JPS5995510A - Optical parts protecting device for power laser - Google Patents

Optical parts protecting device for power laser

Info

Publication number
JPS5995510A
JPS5995510A JP57206329A JP20632982A JPS5995510A JP S5995510 A JPS5995510 A JP S5995510A JP 57206329 A JP57206329 A JP 57206329A JP 20632982 A JP20632982 A JP 20632982A JP S5995510 A JPS5995510 A JP S5995510A
Authority
JP
Japan
Prior art keywords
heater
window material
optical parts
sensor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57206329A
Other languages
Japanese (ja)
Other versions
JPS632090B2 (en
Inventor
Haruo Kotani
小谷 晴夫
Tomoyuki Haga
知行 羽賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP57206329A priority Critical patent/JPS5995510A/en
Publication of JPS5995510A publication Critical patent/JPS5995510A/en
Publication of JPS632090B2 publication Critical patent/JPS632090B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To reduce the thermal gradient of optical parts and to attain protection against breakage, etc. by providing a heater to the circumference of optical parts for a power laser, and amplifying the difference between the output of a sensor which detects the temperature of the optical parts and a reference temperature signal and controlling the heating of the heater. CONSTITUTION:A heater 2 is provided to the circumference of a window material 1 made of the optical parts for the power laser such as a lens. The heater 2 is made of, for example, a sheathed heater and a sensor 3 detects the temperature of the window material 1. The difference between the detection signal of the sensor 3 and reference temperature signal is amplified by a differential amplifier 7 and the heating value of the heater 2 is controlled on the basis of the output signal of the amplifier 7. Thus, the thermal gradient of the window material 1 is reduced as much as possible to prevent the breakage of optical parts of the window material 1 during laser irradiation and to eliminate variation in convergence effect.

Description

【発明の詳細な説明】 本発明は、レーザー発生器の窓材やレンズ等のパワーレ
ーザー用光学部品の保護装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a protection device for optical parts for a power laser, such as a window material and a lens of a laser generator.

現在、パワーレーザー用のレンズ、窓材等には 。Currently, it is used for power laser lenses, window materials, etc.

ジンクセレン(Zn5e )或いは、KCl、 KBr
等のアルカリハライド系素材が用いられている。これら
の素材は比較的光吸収率が低いものの、それでもジンク
セレンで10 〜10  、 KCj’、  KBrで
10−4〜10−5のオーダーはもっている。このため
、炭酸ガスレーザー等の高出力パワーレーザーに適用し
た場合、数十ワット乃至数百ワットのレーザー光を吸収
して高温で発熱する。このような発熱による周辺部材へ
の影響を防止すべく現在は、窓材やレンズの局部を冷却
するようにしている。
Zinc selenium (Zn5e) or KCl, KBr
Alkali halide materials such as are used. Although these materials have relatively low light absorption rates, they still have an order of 10 to 10 for zinc selenium and 10-4 to 10-5 for KCj' and KBr. Therefore, when applied to a high-output power laser such as a carbon dioxide laser, it absorbs laser light of several tens to hundreds of watts and generates heat at a high temperature. In order to prevent the effects of such heat generation on surrounding components, current efforts are being made to cool local parts of window materials and lenses.

しかるに、窓材やレンズ等の局部を冷却した場合、窓材
やレンズ等の熱伝導速度が金属に比べて悪いために、局
部ばかりが冷やされ、中央部は高温のままとなって、熱
勾配が冷やす前よりも激しくなり、(第4図中の曲線(
a)参照)そのため曲線(b)に示すような熱による歪
を生じてしばしば破損を来している。また破損に至る前
にも、熱分布の不均一による屈折率に不均一分布を生じ
ることによる熱レンズ効果を生じ、レンズにあっては集
光効果が変化し、窓材にあっては不必要な集光効果が生
じるという欠点もある。これは、熱歪が窓材やレンズの
中央と局部とで異なることに起因している。
However, when cooling a local part of a window material or lens, because the heat conduction rate of the window material or lens is lower than that of metal, only the local part is cooled, and the central part remains high temperature, resulting in a thermal gradient. becomes more intense than before cooling (curve in Figure 4)
(See curve (b)) As a result, distortion due to heat occurs as shown in curve (b), often resulting in breakage. In addition, even before damage occurs, a thermal lens effect occurs due to uneven distribution of refractive index due to uneven heat distribution, which changes the light focusing effect of the lens and causes unnecessary damage to the window material. It also has the disadvantage of producing a light condensing effect. This is due to the fact that thermal strain differs between the center and local parts of the window material or lens.

