JPS5996483A - Control method for electrification of glow plug - Google Patents
Control method for electrification of glow plugInfo
- Publication number
- JPS5996483A JPS5996483A JP20491682A JP20491682A JPS5996483A JP S5996483 A JPS5996483 A JP S5996483A JP 20491682 A JP20491682 A JP 20491682A JP 20491682 A JP20491682 A JP 20491682A JP S5996483 A JPS5996483 A JP S5996483A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- glow plug
- comparator
- power supply
- source voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P19/00—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
- F02P19/02—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
- F02P19/021—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls
- F02P19/022—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls using intermittent current supply
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は定格電圧以上の電圧を印加して急速加熱して、
所定上限温度付近に達た後は前記電圧を断続通電に切替
えて安定加熱を行なう方式のグロープラグ通電制御方法
に関する。[Detailed description of the invention] The present invention applies a voltage higher than the rated voltage to rapidly heat the
The present invention relates to a method for controlling energization of a glow plug in which stable heating is performed by switching the voltage to intermittent energization after reaching a predetermined upper limit temperature.
本発明は特開昭57−2471号公報に例示される上記
の方式のグロープラグ通電制御装置の改(1)
良に係るもので、グロープラグに印加されるバッテリ電
圧の変化を考慮して、グロープラグ温度を維持すること
目的とする。The present invention relates to an improvement (1) of the glow plug energization control device of the above type as exemplified in Japanese Patent Application Laid-Open No. 57-2471. The purpose is to maintain the glow plug temperature.
すなわち本発明は、断続通電の際に、グロープラグ電源
電圧に応じてデユーティ比が変化するパルス信号、すな
わち電源電圧が高い時デユーティ比が小となり、電源電
圧が低い時デユーティ比が大となるパルス信号を発生さ
せ、このパルス信号に基づいて断続通電を行なうことに
より、断続通電によるグロープラグの実効印加電圧を電
源電圧に依存な(一定とすることを特徴とする。That is, the present invention provides a pulse signal whose duty ratio changes depending on the glow plug power supply voltage during intermittent energization, that is, a pulse signal whose duty ratio is small when the power supply voltage is high, and large when the power supply voltage is low. By generating a signal and performing intermittent energization based on this pulse signal, the effective voltage applied to the glow plug due to intermittent energization is made constant (not dependent on the power supply voltage).
本発明の一実施例示す第1図において、■はバッテリ、
2はキースイッチ、3はキースイッチ閉成後に電源電圧
に応じた所定の時間だけ出力が論理ルベルとなる急速加
熱用タイマ回路、4はコンデンサ充電電圧と基準電圧を
比較するコンパレータ、5は電圧レギヱレータ、6.7
はレギュレート電圧を分割するための抵抗、8はコンデ
ンサ、9はプルアンプ抵抗、10はドライバ回路、11
はグロープラグのバッテリ電圧印加の開閉を行な(2)
うプラグ通電回路であり、グロープラグの付近に設置す
る、12a、12b、12c、12dはグロープラグ、
13はグロープラグ非接地端子である。In FIG. 1 showing one embodiment of the present invention, ■ is a battery;
2 is a key switch, 3 is a rapid heating timer circuit whose output becomes a logic level for a predetermined time depending on the power supply voltage after the key switch is closed, 4 is a comparator that compares the capacitor charging voltage with the reference voltage, and 5 is a voltage regulator. , 6.7
is a resistor for dividing the regulated voltage, 8 is a capacitor, 9 is a pull amplifier resistor, 10 is a driver circuit, 11
12a, 12b, 12c, and 12d are plug energizing circuits that open and close battery voltage application to the glow plugs (2), and are installed near the glow plugs;
13 is a glow plug non-ground terminal.
