JPH07119647B2 - Light intensity measuring device - Google Patents

Light intensity measuring device

Info

Publication number
JPH07119647B2
JPH07119647B2 JP60154120A JP15412085A JPH07119647B2 JP H07119647 B2 JPH07119647 B2 JP H07119647B2 JP 60154120 A JP60154120 A JP 60154120A JP 15412085 A JP15412085 A JP 15412085A JP H07119647 B2 JPH07119647 B2 JP H07119647B2
Authority
JP
Japan
Prior art keywords
piece
plate
emissivity
region
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60154120A
Other languages
Japanese (ja)
Other versions
JPS6215817A (en
Inventor
泰夫 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60154120A priority Critical patent/JPH07119647B2/en
Publication of JPS6215817A publication Critical patent/JPS6215817A/en
Publication of JPH07119647B2 publication Critical patent/JPH07119647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体デバイスの光熱処理方法に用いる光強
度測定装置に関する。
TECHNICAL FIELD The present invention relates to a light intensity measuring apparatus used in a photothermal treatment method for a semiconductor device.

〔従来技術とその問題点〕[Prior art and its problems]

ハロゲンランプを用いる光加熱方法が、急熱急冷による
短時間アニールができるため、集積回路の製造技術とし
て注目されている。
A light heating method using a halogen lamp has been attracting attention as a manufacturing technology for integrated circuits because it can perform short-time annealing by rapid heating and quenching.

光加熱方法は光エネルギーが物体に吸収されて熱エネル
ギーに変換されることを用いるため、物体の表面放射率
により物体の温度が変わる。半導体ウエハに温度分布が
生じると、不純物拡散,酸化膜成長等の目的とする熱処
理が不均一に進むことの他、熱歪みにより結晶欠陥を生
じる等、デバイス作成にとって極めて不都合な結果とな
る。
Since the light heating method uses that light energy is absorbed by an object and converted into heat energy, the temperature of the object changes depending on the surface emissivity of the object. When the temperature distribution occurs in the semiconductor wafer, the intended heat treatment such as impurity diffusion and oxide film growth progresses nonuniformly, and crystal defects occur due to thermal strain, which are extremely inconvenient for device fabrication.

しかし、集積回路作成工程中のウエハでは目的とする回
路に従ったパターンが形成され、それにより表面放射率
の異なる領域が一般に存在する。例えばシリコンウエハ
表面の厚さ1μm程度のシリコン酸化膜があることによ
り放射率は0.6から0.8へと向上する。このため加熱,冷
却の遷移状態では温度変化率に差が生じるため、温度分
布,熱歪みが発生することが知られており、これは温度
変化率を小さくし、徐熱,徐冷をすることにより解決さ
れるとされている。
However, in the wafer during the integrated circuit manufacturing process, a pattern according to a target circuit is formed, and therefore, there are generally regions having different surface emissivities. For example, the emissivity is increased from 0.6 to 0.8 due to the presence of a silicon oxide film having a thickness of about 1 μm on the surface of the silicon wafer. For this reason, it is known that temperature distribution and thermal strain occur due to the difference in temperature change rate between the heating and cooling transition states. This is to reduce the temperature change rate and perform slow heating and slow cooling. It is supposed to be solved by.

一方、目的の熱処理が主に行なわれる高温の定常状態に
おいても表面放射率が異なると温度分布を発生する。定
常状態の温度差,熱歪みは、遷移状態に較べ時間が長い
ため、その影響は大きい。
On the other hand, even in the steady state of high temperature where the desired heat treatment is mainly performed, the temperature distribution is generated when the surface emissivity is different. The temperature difference and thermal strain in the steady state have a longer effect than in the transition state, so their effects are large.

〔発明の目的〕[Object of the Invention]

本発明は上記欠点を除去し、ウエハ表面の放射率が異な
っても均一な温度で熱処理を行なうことのできる光加熱
方法のための光強度測定装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to eliminate the above-mentioned drawbacks and provide a light intensity measuring device for a light heating method capable of performing heat treatment at a uniform temperature even if the emissivity of a wafer surface is different.