本発明はこのような点にあってパワーレーザー用光学部
品の局部を冷却することをやめ、逆に加熱するようにし
、しかも単に加熱するだけでなく熱勾配がなるべく少な
くなるよう加熱量を制御して、上記欠点の解消を図り光
学部品の保護の万全を期したものである。
In view of this, the present invention does not cool the local part of the optical component for a power laser, but instead heats it, and in addition to simply heating it, it also controls the amount of heating so that the thermal gradient is as small as possible. This is an attempt to eliminate the above-mentioned drawbacks and ensure complete protection of optical components.

即ち、本発明に係るパワーレーザー用光学部品の保護装
置は、レンズ等のパワーレーザー用光学部品の周部に設
けられたヒータと、該光学部品の温度を検出するセンサ
ーと、基準温度信号発生器と、センサーにて検出された
信号と基準温度信号との差の電圧を増幅する差動増幅器
とを備え、該差動増幅器の出力信号によって前記ヒータ
を加熱するように構成したことを要旨としている。
That is, the protection device for a power laser optical component according to the present invention includes a heater provided around a power laser optical component such as a lens, a sensor that detects the temperature of the optical component, and a reference temperature signal generator. and a differential amplifier that amplifies the voltage difference between the signal detected by the sensor and the reference temperature signal, and the heater is configured to be heated by the output signal of the differential amplifier. .

以下に図面に基づき本発明の一実施例を説明する。第1
図は本発明の一実施例を示す概略構成図であり、1はパ
ワーレーザー用光学部品として例えばCO□レーザー発
生器の出力部に設けられる窓材、2は該窓材1の局部に
設けられたヒータとして例えばシーズヒータ、3は窓材
lの温度を検出するセンサーである。センサーとしては
サーミスタ、サーモパイル、白金抵抗線等を用いること
ができる。センサーを設ける位置としてはヒータ2によ
る温度変化を応答性よく検出できるようにするため、窓
材1の局部が望ましい。窓材1はレーザー発生器の内部
の真空度を維持するため気密高く発生器枠に設ける必要
がある。従って、前記ヒータ2及びセンサー3は第2図
に示すように窓材1と金属製ホルダー4との間に挿入し
、充填材5を充填して窓材1とホルダー4の間を気密高
く封止しておくのが良い。この場合、充填材5としては
ヒータ2の熱が窓材1に速やかに伝わるよう熱伝導性の
良いものを用いる必要がある。このような充填材として
は例えばシリコンレジンに酸化ベリリウムを入れたもの
を用いればよい。
An embodiment of the present invention will be described below based on the drawings. 1st
The figure is a schematic configuration diagram showing an embodiment of the present invention, in which 1 is a window material provided as an optical component for a power laser, for example, at the output part of a CO□ laser generator, and 2 is a window material provided locally in the window material 1. An example of the heater is a sheathed heater, and 3 is a sensor for detecting the temperature of the window material l. As the sensor, a thermistor, thermopile, platinum resistance wire, etc. can be used. The sensor is preferably provided in a local part of the window material 1 so that temperature changes caused by the heater 2 can be detected with good responsiveness. The window material 1 must be provided in the generator frame in a highly airtight manner in order to maintain the degree of vacuum inside the laser generator. Therefore, the heater 2 and the sensor 3 are inserted between the window material 1 and the metal holder 4 as shown in FIG. It is better to stop it. In this case, it is necessary to use a material with good thermal conductivity as the filler 5 so that the heat from the heater 2 can be quickly transferred to the window material 1. As such a filler, for example, silicon resin containing beryllium oxide may be used.