14はコンデンサ充電用の非線形時定数回路、15はコ
ンパレータ4の出力の論理θレベルを保持するダイオー
ドである。16はコンデンサ放電波形発生回路で、17
はコンパレータ、18はコンデンサ、19は抵抗、20
.21はレギュレート電圧を分割するための抵抗、22
はコンパレータの基準レベルを昇げるためのトランジス
タ、23は抵抗、24はコンデンサを強制放電させるた
めのトランジスタ、25は抵抗である。14 is a nonlinear time constant circuit for charging the capacitor, and 15 is a diode that maintains the logic θ level of the output of the comparator 4. 16 is a capacitor discharge waveform generation circuit, 17
is a comparator, 18 is a capacitor, 19 is a resistor, 20
.. 21 is a resistor for dividing the regulated voltage, 22
2 is a transistor for raising the reference level of the comparator, 23 is a resistor, 24 is a transistor for forced discharge of the capacitor, and 25 is a resistor.
26は電源電圧に応じたデユーティ比でパルスを発生す
るパルス発生回路、27は波形発生回路からの出力波形
と基準レベルを比較するコンパレータ、28.29は電
源電圧を分割するための抵抗、30はプルアップ抵抗で
ある。31はダイオード、32はアフターグロー用タイ
マ回路、33はアフターグロ一時間の経過後にドライバ
回路10(3)
を消勢させるためのトランジスタ、34はダイオードで
ある。26 is a pulse generation circuit that generates pulses with a duty ratio according to the power supply voltage, 27 is a comparator that compares the output waveform from the waveform generation circuit with a reference level, 28 and 29 are resistors for dividing the power supply voltage, and 30 is a It is a pull-up resistor. 31 is a diode, 32 is an afterglow timer circuit, 33 is a transistor for deactivating the driver circuit 10(3) after one hour of afterglow, and 34 is a diode.
第1図において、キースイッチ2が閉になると、急速加
熱用タイマ回路3は、コンパレータ4の非反転入力端子
が電圧レギュレータ5の出力電圧(例えば5V)を抵抗
6.抵抗7で分割された電圧であるのに対し、反転入力
端子はコンデンサ8の電圧が最初Ovであることにより
、コンパレータ4の出力から論理ルベル信号を発生し、
プルアンプ抵抗9を介してドライバ回路10を付勢させ
る。In FIG. 1, when the key switch 2 is closed, the rapid heating timer circuit 3 connects the non-inverting input terminal of the comparator 4 with the output voltage (for example, 5V) of the voltage regulator 5 through the resistor 6. While the voltage is divided by the resistor 7, the voltage at the inverting input terminal is initially Ov at the capacitor 8, so that a logic level signal is generated from the output of the comparator 4.
The driver circuit 10 is energized via the pull amplifier resistor 9.
ドライバ回路10の出力はプラグ通電回路11を導通さ
せ、グロープラグ128〜12dにはバッテリ電圧が印
加されて急速加熱が開始される。The output of the driver circuit 10 makes the plug energizing circuit 11 conductive, and the battery voltage is applied to the glow plugs 128 to 12d to start rapid heating.
この通電によりグロープラグ非接地端子13の電圧は、
充電時定数回路14を介しコンデンサ8を充電していく
。この充電時定数回路14は非線形特性を持ったもので
ある。コンデンサ8の電圧がコンパレータ4の非反転入
力端子電圧に到達するまでの時間は、グロープラグ12
8〜12dの温(4)
度が所要上限温度(例えば900℃)に到達する時間と
一致させである。Due to this energization, the voltage at the glow plug ungrounded terminal 13 is
The capacitor 8 is charged via the charging time constant circuit 14. This charging time constant circuit 14 has nonlinear characteristics. The time it takes for the voltage of the capacitor 8 to reach the non-inverting input terminal voltage of the comparator 4 is
This is to coincide with the time for the temperature (4) degrees of 8 to 12 days to reach the required upper limit temperature (for example, 900 degrees Celsius).
