
JP
Japan
Prior art keywords
phase
flop
stator
flip
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57205175A
Other languages
Japanese (ja)
Inventor
Norio Ito
伊東 紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP57205175A priority Critical patent/JPS5996859A/en
Publication of JPS5996859A publication Critical patent/JPS5996859A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/12Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using detecting coils using the machine windings as detecting coil

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Brushless Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To reduce the cost, size, power consumption and low speed rotating irregularity by winding a detecting coil exclusively for a stator core to form a rotating position detecting mechanism, thereby eliminating a special position detector and a speed detector. CONSTITUTION:Induced voltages generated at detecting coils 19-11 which are wound on a stator core are respectively applied to transistors 21-23 through amplifiers 12-14 and waveform shapers 14-17, and drive currents are respectively flowed to 3-phase stator coils 24-26. The output of a waveform shaper 15 is applied as a set input of an R-S flip-flop 36 through a differentiator 35. A clock pulse from a crystal vibrator 32 is applied as a reset input of the flip- flop 36 through a frequency divider 33 and a differentiator 34. This flip-flop 36 outputs a rectangular wave in response to the rotating speed, and which is applied to a control transistor 40 through an integrator 37.

Description

【発明の詳細な説明】 本発明は、プランレスモーターに関スる。[Detailed description of the invention] The present invention relates to a planless motor.

従来のブラシレスモーターは、回転位置をホール素子、
光電素子等の位置検出素子を用いる事によって検出して
いるものが殆んどであった。第1図には、位置検出素子
としてホール素子を用いた従来例を示す。ローターヨー
ク1の内周にローターマグネット2が固定され、回転軸
3がローターヨーク1に固定される事によって回転体を
形成している。ステータコア4にコイル5が巻回され、
ステータコア4はベアリング6を固定したベアリングホ
ルダ7に固定されている。ホール素子10はプリント基
板9に固定されている。8は取付板、11はケースであ
る。第1図の構造によるブラシレスモーターでは、構造
上ローターマグネットの漏洩磁束の検出をホール素子は
ステータコイルの外側または下側で行なう事になり形状
的な制約を受けた場合、ホール素子を取付ける事が不可
能な場合があった。また、該位置検出素子の取付けの際
、その取付は位置精度が、そのまま検出誤差となり回転
斑の悪化につながり必要によっては位置調整が必要とな
り組立工数の増大にもつながった。
Conventional brushless motors use Hall elements to determine the rotational position.
Most of them were detected by using position detection elements such as photoelectric elements. FIG. 1 shows a conventional example using a Hall element as a position detection element. A rotor magnet 2 is fixed to the inner periphery of a rotor yoke 1, and a rotating shaft 3 is fixed to the rotor yoke 1, thereby forming a rotating body. A coil 5 is wound around the stator core 4,
The stator core 4 is fixed to a bearing holder 7 to which a bearing 6 is fixed. Hall element 10 is fixed to printed circuit board 9. 8 is a mounting plate, and 11 is a case. In the brushless motor with the structure shown in Figure 1, the Hall element detects the leakage magnetic flux of the rotor magnet on the outside or below the stator coil due to the structure, so if there is a shape restriction, it is not possible to install the Hall element. There were times when it was impossible. Further, when installing the position detection element, the position accuracy of the position detection element is directly affected by the detection error, worsening uneven rotation, and, if necessary, requiring position adjustment, which also leads to an increase in the number of assembly steps.

さらにホール素子を使用する場合ホール素子には定期的
に電流を流している為、消電力比には不向きである。ま
た、モーターに異状負荷が掛かり、最悪、拘束される様
な事が起った場合、駆動コイルに異常電流が流れる為、
該フィルが焼損する事が有り制御回路内に保護回路を付
加する必要があった。
Furthermore, when using a Hall element, current is periodically passed through the Hall element, which is unsuitable for the power consumption ratio. In addition, if an abnormal load is applied to the motor and, in the worst case, the motor is restrained, an abnormal current will flow through the drive coil.
There was a possibility that the fill would burn out, so it was necessary to add a protection circuit to the control circuit.

又、ブラシレスモーターにおいて精密な速度制御を行な
う場合、通常位置検出素子・と1は別に、タフジェネレ
ータ等の速度検出器を使用する必要があり小型化、低価
格化に対して問題を拘えていた。
In addition, when performing precise speed control in a brushless motor, it is necessary to use a speed detector such as a tough generator in addition to the normal position detection element 1, which poses problems in terms of miniaturization and cost reduction. .