6は基準温度信号発生器、7は前記センサー3の検出信
号と基準温度信号との差を増幅する差動増幅器である。
6 is a reference temperature signal generator, and 7 is a differential amplifier that amplifies the difference between the detection signal of the sensor 3 and the reference temperature signal.

この増幅器7の出力信号はヒータ2に加えられ、ヒータ
2の発熱量を制御するようにしている。尚、前記基準温
度信号発生器6の発生する基準温度信号eSは、窓材1
がレーザーの照射を受けて発熱する温度に相当する値に
設定されている。
The output signal of the amplifier 7 is applied to the heater 2 to control the amount of heat generated by the heater 2. Note that the reference temperature signal eS generated by the reference temperature signal generator 6 is
is set to a value corresponding to the temperature at which it generates heat when irradiated with a laser.

この構成において、今窓材1に照射されるレーザー光の
ワツテージをW工、窓材1の吸収係数をkとすると、窓
材1は W=W工・k         ・・tl)なるワツテ
ージを吸収する。
In this configuration, if the power of the laser beam irradiated to the window material 1 is W, and the absorption coefficient of the window material 1 is k, then the window material 1 absorbs the power of W = W, k...tl). .

ここで、ρ、を窓材1の比熱、放熱係数などで決まる係
数とすると、窓材1が上記ワツテーシWによって加熱さ
れる温度tは、 を二W・ρ1        ・・・・(2)となる。
Here, if ρ is a coefficient determined by the specific heat, heat radiation coefficient, etc. of the window material 1, the temperature t at which the window material 1 is heated by the above-mentioned heat wave W is 2W・ρ1 (2) .

またαを温度−電気量変換係数とすると、温度tに相当
する電気’Be工は、 e −α@t         ・ (3)となる。こ
の(3)式に(2)式、tl)式を代入すると、e工は e −a * p・k *J    −(4)1 とあられすことができる。
Further, if α is a temperature-electrical quantity conversion coefficient, the electrical 'Be' corresponding to the temperature t is e - α@t (3). By substituting equation (2) and equation (tl) into equation (3), e can be expressed as e −a * p·k *J − (4)1.

一方、差動増幅器7の出力電流によってヒータ2が加熱
され、これによって窓材1に与えられるワツテージをW
。、窓材、ヒータ等の比熱、質量、放熱係数等で決まる
係数をρ。とすると、ヒータ2の発熱によって窓材1が
加熱される温度t。は、tO二WO・tO・・・・(5
) となる。この温度にオ(]当する電気量e。は、e −
α・tO・・・(6) となる。(5)、(6)式から、 e −α・tO・WO・・・(7) とあられすことができる。
On the other hand, the heater 2 is heated by the output current of the differential amplifier 7, thereby increasing the voltage applied to the window material 1 by W.
. , the coefficient determined by the specific heat, mass, heat radiation coefficient, etc. of window materials, heaters, etc. is ρ. Then, the temperature t at which the window material 1 is heated by the heat generated by the heater 2. is tO2WO・tO・・・・(5
) becomes. The amount of electricity e corresponding to this temperature is e −
α・tO...(6) From equations (5) and (6), it can be expressed as e −α·tO·WO (7).

上記(4)式であられされる電気ffl eよと(7)
式であられされる電気me□は和となって窓材1を加熱
する作用をなし、センサー3はこの和の電気量を検出す
ることとなるから、センサー3の検出電気量eは、 e = el+ eO−[8) とあられすことができる。しこうして、この検出電気量
eと基準温度信号esの差の電圧を差動増幅器7が増幅
し、その出力によってヒータ2を発熱させて窓材1を加
熱することとなるから、ヒータ2の発熱によって窓材l
に与えられるワツテージWoと上記e、esとの間には
次の関係がある。
Electricity generated by equation (4) above (7)
The electricity me□ generated by the formula becomes the sum and acts to heat the window material 1, and the sensor 3 detects this sum of electricity, so the electricity quantity e detected by the sensor 3 is: e = It can be expressed as el+ eO-[8). In this way, the differential amplifier 7 amplifies the voltage difference between the detected quantity of electricity e and the reference temperature signal es, and its output causes the heater 2 to generate heat and heat the window material 1. window material by
The following relationship exists between the voltage Wo given to , and the above e and es.