コンデンサ8の電圧がコンパレータ4の非反転入力端子
電圧に到達した時点でコンパレータ4の出力は論理0信
号を発生し、ドライバ回路10は消勢となり、プラグ通
電回路11も非導通となってグロープラグ12a〜12
dへの直流的通電は終了する。When the voltage of the capacitor 8 reaches the non-inverting input terminal voltage of the comparator 4, the output of the comparator 4 generates a logic 0 signal, the driver circuit 10 becomes de-energized, and the plug energizing circuit 11 also becomes non-conducting, causing the glow plug to become non-conducting. 12a-12
The direct current supply to d is terminated.
なお、コンパレータ4の出力が論理0レベルとなった時
点で、コンパレータ4の非反転入力端子電圧はダイオー
ド15を介してほぼOvとなるので、コンパレータ4の
出力は論理0レベルヲ保持する。It should be noted that when the output of the comparator 4 reaches the logic 0 level, the non-inverting input terminal voltage of the comparator 4 becomes approximately Ov via the diode 15, so the output of the comparator 4 maintains the logic 0 level.
急速加熱用タイマ回路3による急速加熱の終了後、グロ
ープラグに定格実効電圧が印加されるように、例えば1
0Hz程度の周波数でバッテリ電圧の断続通電を行なう
、つまり、波形発生回路16では、第2図に示すような
コンデンサ放電波形を連続的に発生させる。詳述すると
キースイッチ2が閉になった時、コンパレータ17の非
反転入(5)
力端子にはコンデンサ18と抵抗19より発生する第2
図に示す波形が加えられ、反転入力端子にはレギュレー
タ電圧を抵抗20.抵抗21で分割した基準電圧VLS
(例えば0.5V)が加えられるためコンパレータ17
の出力は論理l信号を発生する。After the rapid heating by the rapid heating timer circuit 3, the rated effective voltage is applied to the glow plug.
The battery voltage is applied intermittently at a frequency of about 0 Hz, that is, the waveform generating circuit 16 continuously generates a capacitor discharge waveform as shown in FIG. In detail, when the key switch 2 is closed, the non-inverting input (5) input terminal of the comparator 17 receives the second voltage generated by the capacitor 18 and the resistor 19.
The waveform shown in the figure is applied, and the regulator voltage is applied to the inverting input terminal through the resistor 20. Reference voltage VLS divided by resistor 21
(for example, 0.5V), the comparator 17
The output of generates a logic I signal.
コンデンサ18が充電されてコンパレータ17の非反転
入力端子電圧が基準電圧vしsまで下がってコンパレー
タ17の出力が論理0レベルに反転すると、トランジス
タ22が導通してレギュレート電圧が抵抗23を介して
コンパレータ17の反転入力端子に加えられ、基準電圧
がVL5からVss (例えは4V)に昇がる。またト
ランジスタ22が導通すると同時にトランジスタ24も
導通する。When the capacitor 18 is charged and the voltage at the non-inverting input terminal of the comparator 17 drops to the reference voltage Vs and the output of the comparator 17 is inverted to the logic 0 level, the transistor 22 becomes conductive and the regulated voltage is passed through the resistor 23. It is applied to the inverting input terminal of the comparator 17, and the reference voltage rises from VL5 to Vss (4V, for example). Furthermore, at the same time as transistor 22 becomes conductive, transistor 24 also becomes conductive.
トランジスタ24が導通してレギュレート電圧が抵抗2
5を介してコンデンサ18の一側端子に加えられ、基準
電圧VH5に達すると、コンパレータ17の出力は再び
論理ルベルに反転し、トランジスタ23.24が非導通
になって基準電圧(6)
がV+−Sに下がる。この時コンデンサ18は強制放電
されたことになり初期状態に戻る。Transistor 24 becomes conductive and the regulated voltage is applied to resistor 2.
When it reaches the reference voltage VH5, the output of the comparator 17 is again inverted to a logic level, transistors 23 and 24 become non-conducting, and the reference voltage (6) becomes V+. -Go down to S. At this time, the capacitor 18 is forcibly discharged and returns to its initial state.