本発明はかかる従来技術の欠点を解消したもので、特別
な位置検出素子及び速度検出器を使用せずに、多極ステ
ータに駆動コイルと重ねて或いは単独に巻かれている検
出コイルの誘起電圧を使用する事ニより、ブラシレスモ
ーターの低価格化。
The present invention eliminates the drawbacks of the prior art, and eliminates the need for special position detection elements and speed detectors by detecting the induced voltage of the detection coil wound around the multi-pole stator, either overlappingly with the drive coil or alone. The cost of brushless motors is lower due to the use of .

小形化、消電力比および低回転斑化を達成せんとするも
のである。
The aim is to achieve miniaturization, power consumption ratio, and low rotation unevenness.

以下実施例に基づいて本発明の詳細な説明する。The present invention will be described in detail below based on examples.

第2図に本発明のブラシレスモーターの概略断面図の3
相ブラシレスモーターを示す。本実施例は、多極ステー
タコイルの内、各相それぞれ1つを検出フィルとして使
用している。1は1相検出用ステータコイル、2は2相
検出用ステータコイル、3は3相検出用ステータコイル
、1−1〜1−8は、1相駆動用ステータコイル、2−
1〜2−8は、2相駆動用ステータコイル、6−1〜3
−8は、6相駆動用ステータコイル、4は36極に着磁
されたローターマグネット、5はローターヨーク、6は
ステータコア、7はボールベアリング、8はローターヨ
ークと連結でいる回転軸である。ローターマグネット4
はローターヨーク8に固定されており回転軸8を中心に
回転する。ローターマグネット4の回転により1相検出
用ステータコイル1,2相検出用ステータコイル2,3
相検出用ステータコイル3に誘起電圧が発生し、1相検
出用ステータコイル1の誘起電圧が発生し、1相検出用
ステータコイル1の誘起電圧を位置検出信号として1相
駆動用ステータコイルを励磁し、2相検出用ステータコ
イル2の誘起電圧を位置検出信号として2相駆動用ステ
ータコイルを励磁し、6相検出用ステータコイルの誘起
電圧を位置検出信号として6相駆動用ステータコイルを
励磁する事によって、所定方向に、ロータマグネット4
が回転駆動される。
FIG. 2 shows a schematic cross-sectional view of the brushless motor of the present invention.
Showing a phase brushless motor. In this embodiment, one of the multipolar stator coils for each phase is used as a detection filter. 1 is a stator coil for 1-phase detection, 2 is a stator coil for 2-phase detection, 3 is a stator coil for 3-phase detection, 1-1 to 1-8 are stator coils for 1-phase drive, 2-
1 to 2-8 are two-phase drive stator coils, 6-1 to 3
-8 is a stator coil for six-phase drive, 4 is a rotor magnet magnetized to 36 poles, 5 is a rotor yoke, 6 is a stator core, 7 is a ball bearing, and 8 is a rotating shaft connected to the rotor yoke. rotor magnet 4
is fixed to the rotor yoke 8 and rotates around the rotating shaft 8. Stator coil 1 for 1-phase detection, stator coil 2, 3 for 2-phase detection by rotation of rotor magnet 4
An induced voltage is generated in the stator coil 3 for phase detection, an induced voltage is generated in the stator coil 1 for 1-phase detection, and the induced voltage in the stator coil 1 for 1-phase detection is used as a position detection signal to excite the stator coil for 1-phase drive. Then, the two-phase drive stator coil is excited using the induced voltage of the two-phase detection stator coil 2 as a position detection signal, and the six-phase drive stator coil is excited using the induced voltage of the six-phase detection stator coil as a position detection signal. Depending on the situation, the rotor magnet 4 may be moved in a predetermined direction.
is driven to rotate.