〔発明の構成〕[Structure of Invention]

上記目的を達成するために、本発明は、一方の表面及び
他方の表面の表面放射率が異なる第1の板状小片と、前
記第1の板状小片の前記一方の表面と同一方向に向き、
かつ前記他方の表面の表面放射率を有する一方の表面、
及び前記第1の板状小片の前記一方の表面の表面放射率
を有する他方の表面をもつ第2の板状小片と、前記第1
の板状小片の前記一方の表面に接続された第1及び第2
の金属線よりなる第1の熱電対と、前記第2の板状小片
の前記一方の表面に接続された前記第2及び第3の金属
線よりなる第2の熱電対とを備え、前記第1及び第3の
金属線間の電位差を測定するようにしたものである。
In order to achieve the above-mentioned object, the present invention is directed to a first plate-shaped piece having different surface emissivities on one surface and the other surface, and oriented in the same direction as the one surface of the first plate-shaped piece. ,
And one surface having a surface emissivity of the other surface,
And a second plate-shaped piece having the other surface having the surface emissivity of the one surface of the first plate-shaped piece, and the first plate-shaped piece.
First and second connected to the one surface of the plate-like piece of
A first thermocouple consisting of the metal wire and a second thermocouple consisting of the second and third metal wires connected to the one surface of the second plate-shaped piece. The potential difference between the first and third metal wires is measured.

また、上記目的を達成するために、本発明は、一方の表
面が表面放射率の異なる第1及び第2の2つの領域を有
し、他方の表面が、前記第1の領域に対応する裏面に前
記第2の領域が表面放射率を有する第3の領域、及び前
記第2の領域に対応する裏面に前記第1の領域の表面放
射率を有する第4の領域の2つの領域を有する半導体ま
たは金属の板状小片と、前記第1及び第2の領域にそれ
ぞれ接続された金属線とを備え、これら金属線間の電位
差を測定するようにしたものである。
Further, in order to achieve the above-mentioned object, the present invention provides that one surface has first and second regions having different surface emissivities, and the other surface is a back surface corresponding to the first region. A semiconductor having two regions, a third region in which the second region has a surface emissivity and a fourth region having a surface emissivity in the first region on the back surface corresponding to the second region. Alternatively, a metal plate-like piece and metal wires connected to the first and second regions, respectively, are provided, and the potential difference between these metal wires is measured.

〔作用〕[Action]

第4図の模式図を用いて半導体ウエハの表面放射率とウ
エハ温度の関係を説明する。
The relationship between the surface emissivity of the semiconductor wafer and the wafer temperature will be described with reference to the schematic diagram of FIG.

電気炉内に置かれた半導体ウエハ22の一つの表面23A
放射率をε、他の表面24Bの放射率をε、表面23A
のランプ光25Aによる入射エネルギー密度をPA(W/c
m2)、表面24Bへのランプ光26Bによる入射エネルギー密
度をPB(W/cm2)とすると、定常状態では2つの入射光
によりウエハ22が受けるエネルギーと、ウエハの発する
熱幅射光27A、28Bのエネルギーがバランスする温度Tに
なる。このバランスを数式で表すと、 ε(PA+σTR 4)+ε(PB+σTR 4)= (ε+ε)σT4 (1) となる。ここでσはステファンポルツマン定数(5.68×
10-12W/cm2 deg4)である。またTRは炉周囲の温度でσT
R 4は周辺からの熱幅射光である。またT,TRは絶対温度で
ある。(1)式から平衡温度Tは となる。通常の半導体ウエハでは放射率が0.5〜0.8程度
の値となることから、平衡温度Tが放射率に依存しない
ためにはPA=PBである必要がある。
The emissivity of one surface 23 A of the semiconductor wafer 22 placed in the electric furnace is ε A , the emissivity of the other surface 24 B is ε B , and the incident energy density of the lamp light 25 A on the surface 23 A is P. A (W / c
m 2), when the incident energy density due to lamp light 26 B to the surface 24 B and P B (W / cm 2) , and energy wafer 22 is subjected by the two incident light in a steady state, morphism thermal width generated by the wafer The temperature T at which the energy of the lights 27 A and 28 B is balanced is reached. When this balance is expressed by a mathematical expression, ε A (P A + σT R 4 ) + ε B (P B + σT R 4 ) = (ε A + ε B ) σT 4 (1). Where σ is the Stefan-Poltsman constant (5.68 ×
It is 10 -12 W / cm 2 deg 4 ). T R is the temperature around the furnace and σT
R 4 is the thermal radiation from the surrounding area. Also, T and T R are absolute temperatures. From equation (1), the equilibrium temperature T is Becomes Since a normal semiconductor wafer has an emissivity of about 0.5 to 0.8, it is necessary that P A = P B so that the equilibrium temperature T does not depend on the emissivity.