波形発生回路I6から発生した第2図に示す波形はコン
パレータ27の非反転入力端子に加えられる。コンパレ
ータ27の反転入力端子には電源電圧を抵抗28.抵抗
29で分割した電圧が加えられて、第2図に示すように
電源電圧が高い時には基準電圧は高くなり、電源電圧が
低い時には基準電圧は低くなる。したがってコンパレー
タ27の出力が論理1信号を発生する時間は、電源電圧
が高い時短かくなり(デユーティ比小)、電源電圧が低
い時長くなる(デユーティ沈火)。The waveform shown in FIG. 2 generated by the waveform generating circuit I6 is applied to the non-inverting input terminal of the comparator 27. The power supply voltage is connected to the inverting input terminal of the comparator 27 through the resistor 28. The voltage divided by the resistor 29 is applied, and as shown in FIG. 2, when the power supply voltage is high, the reference voltage becomes high, and when the power supply voltage is low, the reference voltage becomes low. Therefore, the time during which the output of the comparator 27 generates a logic 1 signal becomes shorter when the power supply voltage is high (duty ratio is small), and becomes longer when the power supply voltage is low (duty ratio is low).
コンパレータ27の出力が論理ルベルの時、プルアップ
抵抗30を介してドライバ回路10が付勢し、その出力
でプラグ通電回路11が導通してグロープラグ12a〜
12dにバッテリ電圧が印加される。When the output of the comparator 27 is a logic level, the driver circuit 10 is energized via the pull-up resistor 30, and the plug energization circuit 11 is made conductive by the output, causing the glow plugs 12a to 12a to
Battery voltage is applied to 12d.
この結果断続通電は第3図に示すように行なわれる。す
なわち電源電圧が高い時(例えば12V)はデユーティ
比は小さくなり、電源電圧が低い時(7)
(例えば8V)はデユーティ比は太き(なる。ここで注
意しなければならないことは断続通電によっグロープラ
グに印加される実効電圧が電源電圧に依存なく一定にな
ることである。そのためには波形発生回路16から発生
される波形が、電源電圧の変動する範囲で対応できる波
形でなければならない。本実施例では前記波形を得るた
めにはコンデンサ18と抵抗19との間にダイオード3
1を入れである。以上のことからグロープラグにはダイ
オード3図に示すような電源電圧の広い範囲でほぼ一定
に近い定格実効電圧が印加されることにより、グロープ
ラグ温度は電源電圧に依存せずほぼ一定温度に保たれる
。As a result, intermittent energization is performed as shown in FIG. In other words, when the power supply voltage is high (e.g. 12V), the duty ratio becomes small, and when the power supply voltage is low (e.g. 8V), the duty ratio becomes large (7). Therefore, the effective voltage applied to the glow plug is to be constant regardless of the power supply voltage.For this purpose, the waveform generated by the waveform generation circuit 16 must be a waveform that can be applied within the range where the power supply voltage fluctuates. In this embodiment, in order to obtain the above waveform, a diode 3 is connected between the capacitor 18 and the resistor 19.
Enter 1. From the above, by applying a nearly constant rated effective voltage to the glow plug over a wide range of power supply voltages as shown in Figure 3, the glow plug temperature can be maintained at a nearly constant temperature independent of the power supply voltage. dripping
このようにグロープラグが暗転温度を保つ時間は、例え
ばキースイッチON時点から作動する、アフターグロー
用タイマ回路32の出力が論理0レベルの間持続し、所
定のアフターグロ一時間経過後はアフターグロー用タイ
マ回路32の出力が論理ルベルとなってトランジスタ3
3が導通し、強制的にドライバ回路10を消勢させてグ
ローブ(8)
ラグへの断続通電を終了する。なお、アフターグロー用
タイマ回路はエンジン水温等の信号により時間を制御す
ることができる。またキースイッチ2の閉時点から、パ
ルス発生回路26からパルスは発生しているが、急速加
熱タイマ3の出力が論理ルベルである機関はダイオード
34により断続通電することはない。The time during which the glow plug maintains the darkening temperature is, for example, as long as the output of the afterglow timer circuit 32, which is activated from the moment the key switch is turned on, is at logic 0 level, and after one hour of afterglow has elapsed, the afterglow is maintained. The output of the timer circuit 32 becomes a logic level and the transistor 3
3 conducts, forcibly deenergizing the driver circuit 10 and ending the intermittent energization to the glove (8) lug. Note that the time of the afterglow timer circuit can be controlled by a signal such as engine water temperature. Although pulses are generated from the pulse generating circuit 26 from the time when the key switch 2 is closed, the engine whose output from the rapid heating timer 3 is a logic level is not intermittently energized by the diode 34.
