JPS5995895A - Purification of fructo-oligosuccharide - Google Patents

Purification of fructo-oligosuccharide

Info

Publication number
JPS5995895A
JPS5995895A JP57203788A JP20378882A JPS5995895A JP S5995895 A JPS5995895 A JP S5995895A JP 57203788 A JP57203788 A JP 57203788A JP 20378882 A JP20378882 A JP 20378882A JP S5995895 A JPS5995895 A JP S5995895A
Authority
JP
Japan
Prior art keywords
sucrose
glucosidase
monosaccharides
fructooligosaccharides
fructo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57203788A
Other languages
Japanese (ja)
Inventor
Takashi Adachi
足立 尭
Yasuhiro Saito
斉藤 安弘
Hidemasa Hidaka
日高 秀昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Seika Kaisha Ltd
Original Assignee
Meiji Seika Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Seika Kaisha Ltd filed Critical Meiji Seika Kaisha Ltd
Priority to JP57203788A priority Critical patent/JPS5995895A/en
Publication of JPS5995895A publication Critical patent/JPS5995895A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To separate pure fructo-oligosaccharide useful as a raw material of a non-calorific food and an agent for the promotion of the proliferation of intestinal bifidus bacteria, in high yield, by treating a sugar composition with alpha- glucosidase, thereby selectively decomposing sucrose. CONSTITUTION:A sugar composition containing monosaccharides, sucrose, and fructo-oligosaccharide is treated with alpha-glucosidase. Only the sucrose is decomposed to monosaccharides and removed from the system by this treatment, and purified fructo-oligosaccharide can be obtained.

Description

【発明の詳細な説明】 本発明は単糖類、ショ糖およびフラクトオリゴ糖を含有
する糖組成物からフラジ]・オリゴ糖を単離精製するに
際し、当該糖組成物にα−グルコ/ダーゼを作用させ、
フラクトオリゴ糖類を分解ずルコトナくショ糖のみを単
糖類に寸で分解、除去することを特徴とするフラクトオ
リゴ塩の精製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for isolating and purifying a saccharide-oligosaccharide from a saccharide composition containing monosaccharides, sucrose, and fructooligosaccharides by allowing α-gluco/dase to act on the saccharide composition. ,
The present invention relates to a method for purifying fructooligosalts, which is characterized by decomposing and removing only sucrose into monosaccharides without decomposing fructooligosaccharides.

本発明におけるフラクトオリゴ塩とは、ショ糖にフラク
トースが1分子結合し/ζ三糖類(以−ト、GF2と称
する)、ショ糖にフラジ[・−スが2分子結合しだ四糖
類(以下、GF3と称する)、/ヨ糖にフラクト−スが
3分子結合した五糖類(以下、GF4と称する)および
これ等の混合物を意味する。
Fructooligosalts in the present invention include sucrose bound to one molecule of fructose/ζ trisaccharide (hereinafter referred to as GF2), and sucrose bound to two molecules of fructose (hereinafter referred to as GF2) and tetrasaccharide (hereinafter referred to as GF2). GF3), a pentasaccharide in which three fructose molecules are bonded to saccharide (hereinafter referred to as GF4), and mixtures thereof.

このフラクトオリゴ塩は難う触性てあり、しかも生体内
で吸収されず、ノン力D IJ−であり、更には腸内に
おけるビフィズス菌の持具的生育促進効果や体内脂質の
低下作用等のすぐれた作用を有することか明かにされつ
つある。
This fructooligosalt is very tactile, is not absorbed in the body, is non-active, and has excellent effects such as promoting the growth of bifidobacteria in the intestine and lowering lipids in the body. It is becoming clear that it has an effect.