現状の半導体製造用電気炉での温度制御は通常±0.5℃
程度であるのでウエハ内の温度分布をこの程度に抑える
ための条件を求める。今、ウエハの片面に厚いシリコン
酸化膜のある部分とない部分があり、また裏面はシリコ
ン酸化膜がないとする。酸化膜のない表面の放射率は0.
6、ある場合は0.8程度である。(2)式を|PA−PB|≪PA
と言う条件で微小量をとることにより上記2つの構造間
の温度差ΔTを求めると ΔT=0.071×T0|PA−PB|/(PA+σTR 4) (3) である。ここにT0はPA=PBのときの温度である。T0とし
て1000℃=1273Kとすると、TR 4の項は無視できて |PA−PB|/PA=22.6ΔT/T=0.018ΔT (4) となる。ΔTとして通常の電気炉における制御範囲であ
る±0.5℃をとると|PA−PB|/PAはほぼ0.01以内、即ちPA
とPBとの差はほぼ1%以内にある必要があることが判
る。逆にPAとPBを1%以内の差にしておけば、いかなる
パターンをもってきても±0.5℃以内に温度差を抑える
ことが可能である。
Temperature control in the current electric furnace for semiconductor manufacturing is usually ± 0.5 ℃
Since this is a degree, conditions for suppressing the temperature distribution in the wafer to this degree are obtained. Now, it is assumed that there is a portion with and without a thick silicon oxide film on one side of the wafer, and there is no silicon oxide film on the back side. The emissivity of the surface without oxide film is 0.
6, in some cases about 0.8. Equation (2) can be expressed as | P A −P B | ≪P A
And by taking a small amount under the conditions speaking determining the temperature difference [Delta] T between the two structures ΔT = 0.071 × T 0 | P A -P B | a / (P A + σT R 4 ) (3). Where T 0 is the temperature when P A = P B. When 1000 ° C. = 1273K as T 0, terms T R 4 is negligible | a / P A = 22.6ΔT / T = 0.018ΔT (4) | P A -P B. When ΔT is ± 0.5 ° C, which is the control range in an ordinary electric furnace, | P A −P B | / P A is within 0.01, that is, P A
It can be seen that the difference between P B and P B must be within approximately 1%. On the contrary, if P A and P B are set within 1%, it is possible to suppress the temperature difference within ± 0.5 ° C with any pattern.

〔実施例〕〔Example〕

第1図は、熱処理方法を説明するためのアニール装置を
示す。このアニール装置はウエハ1を支持するホールダ
ー2を挟むように上下にハロゲンランプ3,4が設けられ
ており、これらハロゲンランプには光エネルギーをウエ
ハ1側に反射させるための反射板9,10がそれぞれ取付け
られている。ハロゲンランプ3,4はこれらハロゲンラン
プの照射エネルギーを制御するための制御電源5,6にそ
れぞれ接続されている。ウエハ1の近辺にはウエハの両
面への照射エネルギー密度をそれぞれ測定する光量測定
器7,8が設けられ、これら光量測定器は測定結果を制御
電源5,6に送り、各々のハロゲンランプ3,4からの照射エ
ネルギーをあらかじめ定めた目標値に対して制御するこ
とを可能にしている。
FIG. 1 shows an annealing apparatus for explaining the heat treatment method. This annealing apparatus is provided with halogen lamps 3 and 4 on the upper and lower sides so as to sandwich a holder 2 supporting the wafer 1, and these halogen lamps are provided with reflection plates 9 and 10 for reflecting light energy to the wafer 1 side. Each is installed. The halogen lamps 3 and 4 are respectively connected to control power supplies 5 and 6 for controlling the irradiation energy of these halogen lamps. In the vicinity of the wafer 1, light quantity measuring devices 7 and 8 for measuring the irradiation energy densities on both sides of the wafer are provided, and these light quantity measuring devices send the measurement results to the control power sources 5 and 6, and each halogen lamp 3, It is possible to control the irradiation energy from 4 to a predetermined target value.