(−e+88) G = Wo・+9)ここにGは差動
増幅器7の増幅率である。上記(9)式に(8)、(7
)、(4)式を代入し整理すると、次式となる。
(-e+88) G = Wo.+9) Here, G is the amplification factor of the differential amplifier 7. In equation (9) above, (8), (7
), by substituting and rearranging equations (4), the following equation is obtained.

ここで増幅率Gは充分大きいから(Gシン1)、と書く
ことができる。
Here, since the amplification factor G is sufficiently large, it can be written as (G sin 1).

また、一般にρ、−ρ。と考えられるから上式は次のよ
うに書くことができる。
Also, generally ρ, −ρ. Therefore, the above equation can be written as follows.

上式の右辺の第1項は定数であり、第2項は+I+式か
ら窓材1によって吸収されるレーザー光のワッテージW
であるから、定数をKであられすと、上記(1糧ま次の
ように書くことができる。
The first term on the right side of the above equation is a constant, and the second term is the wattage W of the laser light absorbed by the window material 1 from the +I+ equation.
Therefore, if the constant is K, the above (1) can be written as follows.

上記03)式から明らかなように、窓材1がレーザー光
を吸収するワツテージとヒータ2から与えられるワツテ
ージとの和は常に一定である。この場合、Kの値を、W
の値として予想される最大のワッテージと等しいかそれ
より大きな値(K≧W)に設定すると、レーザー光を吸
収するワッテージの最大時においても(I3)式を満た
すことができることとなる。ワツテージと温度とは(2
)式に示すように比例関係にあるから、窓材1に与える
ワッテージの総和(Wo+W)が一定(K)であること
は、窓材の温度が一定であることを意味する。ただ、温
度が一定である部分はセンサー3が設けられた窓材周部
であるが、この部分はヒータ2を設けない場合は最も温
度の低い部分であるから、この部分の温度が(13)式
を満たすように一定に保たれるということは窓材の温度
勾配が第3図(a)に示すように小さくなめらかである
ことを意味する。従って、窓材1の中央と局部の間にあ
まり温度差がなくなるため、微小長さ当りの温度差で与
えられる熱歪も同図(b)に示すように少なくなって窓
材を破損から保護することができるのである。また窓材
に代えてレンズを使用した場合は、レンズの集光効果が
変化するといったことも防止できるのである。
As is clear from the above equation 03), the sum of the wattage at which the window material 1 absorbs the laser beam and the wattage given by the heater 2 is always constant. In this case, let the value of K be W
If K is set to a value equal to or larger than the expected maximum wattage (K≧W), equation (I3) can be satisfied even at the maximum wattage for absorbing laser light. What is wattage and temperature? (2)
) Since there is a proportional relationship as shown in the equation, the fact that the total wattage (Wo+W) applied to the window material 1 is constant (K) means that the temperature of the window material is constant. However, the part where the temperature is constant is the peripheral part of the window material where the sensor 3 is installed, but this part is the part with the lowest temperature if the heater 2 is not installed, so the temperature of this part is (13) Being kept constant so as to satisfy the equation means that the temperature gradient of the window material is small and smooth as shown in FIG. 3(a). Therefore, since there is not much temperature difference between the center and local parts of the window material 1, the thermal strain caused by the temperature difference per minute length is reduced as shown in Figure (b), protecting the window material from damage. It is possible. Furthermore, when a lens is used instead of a window material, it is possible to prevent the light gathering effect of the lens from changing.