前記の実施例は急速予熱方法として急速予熱タイマ3を
用いているが、これ以外のタイマ方法を用いてもよいし
、従来周知の抵抗温度係数が大きなプラグの抵抗値変化
により、所定上限温度に達したことを検出する方法の装
置を用いることもできる。Although the above embodiment uses the rapid preheating timer 3 as a rapid preheating method, other timer methods may be used, or the predetermined upper limit temperature can be reached by a change in the resistance value of a plug with a large resistance temperature coefficient, which is well known in the art. It is also possible to use a device with a method of detecting the arrival.
本実施例の波形発生回路16において電源電圧の広い範
囲で対応できる波形を得るためにコンデンサ18と抵抗
19の間にダイオードを入れたが、ツェナーダイオード
を用いるなど他の方法でも実現できる。またパルス発生
回路26においてコンパレータ27の基準電圧として電
源電圧の分割電圧を用いているが、グロープラグの非接
地端予電(9)
圧を平滑した電圧を用いることもできる。In the waveform generating circuit 16 of this embodiment, a diode is inserted between the capacitor 18 and the resistor 19 in order to obtain a waveform that can be applied over a wide range of power supply voltages, but this can also be achieved by other methods such as using a Zener diode. Furthermore, although a divided voltage of the power supply voltage is used as the reference voltage of the comparator 27 in the pulse generating circuit 26, a voltage obtained by smoothing the non-grounded terminal pre-voltage (9) of the glow plug may also be used.
またプラグ通電回路として本実施例ではトランジスタの
電流増幅回路を用いているが、サイリスク、ゲートター
ンオフサイリスタ、場合によっては電磁リレー等、他の
開閉装置を用いてもよい。Further, although a transistor current amplification circuit is used as the plug energization circuit in this embodiment, other switching devices such as a thyristor, a gate turn-off thyristor, or an electromagnetic relay may be used depending on the case.
また本実施例では電源電圧の変化に応じてデユーティ比
の違ったパルスを得る回路として、波形発生回路16、
パルス発生回路26を用いているが、それら回路機能を
マイクロコンピュータ等を用いて実現してもよい。In addition, in this embodiment, a waveform generation circuit 16,
Although the pulse generation circuit 26 is used, these circuit functions may be realized using a microcomputer or the like.
以上のように本発明によれば、グロープラグに断続印加
するデユーティ比を電源電圧に対応させたことにより、
グロープラグにて印加実効電圧を一定とすることができ
る。As described above, according to the present invention, by making the duty ratio of intermittent application to the glow plug correspond to the power supply voltage,
The applied effective voltage can be kept constant using a glow plug.