これ等のフラクトオリゴ糖は、例えばショ糖に植物や微
生物の生産するフラクトシルトランスフェラーゼを作用
させることにより製造でき、工業的反応条件としては、
以下の条件で実施することが好ましい。すなわち、転移
反応時の7ユ一クロース濃度を5〜70係、好ましくは
30〜60係とする。寸だ反応PH9反応反応上酵素の
起源により異なるが、PH4,0〜7.0.温度25〜
65°C1好ましくは50・−60°Cとする。酵素使
用量についてはンユークロース17当り5〜200単位
、好ましくは20〜80単位とする。こ\で酵素の単位
は、5%ンユークロース溶液1.0 ml 、 pH5
,0の緩衝液1.0ml!に酵素液0.5m6を添加し
、40’Cで60分間反応させたとき、反応液2.5m
/i中に60分間に1μmoleのグルコースを生成す
る酵素量を1単位として表示する。
These fructooligosaccharides can be produced, for example, by reacting sucrose with fructosyltransferase produced by plants or microorganisms, and the industrial reaction conditions are as follows:
It is preferable to carry out under the following conditions. That is, the concentration of 7-eu-close during the transfer reaction is set to 5 to 70, preferably 30 to 60. The pH of the reaction varies depending on the origin of the enzyme, but the pH of the reaction is between 4.0 and 7.0. Temperature 25~
65°C, preferably 50.-60°C. The amount of enzyme used is 5 to 200 units, preferably 20 to 80 units per nuclose 17. Here, the enzyme unit is 1.0 ml of 5% N-Eucrose solution, pH 5.
,0 ml of buffer! When 0.5m6 of the enzyme solution was added to the water and reacted at 40'C for 60 minutes, 2.5m6 of the reaction solution was added.
The amount of enzyme that produces 1 μmole of glucose in 60 minutes during /i is expressed as 1 unit.

転移反応終了後、加熱して酵素を失活させ、活性炭によ
り脱色し、さらにイオン交換樹脂で脱塩した後、濃縮し
て目的物を得る。転移組成物の分析は、たとえばマイク
ロボンダパックCHカラム(ウォーターズ・リミテッド
製)を用い、アセトニトリル:水(80:20 (v/
v) )の溶剤系を用いた高速液体クロマトグラフィー
法で行なうことができる。
After the rearrangement reaction is completed, the enzyme is deactivated by heating, decolorized with activated carbon, desalted with an ion exchange resin, and then concentrated to obtain the desired product. The transition composition can be analyzed using, for example, a Micro Bondapak CH column (manufactured by Waters Limited) using acetonitrile:water (80:20 (v/v)).
v) It can be carried out by a high performance liquid chromatography method using the solvent system of ()).

このようにして得られた糖組成物の組成は、たトエばグ
ルコース28係、フラクトース2係、7ユークロース(
ショ糖)11%、 GF228俸、GF325 % 、
 CTF46%であるが、それぞれの構成糖の組成は反
応条件により種々の値をとり得る。
The composition of the sugar composition thus obtained was 28 parts glucose, 2 parts fructose, and 7 parts euucrose (
Sucrose) 11%, GF228, GF325%,
Although the CTF is 46%, the composition of each constituent sugar can take various values depending on the reaction conditions.

オリゴ糖のGF 2としてはO−β−D−フラクトフラ
ノシルー(2−1)−0−β−フラクトフラノンルー(
2→1)−α−D −クルコピラノント。
The oligosaccharide GF 2 is O-β-D-fructofuranosyl(2-1)-0-β-fructofuranoyl(
2→1)-α-D-curcopyranont.

0−β−D−フラクトフラノシル−(2−6)−〇−β
−グルコピラノンルー(1→2)−β−D−フラクトフ
ラノ7ド、0−β−D−フラクトフラノンルー(2→6
)−〇−β−フラクトフラノ/ルー(2−1)−α−D
−グルコピラノシド等があり、 C7F3としてはO−
β−D−フラクトフラノンルー(2→〔1−0−β−D
−フラクj・フラノシル〕2→1)−α−D−グルコピ
ラノシド、0−β−D−フラクトフラノシルー(2−6
)−0〔β−D−フラクトフラノンルー(’2−2))
−〇−α−1〕−グルコピラノシルー(]−2)−β−
D−フラクトフラノンド等があり、 GF4としては0
−β−D−フラクトフラノシル−(2−C1−O−β−
D−フラクトフラノシルー213−])−α−D−グル
コピラノシド等がある。
0-β-D-fructofuranosyl-(2-6)-〇-β
-glucopyranone-ru(1→2)-β-D-fructofurano7do, 0-β-D-fructofuranone-ru(2→6)
)-〇-β-Fructofurano/Rue(2-1)-α-D
-glucopyranoside, etc., and as C7F3, O-
β-D-Fructofuranone Ru (2→[1-0-β-D
-Frucj-furanosyl]2→1)-α-D-glucopyranoside, 0-β-D-fructofuranosyl (2-6
)-0 [β-D-Fructofuranone Ru ('2-2))
-〇-α-1]-glucopyranosyl(]-2)-β-
There are D-fructofuranondo, etc., and GF4 is 0.
-β-D-fructofuranosyl-(2-C1-O-β-
D-fructofuranosyl-213-])-α-D-glucopyranoside and the like.