第3図中曲線(C)はレーザー光の入射がないときの窓
材の温度分布、即ちヒータ2の発熱によってのみ生じる
窓材の温度分布、曲線(d)はその場合の熱歪である。
In FIG. 3, the curve (C) is the temperature distribution of the window material when no laser beam is incident, that is, the temperature distribution of the window material caused only by the heat generation of the heater 2, and the curve (d) is the thermal strain in that case.

尚、ヒータ2の発熱によって窓材に与えられるワツテー
ジW0は差動増幅器7の出力電流をI。。
Note that the voltage W0 given to the window material by the heat generated by the heater 2 is equal to the output current of the differential amplifier 7. .

ヒータの抵抗をRoとおくと、Wo−IRoで与えられ
るから、 となり、この(14)式に(14式を代入し整理すると
、或いは、 となる。この式において、■2とW工は一次関数で比例
している。ところで窓材やレンズ等の光学部品が劣化す
るとWが変化するから、上記構成において電流■をモニ
ターしていれは(15)式或いは05)式から窓材等の
劣化度を知ることができるといえる。
Letting the resistance of the heater be Ro, it is given by Wo-IRo, so if we substitute equation (14) into equation (14) and rearrange it, we get: In this equation, ■2 and W are linear By the way, W changes when optical parts such as window materials and lenses deteriorate, so if we monitor the current ■ in the above configuration, we can calculate the deterioration of window materials, etc. from equation (15) or equation 05. It can be said that the degree can be known.

本発明に係るパワーレーザー用光学部品の保護装置は上
記の如く構成したため、窓材、レンズ等の光学部品の熱
勾配を極力緩和し得、従って窓材等光学部品をレーザー
の照射中に破損させたり、集光効果に変化を生じさせた
りすることなく、安心して使用できるという効果がある
。加えて、実施例の中で述べたように、差動増幅器の出
力電流をモニターすることによって使用している光学部
品の劣化度を知ることができるという便利さがある。
Since the protection device for power laser optical components according to the present invention is configured as described above, it is possible to alleviate the thermal gradient of optical components such as window materials and lenses as much as possible, and therefore prevent optical components such as window materials from being damaged during laser irradiation. It has the advantage that it can be used with confidence without causing any change in the light gathering effect. In addition, as described in the embodiment, there is the convenience of being able to know the degree of deterioration of the optical components used by monitoring the output current of the differential amplifier.

構成図、第2図は光学部品周部を詳細に示す図、第3図
は光学部品の直径方向の温度分布及び歪を示す図、第4
図は従来手段における光学部品の直径方向の温度分布及
び歪を示す図である。
2 is a diagram showing the peripheral part of the optical component in detail, FIG. 3 is a diagram showing the temperature distribution and strain in the diametrical direction of the optical component, and FIG. 4 is a diagram showing the optical component in detail.
The figure is a diagram showing the temperature distribution and strain in the diametrical direction of the optical component in the conventional means.

1・・光学部品、2 ヒータ、3・・センサー、6・基
準温度信号発生器、7・・差動増幅器。
1. Optical component, 2. Heater, 3. Sensor, 6. Reference temperature signal generator, 7. Differential amplifier.

第2図 第3図 怠オオ○J邊千)弓9白0− 窓材0直径彷向−Figure 2 Figure 3 Lazy Oo○J Besen) Bow 9 White 0- Window material 0 diameter direction -

Claims (1)

【特許請求の範囲】[Claims] レンズ等のパワーレーザー用光学部品の局部に設けられ
たヒータと、該光学部品の温度を検出するセンサーと、
基準温度信号発生器と、センサーにて検出された信号と
基準温度信号との差の電圧を増幅する差動増幅器とを備
え、該差動増幅器の出力信号によって前記ヒータを加熱
するように構成したことを特徴とするパワーレーザー用
光学部品保護装置。
A heater provided locally in a power laser optical component such as a lens, a sensor that detects the temperature of the optical component,
It is equipped with a reference temperature signal generator and a differential amplifier that amplifies the voltage difference between the signal detected by the sensor and the reference temperature signal, and is configured to heat the heater by the output signal of the differential amplifier. An optical component protection device for power lasers, which is characterized by:
JP57206329A 1982-11-24 1982-11-24 Optical parts protecting device for power laser Granted JPS5995510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57206329A JPS5995510A (en) 1982-11-24 1982-11-24 Optical parts protecting device for power laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57206329A JPS5995510A (en) 1982-11-24 1982-11-24 Optical parts protecting device for power laser