第1図は本発明の実施例を示す電気結線図、第2図はデ
ヱーティパルス発生回路の作動説明用タイマチ十−ト、
第3図は実施例装置のプラグ印加電圧の変化に対する作
動の変化を示すタイムチャートである。
(10)
11 ・・・プラグ通電回路、12a、12b、12c
、12d・・・グロープラグ、16・・・コンデンサ放
電波形発生回路、26・・・パルス発生回路。
代理人弁理士 岡 部 隆
(11)Fig. 1 is an electrical wiring diagram showing an embodiment of the present invention, Fig. 2 is a timer chart for explaining the operation of the duty pulse generation circuit,
FIG. 3 is a time chart showing changes in the operation of the embodiment device with respect to changes in the plug applied voltage. (10) 11...Plug energizing circuit, 12a, 12b, 12c
, 12d... Glow plug, 16... Capacitor discharge waveform generation circuit, 26... Pulse generation circuit. Representative Patent Attorney Takashi Okabe (11)
Claims (1)
し所定上限温度付近に達した後、前記電圧を断続通電に
切替えて暗転加熱を行なうグロープラグ通電制御方法に
おいて、電源電圧に応じてデユーティ比が変化するパル
ス信号、すなわち電源電圧が高い時デユーティ比が小と
なり、電源電圧が低い時デユーティ比が大となるパルス
信号を発生させ、このパルス信号に基づいて断続通電を
行なうグロープラグ通電制御方法。In a glow plug energization control method in which a voltage higher than the rated voltage is applied to the glow plug to rapidly heat it, and after reaching a predetermined upper limit temperature, the voltage is switched to intermittent energization to perform dark heating, the duty ratio is adjusted according to the power supply voltage. A glow plug energization control method that generates a pulse signal in which the power supply voltage changes, that is, the duty ratio is small when the power supply voltage is high and the duty ratio is large when the power supply voltage is low, and performs intermittent energization based on this pulse signal. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20491682A JPS5996483A (en) | 1982-11-22 | 1982-11-22 | Control method for electrification of glow plug |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20491682A JPS5996483A (en) | 1982-11-22 | 1982-11-22 | Control method for electrification of glow plug |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5996483A true JPS5996483A (en) | 1984-06-02 |
Family
ID=16498497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20491682A Pending JPS5996483A (en) | 1982-11-22 | 1982-11-22 | Control method for electrification of glow plug |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5996483A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6143274A (en) * | 1984-08-03 | 1986-03-01 | ローベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Control of internal combustion engine |
JPS635173A (en) * | 1986-06-25 | 1988-01-11 | Jidosha Kiki Co Ltd | Glow plug energization control device |
JPH01163470A (en) * | 1987-12-17 | 1989-06-27 | Jidosha Kiki Co Ltd | Control device for electrification of glow plug |
-
1982
- 1982-11-22 JP JP20491682A patent/JPS5996483A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6143274A (en) * | 1984-08-03 | 1986-03-01 | ローベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Control of internal combustion engine |
JPS635173A (en) * | 1986-06-25 | 1988-01-11 | Jidosha Kiki Co Ltd | Glow plug energization control device |
JPH01163470A (en) * | 1987-12-17 | 1989-06-27 | Jidosha Kiki Co Ltd | Control device for electrification of glow plug |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5422780A (en) | Solenoid drive circuit | |
US4360855A (en) | Injector drive circuit | |
US4878147A (en) | Electromagnetic coil drive device | |
US5610502A (en) | Boost power supply with clock period compensation | |
JPS6056948B2 (en) | Solenoid valve drive device | |
JP3440667B2 (en) | Discharge lamp lighting device | |
KR940006325A (en) | Charging device | |
GB1507239A (en) | Process and apparatus for the stabilization of the period of opening of electromagnetic fuel injectors | |
US4803410A (en) | Variable duty ratio speed controller for DC motors | |
GB1397586A (en) | Fusing apparatus | |
JPS5996483A (en) | Control method for electrification of glow plug | |
JPS5996484A (en) | Controller for electrification of glow plug | |
JPH10252930A (en) | Solenoid valve drive device | |
JPS5684982A (en) | Controlling method for current loading time in heat recording system | |
JPS6149508B2 (en) | ||
JPS5996485A (en) | Control method for electrification of glow plug | |
JPS6146187A (en) | Speed controller of dc motor | |
JPS634068B2 (en) | ||
JP2582635B2 (en) | Drive device for electromagnetic pump | |
JP2685873B2 (en) | Electromagnet coil drive | |
JPS59122782A (en) | Electrification controller of glow plug | |
JP4161480B2 (en) | Deuterium discharge tube power supply | |
SU1211885A1 (en) | Pulse separation-to-pulse duration converter | |
JPS5915681A (en) | Glow-plug controller for diesel-engine | |
JPS59203877A (en) | Glow plug conduction controlling device |