第6図は本発明によるブラシレスモーターの具体的な駆
動回路例である。9は1相検出用コイル、10は2相検
出用コイル、11は3相検出用コイル、12,13.1
4は反転増幅器、15.1<S、17は波形整形回路、
18,19.20はベース抵抗、21,22.23は駆
動用トランジスタ、24は1相駆動用ステータコイル、
25は2相駆動用ステータコイル、26は3相駆動用ス
テータコイル、27は電源である。又、動作波形を1相
について第4図に示す。ローターマグネットの回転によ
り9,10.11の各位置検出用ステータコイルに発生
した誘起電圧波形28を12.13.14の反転増幅器
により、それぞれ増幅信号29として取り出す。各増幅
信号を波形整形回路15.16.17を通す事により方
形波30に変換した後、ベース抵抗189丁9,20を
介して駆動用トランジスタ21,22.23を駆動し、
3相ステータコイル24.25.26にそれぞれ電気角
で120度の位相差をもって順次駆動電流を流す。その
駆動コイル電流波形は31の様゛になる。この結果ロー
ターマグネットは所定方向に回転駆動される。
FIG. 6 shows a specific example of a drive circuit for a brushless motor according to the present invention. 9 is a 1-phase detection coil, 10 is a 2-phase detection coil, 11 is a 3-phase detection coil, 12, 13.1
4 is an inverting amplifier, 15.1<S, 17 is a waveform shaping circuit,
18, 19.20 are base resistors, 21, 22.23 are drive transistors, 24 is a stator coil for one-phase drive,
25 is a stator coil for two-phase drive, 26 is a stator coil for three-phase drive, and 27 is a power source. Further, operating waveforms for one phase are shown in FIG. The induced voltage waveforms 28 generated in the position detection stator coils 9, 10, and 11 due to the rotation of the rotor magnet are extracted as amplified signals 29 by the inverting amplifiers 12, 13, and 14, respectively. After converting each amplified signal into a square wave 30 by passing it through a waveform shaping circuit 15, 16, 17, driving transistors 21, 22, 23 are driven via base resistors 189, 9, 20,
Drive currents are sequentially applied to the three-phase stator coils 24, 25, and 26 with a phase difference of 120 electrical degrees. The drive coil current waveform looks like 31. As a result, the rotor magnet is rotationally driven in a predetermined direction.

第5図には、PLL制御方式を使用した場合の速度制御
を含めた駆動回路例であり、位相比較器としてR−Sフ
リップフロップ使用した場合を示す。32は水晶振動子
、33は分周器、34゜35は微分回路、36はR−S
フリップフロップ、67は積分器、38はベース抵抗、
39は分圧抵抗、40は制御用トランジスタ、41は電
源である。任意に設定した回転速度と同周期になるべく
水晶振動子32と分周器33によって分周された波形を
微分回路64を通す事によりトリガ波形に変換する。一
方、ローターマグネットの回転によって発生し増幅器1
2、波形整形回路15によって方形波に変換された信号
を微分回路35によりトリガ波形に変換する。
FIG. 5 shows an example of a drive circuit including speed control when using a PLL control method, and shows a case where an R-S flip-flop is used as a phase comparator. 32 is a crystal oscillator, 33 is a frequency divider, 34°35 is a differential circuit, 36 is R-S
Flip-flop, 67 is an integrator, 38 is a base resistor,
39 is a voltage dividing resistor, 40 is a control transistor, and 41 is a power supply. A waveform whose frequency is divided by the crystal oscillator 32 and the frequency divider 33 as much as possible to have the same period as the arbitrarily set rotational speed is converted into a trigger waveform by passing it through a differentiating circuit 64. On the other hand, due to the rotation of the rotor magnet, the amplifier 1
2. The signal converted into a square wave by the waveform shaping circuit 15 is converted into a trigger waveform by the differentiating circuit 35.

以下、第6図を用いて速度制御の動作を説明する。Hereinafter, the speed control operation will be explained using FIG. 6.

第2図、第3図を用いてモーターの動作状態を説明した
ように検出コイル9,10.11に発生した誘起電圧を
反転増幅器12 、13’ 、 14を通し反転増幅し
、波形整形回路15,16.17を通す事により方形波
に変換し々レス抵抗18゜19 、20を介してトラン
ジスタ21,22゜26を駆動し3相ステータコイル2
4,25゜26にそれぞれ駆動電流を流すわけであるが
、速度検出用信号として6相検出コイルの内、任意の1
相の検出コイルの誘起電圧波形42を速度検出用信号と
しても使用する。1相の検出コイル9の誘起電圧波形4
2を反転増幅器12を通し反転増幅波形43を作り出し
波形整形回路15を通す事によって変換された方形波4
4を微分回路35を通してトリガ波形(以下回転パルス
44と呼ぶ)に変換する。又、水晶振動子32により発
生したクロックパルス46を分周器63により分周波形
47に変換し微分回路64を通してトリガ波形(以下基
準パルス48と呼ぶ)に変換する。
As described above with reference to FIGS. 2 and 3, the induced voltage generated in the detection coils 9, 10, and 11 is inverted and amplified through the inverting amplifiers 12, 13', and 14, and the waveform shaping circuit 15 , 16, and 17, it is converted into a square wave by passing through the resistors 18, 19, and 20, and drives the transistors 21, 22, and 26, and the three-phase stator coil 2
4, 25° and 26, and any one of the 6-phase detection coils is used as a speed detection signal.
The induced voltage waveform 42 of the phase detection coil is also used as a speed detection signal. Induced voltage waveform 4 of one-phase detection coil 9
2 is passed through an inverting amplifier 12 to produce an inverted amplified waveform 43, and the converted square wave 4 is passed through a waveform shaping circuit 15.
4 is converted into a trigger waveform (hereinafter referred to as rotation pulse 44) through a differentiating circuit 35. Further, a clock pulse 46 generated by the crystal oscillator 32 is converted into a frequency-divided waveform 47 by a frequency divider 63, and converted into a trigger waveform (hereinafter referred to as reference pulse 48) through a differentiating circuit 64.