Publications (2)

Publication Number Publication Date
JPS5995510A true JPS5995510A (en) 1984-06-01
JPS632090B2 JPS632090B2 (en) 1988-01-16

Family

ID=16521490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57206329A Granted JPS5995510A (en) 1982-11-24 1982-11-24 Optical parts protecting device for power laser

Country Status (1)

Country Link
JP (1) JPS5995510A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033603A1 (en) * 1997-12-26 1999-07-08 Mitsubishi Denki Kabushiki Kaisha Laser machining apparatus
JP2009519132A (en) * 2005-12-15 2009-05-14 トルンプフ ヴェルクツォイクマシーネン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Optical element state identification or state change identification method and laser apparatus
WO2024078058A1 (en) * 2022-10-14 2024-04-18 Shenzhen Creality 3D Technology Co., Ltd. Detection assembly, laser module, laser emission control method, and laser processing equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033603A1 (en) * 1997-12-26 1999-07-08 Mitsubishi Denki Kabushiki Kaisha Laser machining apparatus
US6353203B1 (en) 1997-12-26 2002-03-05 Mitsubishi Denki Kabushiki Kaisha Laser machining device
JP2009519132A (en) * 2005-12-15 2009-05-14 トルンプフ ヴェルクツォイクマシーネン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Optical element state identification or state change identification method and laser apparatus
WO2024078058A1 (en) * 2022-10-14 2024-04-18 Shenzhen Creality 3D Technology Co., Ltd. Detection assembly, laser module, laser emission control method, and laser processing equipment

Also Published As

Publication number Publication date
JPS632090B2 (en) 1988-01-16

Similar Documents

Publication Publication Date Title
Manes et al. Light–plasma interaction studies with high-power glass laser
Cocco et al. Adaptive shape control of wavefront-preserving X-ray mirrors with active cooling and heating
JP2011185852A (en) Device for measurement of thermal diffusivity
WO2001079929A1 (en) Laser wavelength converter
JP2014190791A (en) X-ray fluorescence analyzer
JP6164558B2 (en) Beam guidance system for focus guidance of radiation from a high power laser light source onto a target and LPP X-ray beam source having a laser light source and such a beam guidance system
JPH11241946A (en) Laser output measuring device
JPH0260180A (en) Laser ray source device for wave multiplexing
JPS5995510A (en) Optical parts protecting device for power laser
JP4449906B2 (en) Infrared radiation element and gas sensor using the same
US10935425B2 (en) Spectroscopic detector
JP4975927B2 (en) Method and apparatus for measuring optical power loss in fiber optic contact means
Lau‐Främbs et al. New detector calibration facility for the wavelength range 35–400 nm based on an electrical substitution radiometer
JP3049469B2 (en) Laser output detector
Garbuny et al. Image converter for thermal radiation
Sabau et al. A 6 MW/m2 high heat flux testing facility of irradiated materials using infrared plasma-arc lamps
JPH0566297A (en) Shape stabilization of optical element and optical apparatus using same
JPH07119647B2 (en) Light intensity measuring device
JP4863177B2 (en) Image conversion device having heatable conversion layer
JP2004205417A (en) Non-contact temperature sensor
JP3238737B2 (en) Method and apparatus for controlling temperature of illuminated member
US5747820A (en) Infrared radiation source for a gas analyzer and method for generating infrared radiation
JPS6055007B2 (en) infrared detection device
US20180306642A1 (en) System for measuring light intensity distribution
JPH07120650A (en) Optical device