上記の如くして得られた糖組成物からフラクトオリゴ糖
を単離精製する手段としては、活性炭クロマトグラフ法
やイメン交換りロマト法が一般的に用いられるが、これ
等の方法では三糖類であるショ糖と、五糖類以上のフラ
クトオリゴ糖、特に三糖類であるGF2との分離が悪く
、このような榮件下でフラクトオリゴ糖を単離精製しよ
うとすれば、必然的に収率は低下する(実施例、比較例
参照)。しかしながら、上記糖組成物中のショ糖と、フ
ラクトオリゴ糖を分解することなく単糖類(グルコース
、フラクト−ス)に分解することができれば、このよう
な処理の結果得られた単糖類と、五糖類以上のフラクト
オリゴ糖のみを含む糖液を活性炭クロマトグラフ法等の
通常の分離精製手段で精製することにより、フラジ[・
オリゴ糖の単離精製はより容易となり、収率の向」二や
コストの低減が可能となる。
As a means for isolating and purifying fructooligosaccharides from the sugar composition obtained as described above, activated carbon chromatography and Imen exchange chromatography are generally used. Separation of sucrose from pentasaccharides or higher fructooligosaccharides, especially GF2, which is a trisaccharide, is poor, and if one attempts to isolate and purify fructooligosaccharides under such conditions, the yield will inevitably decrease ( (See Examples and Comparative Examples). However, if it is possible to decompose the sucrose and fructooligosaccharides in the sugar composition into monosaccharides (glucose, fructose) without decomposing them, the monosaccharides and pentasaccharides obtained as a result of such treatment can be By purifying the sugar solution containing only the above fructooligosaccharides using normal separation and purification means such as activated carbon chromatography,
Isolation and purification of oligosaccharides becomes easier, making it possible to improve yields and reduce costs.

発明者等は、この点につき鋭意検dテ]を重ね、糖氷解
酵素の一種であるα−グルコ/ダーセがショ糖を単糖類
に寸で分解するが、フラクトオリゴ糖の分解作用を持た
ないことを見出し、本発明を完成したのである。
The inventors conducted extensive research on this point and found that α-gluco/dase, a type of sugar ice-breaking enzyme, breaks down sucrose into monosaccharides, but does not have the effect of breaking down fructooligosaccharides. They discovered this and completed the present invention.

このような酵素としては、ラットや家兎の小腸に存在す
るα−グルコシダーゼが使用できるが、工業的には微生
物の酵素を用いることが好捷しく、広く検索の結果、酵
母の−TΦであるザソノノロミセス0セレビジイ(Sa
ccharomyces cerevisiae ) 
JAM4518が目的とする酵素を生産することを見出
L タ。本酵素は、ザツカロミセス・セレビジイIへM
4518株をマルト−ス15%、ペプトン0.7係およ
び酵母エキス0.3 %を含有する培地で28°C12
4〜48時間培養することにより菌体内に生産され、そ
の活性は0.1〜0.3 U/mg菌体に達する。
As such an enzyme, α-glucosidase present in the small intestines of rats and rabbits can be used, but from an industrial perspective, it is preferable to use a microbial enzyme, and as a result of a wide search, yeast -TΦ was used. Thesononoromyces 0 cerevisiai (Sa
ccharomyces cerevisiae)
We discovered that JAM4518 produces the desired enzyme. This enzyme was transferred to Zatucharomyces cerevizii I.
4518 strain at 28°C in a medium containing 15% maltose, 0.7% peptone, and 0.3% yeast extract.
It is produced within the bacterial cells by culturing for 4 to 48 hours, and its activity reaches 0.1 to 0.3 U/mg of the bacterial cells.