光量測定器7,8としては一方からの光をしゃへいした熱
電対,サーミスタや、光ファイバなどで引き出してフォ
トダイオードを用いるなどの方法がある。
As the light quantity measuring devices 7 and 8, there are methods such as a thermocouple that shields the light from one side, a thermistor, and a photodiode that is extracted by an optical fiber.

このアニール装置においては、光量測定器7,8によって
ウエハ1の両面への照射エネルギー密度を測定し、測定
結果をそれぞれ制御電源5,6に送り、制御電源では、照
射エネルギー密度の差が1%以内となるようにハロゲン
ランプ3,4を制御することによって、いかなるパターン
の半導体ウエハ22をもってきても±0.5℃以内に温度差
を抑えることができる。
In this annealing device, the irradiation energy densities on both surfaces of the wafer 1 are measured by the light quantity measuring devices 7 and 8, and the measurement results are sent to the control power supplies 5 and 6, respectively, and the difference in the irradiation energy densities of the control power supplies is 1%. By controlling the halogen lamps 3 and 4 so that the temperature falls within the range, it is possible to suppress the temperature difference within ± 0.5 ° C. even if the semiconductor wafer 22 having any pattern is brought.

光量測定は絶対値でなく、むしろ、両面からの光の相対
的な差の検知が重要であり、そのためには2個の光量測
定器の絶対精度の比が先に述べた1%よりも充分高い必
要がある。このため、上述のような光量測定器を用いる
場合には、光量測定器の検定や保守に手間がかかるとい
う問題がある。
The light quantity measurement is not an absolute value, but rather the detection of the relative difference between the light from both sides is important, and for that purpose, the absolute accuracy ratio of the two light quantity measuring devices is more than 1% as described above. Need to be high. Therefore, when using the above-mentioned light quantity measuring device, there is a problem that it takes time to certify and maintain the light quantity measuring device.

第2図は、以上のような問題がなく、かつ1000℃程度の
高温状態において上下両方向からの光エネルギーの差を
感度良く検知することのできる、光熱処理方法に用いる
のに好適な本発明の光強度測定装置の一実施例の模式図
である。この光強度測定装置は、光吸収用の2つの板状
の小片11,12を有し、これら小片の両面は異なる放射率
となるように構成されている。小片11,12は、熱により
変質しないものであるならば半導体,金属などいかなる
材料であってもよい。また、放射率を異ならせるには、
反射防止膜のコート、金属による反射面を形成し、ある
いは塗料を塗布することなどより行うことができる。小
片11,12のそれぞれ一方の表面Xの放射率をε、他方
の表面Yの放射率をεとし、第2図に示すように小片
11と12の面を互いに逆に配置する。小片11の表面Xに熱
電対を構成する2本の金属線13,15の接点を接続し、小
片12の表面Yに熱電対を構成する2本の金属線14,15の
接点を接続する。金属線13と14とは同一の材料よりなる
金属線である。金属線15は極く短かくてすむため、2つ
の熱電対接点の特性差は非常に小さくなる。
FIG. 2 shows the present invention suitable for use in a photothermal treatment method, which does not have the above-mentioned problems and can detect the difference in light energy from both upper and lower directions with high sensitivity in a high temperature state of about 1000 ° C. It is a schematic diagram of one Example of a light intensity measuring device. This light intensity measuring device has two plate-shaped small pieces 11 and 12 for absorbing light, and both surfaces of these small pieces have different emissivities. The small pieces 11 and 12 may be made of any material such as semiconductor and metal as long as they are not deteriorated by heat. Also, to make the emissivity different,
This can be performed by coating an antireflection film, forming a reflecting surface of metal, or applying a paint. Assuming that the emissivity of one surface X of each of the small pieces 11 and 12 is ε X and the emissivity of the other surface Y is ε Y , as shown in FIG.
Place faces 11 and 12 opposite each other. The contacts of the two metal wires 13 and 15 forming the thermocouple are connected to the surface X of the small piece 11, and the contacts of the two metal wires 14 and 15 forming the thermocouple are connected to the surface Y of the small piece 12. The metal wires 13 and 14 are metal wires made of the same material. Since the metal wire 15 is extremely short, the characteristic difference between the two thermocouple contacts is very small.