回転パルスによりR−87リツプ70ツブ36がセット
され出力は高レベルとなり基準パルスにより、リセット
され出力は低レベルとなる。こ゛れが交互に繰返される
事により49の回転速度に応じた方形波が作り出される
。その方形波を積分器67を通す事により直流電圧50
に変換しベース抵抗38と分圧抵抗39を介し、該ベー
ス抵抗38″と該分圧抵抗39の分圧比によりON領域
を適性値に設定された制御用トランジスタ40を制御す
る。規定回転速度区間51においては、基準パルス48
と回転パルス45の周期は等しくR−87リツプフロツ
プの出力波形38の高レベル幅は広く積分器37の出力
波形50のように直流電圧値が高い為、制御用トランジ
スタ40のコレクタ電流は少ない。外乱が加わり回転速
度が遅くなると回転区間52に示すように回転パルスの
周期が広くなる為、R−Sフリップフロップの出力波形
49の高レベル幅が狭くなり積分器67の出力波形50
のように直流電圧値が下がり制御用トランジスタ40の
コレクタ電流が増え駆動力を増す方向に向かう。よって
回転速度は再び規定回転速度区間56のようになる。
The R-87 lip 70 knob 36 is set by the rotation pulse and the output becomes a high level, and the reference pulse is reset and the output becomes a low level. By repeating this alternately, a square wave corresponding to the rotation speed of 49 is created. By passing the square wave through an integrator 67, a DC voltage of 50
, and controls the control transistor 40 whose ON region is set to an appropriate value by the voltage dividing ratio of the base resistor 38'' and the voltage dividing resistor 39 through the base resistor 38'' and the voltage dividing resistor 39. At 51, the reference pulse 48
Since the periods of the rotation pulses 45 are equal and the high level width of the output waveform 38 of the R-87 lip-flop is wide and the DC voltage value is high as shown in the output waveform 50 of the integrator 37, the collector current of the control transistor 40 is small. When a disturbance is added and the rotation speed slows down, the period of the rotation pulse becomes wider as shown in the rotation section 52, so the high level width of the output waveform 49 of the R-S flip-flop becomes narrower, and the output waveform 50 of the integrator 67 becomes narrower.
As shown in the figure, the DC voltage value decreases and the collector current of the control transistor 40 increases, which tends to increase the driving force. Therefore, the rotational speed becomes like the specified rotational speed section 56 again.