この菌体をα−グルコシダーゼ活性として、反応糖組成
物(単糖類、シヨ糖、フラクトオリゴ糖を含む)17当
り5〜7単位加え反応液の濃度を5〜50係、好捷しく
ば5〜30係とし、PH5〜8、好ましくは6〜7で反
応温度30〜50°C1好ましくは35〜40℃で2〜
4時間作用させることにより、反応糖組成物中に含捷れ
るショ糖の80係以」二をグルコースどフラクトースか
ら成る単糖類に分解することができる。なお、α−グル
コシダーゼの活性は、H,HALVOR3ON等、B 
iochem 。
To obtain α-glucosidase activity, add 5 to 7 units per 17 of the reaction sugar composition (including monosaccharides, sucrose, and fructooligosaccharides) to adjust the concentration of the reaction solution to 5 to 50, preferably 5 to 30. pH 5-8, preferably 6-7, reaction temperature 30-50°C, preferably 35-40°C, 2-40°C.
By reacting for 4 hours, more than 80% of sucrose contained in the reaction sugar composition can be decomposed into monosaccharides consisting of glucose and fructose. In addition, the activity of α-glucosidase is determined by H, HALVOR3ON, etc.
iochem.

Biophys、Acta、、30 28 (] 95
8 )に記載の方法に従って測定しlPH6,8,37
°Cでパラニトロフェニル−α−D−グルコピラノシト
かう1分間に1μm月oleのパラニトロフェノールを
生成する酵素量を1単位として表示した。
Biophys, Acta, 30 28 (] 95
8) Measured according to the method described in 1PH6, 8, 37
The amount of enzyme that produces 1 μm ole of paranitrophenol per minute from paranitrophenyl-α-D-glucopyranosite at °C is expressed as one unit.

このようにして得られた糖液を通常の精製手段で処理し
、フラクトオリゴ糖を収率よく精製単離することができ
る。以下に実施例を示し、本発明を更に詳細に説明する
The sugar solution thus obtained can be treated with conventional purification means to purify and isolate fructooligosaccharides in good yield. EXAMPLES The present invention will be explained in more detail by showing examples below.

実施例 ザツカロミセス・セレビジイIAM451s株をマルト
ース5%、ペプトン0.7係および酵刊エキス0.3%
を含む培地に1白金耳植菌し、28°Cで24時間振盪
培養した。これを第1種母液とする。
Example: Zatucharomyces cerevizii IAM451s strain was mixed with 5% maltose, 0.7% peptone, and 0.3% fermented extract.
One platinum loop was inoculated into a medium containing the following, and cultured with shaking at 28°C for 24 hours. This is designated as the first seed mother liquor.

次に、第1種母液5 mlを上記組成の培地5007I
(!に植菌し、28°Cで24時間振盪培養した。これ
を第二種母液とする。第二種母液500 mlを、マル
トース15%、ペプトン0.7係および酵Uエキス03
係を含む15tの培地に植菌し、30tジャーファーメ
ンタ−中で温度28°C,350rpmの条件下で30
時間通気攪拌培養を行なった。培養後、培養液から菌体
を遠心分離法で集め、α−グルコシダーゼを含む菌体3
00gを得だ。菌体のα−グルコンダーゼ活性は0.2
単位/mg 菌体であった。
Next, 5 ml of the first seed mother liquor was added to the medium 5007I having the above composition.
(!) and cultured with shaking at 28°C for 24 hours. This is used as the second seed mother liquor. 500 ml of the second seed mother liquor was mixed with maltose 15%, peptone 0.7 part, and yeast U extract 03
Inoculate 15 t of culture medium containing the above-mentioned material, and incubate in a 30 t jar fermenter at 28°C and 350 rpm for 30 minutes.
Time aeration agitation culture was performed. After culturing, the bacterial cells are collected from the culture solution by centrifugation, and bacterial cells containing α-glucosidase 3 are collected.
I got 00g. The α-glucondase activity of bacterial cells is 0.2
Units/mg bacterial cells.