以上のような構造の光強度測定装置を、第1図に示すア
ニール装置のウエハ1の近辺に、小片11の表面X及び小
片12の表面Yがハロゲンランプ3の方に向き、小片11の
表面Y及び小片12の表面Xがハロゲンランプ4の方向に
向くように配設した場合に、これら小片11,12の温度差
△Tは、前述の計算と同様な計算により、 となる。ここに、Pは、ハロゲンランプ3からの入射エ
ネルギー密度をPA、ハロゲンランプ4からの入射エネル
ギー密度をPBにした場合に、これらエネルギー密度の平
均値であり、△Pはこれらエネルギー密度の差である。
上記(5)式より、εとεの差が大きい程感度は良
くなることが判る。小片11の表面Xに接続された熱電対
の接点及び小片12の表面Yに接続された熱電対の接点
は、通常の熱電対による温度設定における基準接点と測
定点とに対応し、両接点の温度差、即ち2つの小片11,1
2の温度差に比例した電圧が金属線13,14間に発生する。
これを測定することにより、両者の温度差を知ることが
できる。この温度差は、第1図のアニール装置におい
て、ハロゲンランプ3からの入射エネルギー密度とハロ
ゲンランプ4からの入射エネルギーの相対的な差に対応
している。光強度測定装置の測定結果を制御電源5及び
6に送って、入射エネルギー密度PAとPBとの差が1%以
内となるようにハロゲンランプ3,4を制御することによ
って、いかなるパターンの半導体ウエハ22をもってきて
も±0.5℃以内に温度差を抑えることができる。
In the light intensity measuring device having the above structure, the surface X of the small piece 11 and the surface Y of the small piece 12 face the halogen lamp 3 near the wafer 1 of the annealing device shown in FIG. When the Y and the surface X of the small piece 12 are arranged so as to face the halogen lamp 4, the temperature difference ΔT between the small pieces 11 and 12 is calculated by the same calculation as described above. Becomes Here, P is an average value of these energy densities when the incident energy density from the halogen lamp 3 is P A and the incident energy density from the halogen lamp 4 is P B , and ΔP is these energy densities. It is the difference.
From equation (5) above, it can be seen that the greater the difference between ε X and ε Y , the better the sensitivity. The contact point of the thermocouple connected to the surface X of the small piece 11 and the contact point of the thermocouple connected to the surface Y of the small piece 12 correspond to the reference contact point and the measurement point in the temperature setting by the normal thermocouple, and Temperature difference, ie two small pieces 11,1
A voltage proportional to the temperature difference of 2 is generated between the metal wires 13 and 14.
By measuring this, the temperature difference between the two can be known. This temperature difference corresponds to the relative difference between the incident energy density from the halogen lamp 3 and the incident energy from the halogen lamp 4 in the annealing apparatus of FIG. By sending the measurement result of the light intensity measuring device to the control power supplies 5 and 6, and controlling the halogen lamps 3 and 4 so that the difference between the incident energy densities P A and P B is within 1%, any pattern of Even if the semiconductor wafer 22 is brought, the temperature difference can be suppressed within ± 0.5 ° C.