このように本発明は、駆動コイルと同様にステータに検
出コイルを巻く為にホール素子等の位置検出素子を使用
する必要がなく、その素子の為の空間を設ける必要がな
い。又、該位置検出素子を使用する場合、その取付は位
置は極めて精度が要求され、その取付は位置精度がその
まま検出誤差となり回転速の悪化となり、場合によって
は位置調整が必要となる為、組立工数の増大にもつなが
るが、本発明によれば検出コイルはステータに巻かれる
為、非常に精度の有る検出が行なわれ、当然、位置調整
の必要は皆無である。さらにホール素子等のような位置
検出素子に定常的に電流を流す必要がない。又、モータ
ーにおいて予想される異常負荷時、特に拘束されるよう
な状態が発生した時、保護対策としてモーター単体に温
度ヒーーズ等の熱感応素子を封入するか、モーター制御
回路内に保護回路を付加する必要がある。ところがが本
発明によれば、ローターマグネットの回転によって発生
する誘起電圧を回転位置検出及び回転速度検出に使用し
ている為、モーター拘束状態のような異常状態が発生し
てモーターの回転が止まると誘起電圧も発生しなくなる
為、特に保護対策をする必要がない。すなわち、ブラシ
レスモータ一本体の小型化、低価格化、低回転速化を達
成できるばかりでなく、併せて回路の小型化、低価格化
、′l肖電力化を達成する事ができる。
As described above, in the present invention, there is no need to use a position detection element such as a Hall element to wind the detection coil around the stator in the same way as the drive coil, and there is no need to provide a space for the element. In addition, when using the position detection element, extremely accurate positioning is required for its installation, and the positional accuracy itself causes a detection error, deteriorating the rotation speed, and in some cases, position adjustment may be required, so it is difficult to assemble. Although this may lead to an increase in the number of man-hours, according to the present invention, since the detection coil is wound around the stator, extremely accurate detection is performed, and of course there is no need for position adjustment. Furthermore, there is no need to constantly supply a current to a position detection element such as a Hall element. In addition, when an abnormal load is expected on the motor, especially when a situation where it is restrained occurs, as a protection measure, it is necessary to encapsulate a heat sensitive element such as a temperature heater in the motor itself, or add a protection circuit within the motor control circuit. There is a need to. However, according to the present invention, the induced voltage generated by the rotation of the rotor magnet is used to detect the rotational position and rotational speed, so if an abnormal condition such as a motor lock-up occurs and the motor stops rotating, Since no induced voltage is generated, there is no need to take any special protective measures. That is, not only can the brushless motor itself be made smaller, lower in price, and lower in rotational speed, but also the circuit can be made smaller, lower in price, and lower in power consumption.

また6相ブラシレスモーターについて説明したが、2相
ブラシレスモーター、4相ブラシレスモーター等の6相
以外の相数のブラシレスモーターにも本発明は運用でき
る。
Furthermore, although a six-phase brushless motor has been described, the present invention can also be applied to brushless motors having a number of phases other than six, such as a two-phase brushless motor and a four-phase brushless motor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のブラシレスモーターでラジアルギャップ
型モーターの断面図、第2図は本発明の実施例を示す概
略断面図、第3図は本発明の駆動回路図、第4図は第3
図の駆動回路の動作を説明した信号波形図、第5図は本
発明の速度制御を含めた駆動回路図、第6図は本発明の
速度制御動作を説明する為の信号波形図である。 1.9は1相検出用ステータコイル、2,10は2相検
出用ステータコイル、3,11は6相検出用ステータコ
イル1−1〜1−8.24は1相駆動用ステータコイル
、2−1.〜2−8.25は2相駆動用ステータコイル
、2−1〜2−8.26は6相駆動用ステータコイル、
4はローターマグネット、5はヨーク、6はステータ、
7はボールベアリング、8は回転軸、12,13.14
は増幅器、15,16,17は波形整形回路、18゜1
9.20,33はペース抵抗、21,22゜26は駆動
用トランジスタ、32は水晶振動子、33は分周器、3
4.35は微分回路、36はR−Sフリップフロップ、
37は積分器、68はベース抵抗、69は分圧抵抗、4
0は制御用トランジスタ、27.41は電源である。 以  上 第−1−図 第2図 [ 第゛〜3図 M                        
    Qv:3/ ffρ−CLθl−o。 第4−図
Fig. 1 is a sectional view of a conventional brushless motor, ie, a radial gap type motor, Fig. 2 is a schematic sectional view showing an embodiment of the present invention, Fig. 3 is a drive circuit diagram of the present invention, and Fig. 4 is a radial gap type motor.
FIG. 5 is a signal waveform diagram illustrating the operation of the drive circuit shown in the figure, FIG. 5 is a drive circuit diagram including the speed control of the present invention, and FIG. 6 is a signal waveform diagram illustrating the speed control operation of the present invention. 1.9 is a stator coil for 1-phase detection, 2 and 10 are stator coils for 2-phase detection, 3 and 11 are stator coils for 6-phase detection 1-1 to 1-8.24 are stator coils for 1-phase drive, 2 -1. ~2-8.25 is a stator coil for 2-phase drive, 2-1 ~ 2-8.26 is a stator coil for 6-phase drive,
4 is a rotor magnet, 5 is a yoke, 6 is a stator,
7 is a ball bearing, 8 is a rotating shaft, 12, 13.14
is an amplifier, 15, 16, 17 are waveform shaping circuits, 18゜1
9. 20, 33 are pace resistors, 21, 22, 26 are driving transistors, 32 are crystal oscillators, 33 are frequency dividers, 3
4.35 is a differentiation circuit, 36 is an R-S flip-flop,
37 is an integrator, 68 is a base resistor, 69 is a voltage dividing resistor, 4
0 is a control transistor, and 27.41 is a power supply. Above Figure 1-Figure 2 [Figures ゛-3M
Qv:3/ffρ-CLθl-o. Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)複数の極に分割着磁されたローターマグネットと
、該ローターマグネットに回転力を与える為の多相ステ
ータコイルと、該ローターマグネットの回転位置検出機
構を具えたプランレスモーターに於て、回転位置検出機
構として、ステータコアに専用に検出コイルを巻回した
事を特徴とするブラシレスモーター。
(1) In a planless motor equipped with a rotor magnet magnetized into multiple poles, a multiphase stator coil for applying rotational force to the rotor magnet, and a rotational position detection mechanism for the rotor magnet, A brushless motor that features a dedicated detection coil wound around the stator core as a rotational position detection mechanism.
(2)  前記検出コイルを前記ローターマグネットの
回転速度検出に使用する事を特徴とするブラシレスモー
ター。
(2) A brushless motor characterized in that the detection coil is used to detect the rotational speed of the rotor magnet.
JP57205175A 1982-11-22 1982-11-22 Brushless motor Pending JPS5996859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57205175A JPS5996859A (en) 1982-11-22 1982-11-22 Brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57205175A JPS5996859A (en) 1982-11-22 1982-11-22 Brushless motor