グルコース39.3 % 、ショ糖10.4 % 、フ
ラクトオリゴ糖(GF2 、 GF3 、 GF4を含
む)5.0.3係から成る糖組成物5.0ノgを水に溶
解して10係の溶液とし、溶液のPI−1を6.8とし
だ。次いで、この溶液に上記α−グルコシダーゼを含む
菌体を1607加え、37°Cで3時間攪拌しながら反
応させた。
5.0 nog of a sugar composition consisting of 39.3% glucose, 10.4% sucrose, and 5.0.3 parts of fructooligosaccharide (including GF2, GF3, and GF4) was dissolved in water to make a 10 part solution. The PI-1 of the solution was set to 6.8. Next, 1,607 cells of the above-mentioned α-glucosidase-containing bacterial cells were added to this solution, and the mixture was reacted at 37°C for 3 hours with stirring.

反応後、菌体を濾過法により除去したのち反応液を30
%濃度に濃縮した。反応後の糖組成は単糖類49.6饅
/ヨ糖0.4係、オリゴ糖50.0係であった。
After the reaction, the bacterial cells were removed by filtration, and the reaction solution was
% concentration. The sugar composition after the reaction was 49.6 units of monosaccharides/0.4 units of sucrose and 50.0 units of oligosaccharides.

クロマト用活性炭(武田薬品製) 401qを直径55
cmのカラムに充填し、これに上記α−グルコシダーゼ
処理を行った糖液15 t、:g (固形物として4、
all)を充填し、5V=1で2,200 tの水で溶
壺 出抜、5%エタノール液1,500.次いで20係エタ
ノール液1,500 tで順次溶出を行なった。
Activated carbon for chromatography (manufactured by Takeda Pharmaceutical) 401q with a diameter of 55
15 t, :g of sugar solution packed in a cm column and subjected to the above α-glucosidase treatment.
Fill the pot with 2,200 tons of water at 5V=1, drain the pot with 1,500 tons of 5% ethanol solution. Next, elution was performed sequentially with 1,500 t of 20% ethanol solution.

各溶出液は】001の分画に分け、高速液体クロマトグ
ラフで夫々の分画の糖組成を分析した。この分画図を第
1図に示す。
Each eluate was divided into 001 fractions, and the sugar composition of each fraction was analyzed using high performance liquid chromatography. This fractionation diagram is shown in FIG.

比較例 α−グルコンダーゼ処理を行なわない糖液についても実
施例と同様の方法で30%溶液15 kgを充填し、分
画処理を行なった。即ち、2.2001の水、 1,5
00ノ、の5チェタノール液、 1,500tの10係
エタノール液および800tの20係エタノール液で夫
々5V−1で溶出した。この分画図を第2図に示す。
Comparative Example Regarding a sugar solution that was not subjected to α-glucondase treatment, 15 kg of a 30% solution was charged and fractionated in the same manner as in the example. i.e. 2.2001 water, 1,5
Elution was carried out at 5V-1 with a 50% chetanol solution, 1,500t of a 10% ethanol solution, and 800t of a 20% ethanol solution. This fractionation diagram is shown in FIG.

α−グルコシダーゼ未処理の液を処理した第2図におい
て明かなようにこの方法ではショ糖とGF2の分離が悪
く、単糖およびショ糖を含寸ないフラクトオリゴ糖は、
10係工タノール分画および20%エタノール分画にの
み得られた。この分画を濃縮し、凍結乾燥を行なった結
果、精製フラクトオリゴ糖1,200 Fを得た。本市
の理論収率は53係であった。
As is clear from Fig. 2, which shows a solution that has not been treated with α-glucosidase, separation of sucrose and GF2 is poor in this method, and monosaccharides and fructooligosaccharides that do not contain sucrose are
It was obtained only in the 10% ethanol fraction and the 20% ethanol fraction. This fraction was concentrated and freeze-dried to obtain purified fructooligosaccharide 1,200F. The theoretical yield in Motoichi was 53 sections.