Publications (1)

Publication Number Publication Date
JPS5996859A true JPS5996859A (en) 1984-06-04

Family

ID=16502661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57205175A Pending JPS5996859A (en) 1982-11-22 1982-11-22 Brushless motor

Country Status (1)

Country Link
JP (1) JPS5996859A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244095A (en) * 1985-08-21 1987-02-26 Toyota Motor Corp Brushless motor
JPS6244093A (en) * 1985-08-21 1987-02-26 Toyota Motor Corp Brushless motor
WO2013073264A1 (en) * 2011-11-14 2013-05-23 株式会社安川電機 Motor and motor system
JPWO2013073263A1 (en) * 2011-11-14 2015-04-02 株式会社安川電機 Motor and motor system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457608A (en) * 1977-10-17 1979-05-09 Matsushita Electric Ind Co Ltd Rotary electric machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457608A (en) * 1977-10-17 1979-05-09 Matsushita Electric Ind Co Ltd Rotary electric machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244095A (en) * 1985-08-21 1987-02-26 Toyota Motor Corp Brushless motor
JPS6244093A (en) * 1985-08-21 1987-02-26 Toyota Motor Corp Brushless motor
WO2013073264A1 (en) * 2011-11-14 2013-05-23 株式会社安川電機 Motor and motor system
JPWO2013073263A1 (en) * 2011-11-14 2015-04-02 株式会社安川電機 Motor and motor system
JPWO2013073264A1 (en) * 2011-11-14 2015-04-02 株式会社安川電機 Motor and motor system

Similar Documents

Publication Publication Date Title
EP0313046B1 (en) Motor control apparatus
JP2875529B2 (en) Drive device for sensorless brushless motor
US6081091A (en) Motor controller, integrated circuit, and method of controlling a motor
EP0820657B1 (en) Switch mode sine wave driver for polyphase brushless permanent magnet motor
JPH06103995B2 (en) Sensorless brushless motor
US5004965A (en) Brushless motor with torque compensation
JP3085884B2 (en) Speed detector for brushless motor
JPS5996859A (en) Brushless motor
JP3958819B2 (en) Method of driving a two-phase claw pole type stepping motor used in a recording disk driving device of an information storage device
JP3427575B2 (en) DC brushless motor and its stopping method
JP2897210B2 (en) Sensorless drive for brushless motor
JP2708060B2 (en) Motor control device
JPS5944992A (en) Drive circuit for motor
JPH0557837B2 (en)
JPS6387189A (en) Driving circuit for brushless motor
JP2645604B2 (en) Drive circuit for brushless motor
KR840001050Y1 (en) Capstan servomotor for vtr
JPS59194692A (en) Driving method of dc brushless motor
JPH0574319B2 (en)
JPS61106056A (en) Brushless motor
JPH0260492A (en) Motor controller
JPS6126491A (en) Commutatorless motor
JP3246080B2 (en) Two-phase DC synchronous motor
JPS6052680B2 (en) Pulse motor with position detection circuit
JPH11146680A (en) Driver for multiphase motor