α−グルコノダーゼ処理液について精製処理した場合は
、第1図に明かなように、単糖および/ヨ糖を含有しな
いフラクトオリゴ糖は5%7工タノール分画以後に得ら
れた。この分画を木部し、凍結乾燥を行なった結果、精
製フラクトオリコ糖2.17 Ofを得だ。本市の理論
収率は96係であった。
When the α-gluconodase treated solution was purified, as is clear from FIG. 1, fructooligosaccharides containing no monosaccharides and/or saccharides were obtained after the 5% heptanotanol fractionation. This fraction was xylemized and freeze-dried, resulting in 2.17 Of purified fructo-olicosaccharides. The theoretical yield in Motoichi was 96.

以上のように、α−グルコシダーゼ処理を実施すること
によりフラクトオリコ糖の精製収率は80%以十も向上
した。
As described above, by performing the α-glucosidase treatment, the purification yield of fructo-olicosaccharide was improved by more than 80%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を適用した糖組成物について活性
炭クロマトグラフ法により精製した分画図、第2図は従
来法の場合の分画図である。 第1 υ         II)         20図 #画にθ
FIG. 1 is a fraction diagram of a sugar composition purified by activated carbon chromatography using the method of the present invention, and FIG. 2 is a fraction diagram of a conventional method. 1 υ II) θ in Figure 20

Claims (1)

【特許請求の範囲】 1、単糖類、シヨ糖−セよびフラクトオリゴ塩を含有す
る糖組成物からフラクトオリゴ糖類を単離精製するに際
し、当該糖組成物にα−グルコシダーゼを作用させショ
糖を単糖類に分解することを特徴とするフラクトオリゴ
塩の精製法。 2、 α−グルコシダーゼが、サツカロミセス・セ45
18によって生産される酵素である特許請求範囲第1項
記載の精製法。 3 単糖類、ショ糖およびフラクトオリゴ糖類を含有す
る糖液にα−グルコシダーゼを作用させ、フラクトオリ
ゴ糖類を分解することなく当該糖液からショ糖を除去す
る方法。 4 α−グルコシダーゼカ、サツカロミセス・セ451
8によって生産される酵素である特許請求範囲第3項記
載の方法。
[Scope of Claims] 1. When isolating and purifying fructooligosaccharides from a sugar composition containing monosaccharides, sucrose and fructooligosalts, α-glucosidase is applied to the sugar composition to convert sucrose into monosaccharides. A method for purifying a fructooligosalt, which is characterized by decomposing it into 2. α-glucosidase is present in Satucharomyces se45
The purification method according to claim 1, wherein the enzyme is produced by No. 18. 3. A method for removing sucrose from a sugar solution containing monosaccharides, sucrose, and fructooligosaccharides without decomposing the fructooligosaccharides by allowing α-glucosidase to act on the sugar solution. 4 α-Glucosidaseca, Satucharomyces se451
8. The method according to claim 3, wherein the enzyme is produced by 8.
JP57203788A 1982-11-22 1982-11-22 Purification of fructo-oligosuccharide Pending JPS5995895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57203788A JPS5995895A (en) 1982-11-22 1982-11-22 Purification of fructo-oligosuccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57203788A JPS5995895A (en) 1982-11-22 1982-11-22 Purification of fructo-oligosuccharide

Publications (1)

Publication Number Publication Date
JPS5995895A true JPS5995895A (en) 1984-06-02

Family

ID=16479761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57203788A Pending JPS5995895A (en) 1982-11-22 1982-11-22 Purification of fructo-oligosuccharide

Country Status (1)

Country Link
JP (1) JPS5995895A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214792A (en) * 1985-07-10 1987-01-23 Meiji Seika Kaisha Ltd Production of composition containing large amount of fructooligosaccharide
US5659028A (en) * 1990-02-23 1997-08-19 Raffinerie Tirlemontoise S.A. Branched fructo-oligosaccharides, method for obtaining them and use of products containing them
EP2845905A1 (en) * 2013-09-10 2015-03-11 Jennewein Biotechnologie GmbH Production of oligosaccharides
JP2019202944A (en) * 2018-05-21 2019-11-28 日本食品化工株式会社 Method for producing sugar composition with reduced monosaccharide and disaccharide content

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214792A (en) * 1985-07-10 1987-01-23 Meiji Seika Kaisha Ltd Production of composition containing large amount of fructooligosaccharide
US5659028A (en) * 1990-02-23 1997-08-19 Raffinerie Tirlemontoise S.A. Branched fructo-oligosaccharides, method for obtaining them and use of products containing them
EP2845905A1 (en) * 2013-09-10 2015-03-11 Jennewein Biotechnologie GmbH Production of oligosaccharides
WO2015036138A1 (en) * 2013-09-10 2015-03-19 Jennewein Biotechnologie Gmbh Production of oligosaccharides
JP2016530888A (en) * 2013-09-10 2016-10-06 イェンネヴァイン ビオテヒノロギー ゲーエムベーハー Manufacture of oligosaccharides
JP2019213553A (en) * 2013-09-10 2019-12-19 イェンネワイン バイオテクノロジー ゲーエムベーハーJennewein Biotechnologie GmbH Production of oligosaccharides
JP2019213552A (en) * 2013-09-10 2019-12-19 イェンネワイン バイオテクノロジー ゲーエムベーハーJennewein Biotechnologie GmbH Production of oligosaccharides
CN110628842A (en) * 2013-09-10 2019-12-31 詹尼温生物技术有限责任公司 Production of oligosaccharides
CN110643658A (en) * 2013-09-10 2020-01-03 詹尼温生物技术有限责任公司 Production of oligosaccharides
US11427845B2 (en) 2013-09-10 2022-08-30 Chr. Hansen HMO GmbH Production of oligosaccharides
JP2019202944A (en) * 2018-05-21 2019-11-28 日本食品化工株式会社 Method for producing sugar composition with reduced monosaccharide and disaccharide content

Similar Documents

Publication Publication Date Title
KR920007687B1 (en) Method for producing galactooligo-saccharides
JPS5953834B2 (en) Bifidobacterium growth promoter
KR101203024B1 (en) Process for purifying difructose-dianhydride iii
KR20120049421A (en) Preparation method of turanose using amylosucrase and sweetner using turanose
JPH10117800A (en) Production of monosaccharide, oligosaccharide and solubilized polysaccharide
GB2179946A (en) Process for producing sugar mixture having high fructo-oligosaccharide content
US6479657B1 (en) Crystalline 1-kestose and process for preparing the same
KR100311067B1 (en) Biological transformation process to make colchicine compounds into their 3-glycosyl derivatives
JPS5995895A (en) Purification of fructo-oligosuccharide
JP2000232878A (en) Fructosyltransferase and fractional production of 1- kestose and nystose using the enzyme
JP4617077B2 (en) Method for purifying difructose dianhydride III
JP3095643B2 (en) Production method of high purity oligosaccharides from high concentration sugar mixture
EP0560982A1 (en) Process for producing sugar and transfusion
KR0131134B1 (en) Preparation process of isomalto oligo saccharide in hign yield and high purity
JP2001292792A (en) Method for recovering n-acetylglucosamine
JPH05140178A (en) Oligo-alpha-galactose composition
JPH0614870B2 (en) Method for producing galactooligosaccharide
JP2002503098A (en) Process for producing isomaltulose and other products
JPH0317839B2 (en)
JPH04103593A (en) New oligosaccharide and its production
JPH03216185A (en) Production of growth promoter of biffidobacterium
JP5856402B2 (en) Purification method of raffinose
KR960003644B1 (en) Preparation process of isomalto-oligosaccharide
JP2798920B2 (en) Process for producing syrup containing isomaltooligosaccharide
JPH05137590A (en) Purification of lactosyl fructoside by microorganism