第3図は本発明の光強度測定装置の他の実施例の模式図
である。この光強度測定装置は、光吸収用の1つの板状
の半導体片17を有し、この半導体片の両面には放射率の
異なる2つ領域がそれぞれ形成されている。半導体片17
の一方の面は、放射率がεの表面Vと放射率εの表
面Uとからなる。半導体片17の他方の面は、前記一方の
面とは逆の2つの領域、すなわち表面Vの裏側は放射率
がεの表面Uに、表面Uの裏側は放射率がεの表面
Vになっている。実際には、(2)式から判るようにε
U/(ε+ε)を2つの領域で異ならせるようにして
おけば良い。第3図に示すように半導体片17の一方の面
の表面V及びUにそれぞれ金属線20,21を接続すると、
ゼーベック効果によりやはり金属線間に、温度差に比例
した電圧が発生する。第3図の光強度測定装置は、第2
図の光強度測定装置と原理的には同一であり、第3図の
測定装置は第2図の金属線15の機能を半導体片17中に形
成される電流路で達成するものである。したがって、半
導体片の代りに金属片を用いることもできる。
FIG. 3 is a schematic view of another embodiment of the light intensity measuring device of the present invention. This light intensity measuring device has one plate-shaped semiconductor piece 17 for absorbing light, and two regions having different emissivities are formed on both surfaces of this semiconductor piece, respectively. Semiconductor piece 17
One side of the is composed of the surface V of the emissivity epsilon V and the surface U of the emissivity epsilon U. The other surface of the semiconductor strip 17, two regions opposite to the one surface, i.e. the back side of the surface V on the surface U of the emissivity epsilon U, the back of the surface U the surface V of the emissivity epsilon V It has become. Actually, as can be seen from equation (2), ε
It suffices to make U / (ε V + ε U ) different in the two regions. As shown in FIG. 3, when the metal wires 20 and 21 are connected to the surfaces V and U on one surface of the semiconductor piece 17, respectively,
Due to the Seebeck effect, a voltage proportional to the temperature difference is generated between the metal wires. The light intensity measuring device of FIG.
In principle, it is the same as the light intensity measuring device in the figure, and the measuring device in FIG. 3 achieves the function of the metal wire 15 in FIG. 2 by the current path formed in the semiconductor piece 17. Therefore, a metal piece can be used instead of the semiconductor piece.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の光熱処理方法によれば、
集積回路を作るウエハのような表面放射率に分布のある
ウエハについても温度分布を発生しない熱処理が可能と
なる。
As described above, according to the photothermal treatment method of the present invention,
Even for a wafer having a surface emissivity distribution such as a wafer for forming an integrated circuit, it is possible to perform heat treatment without generating a temperature distribution.

また、光熱処理方法の実施に使用される本発明の光強度
測定装置によれば、2方向から光照射した時の両光エネ
ルギーの差を感度良く、正確に測定が可能となる。
Further, according to the light intensity measuring apparatus of the present invention used for carrying out the photothermal treatment method, the difference between the two light energies when light is irradiated from two directions can be measured with high sensitivity and accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図は光熱処理法を用いる熱処理装置の模式図、 第2図は本発明の光強度測定装置の一実施例の模式図、 第3図は本発明の光強度測定装置の他の実施例の模式
図、 第4図は表面放射率とアニール温度の関係を説明するた
めの図である。 1……ウエハ 3,4……ハロゲンランプ 5,6……制御電源 7,8……光量測定器 11,12……小片 13,14,15,20,21……金属線 17……半導体片
FIG. 1 is a schematic diagram of a heat treatment apparatus using a photothermal treatment method, FIG. 2 is a schematic diagram of an embodiment of the light intensity measuring apparatus of the present invention, and FIG. 3 is another embodiment of the light intensity measuring apparatus of the present invention. FIG. 4 is a diagram for explaining the relationship between the surface emissivity and the annealing temperature. 1 …… Wafer 3,4 …… Halogen lamp 5,6 …… Control power supply 7,8 …… Light quantity measuring device 11,12 …… Small piece 13,14,15,20,21 …… Metal wire 17 …… Semiconductor piece

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一方の表面及び他方の表面の表面放射率が
異なる第1の板状小片と、前記第1の板状小片の前記一
方の表面と同一方向に向き、かつ前記他方の表面の表面
放射率を有する一方の表面、及び前記第1の板状小片の
前記一方の表面の表面放射率を有する他方の表面をもつ
第2の板状小片と、前記第1の板状小片の前記一方の表
面に接続された第1及び第2の金属線よりなる第1の熱
電対と、前記第2の板状小片の前記一方の表面に接続さ
れた前記第2及び第3の金属線よりなる第2の熱電対と
を備え、前記第1及び第3の金属線間の電位差を測定す
ることを特徴とする光強度測定装置。
1. A first plate-shaped piece having different surface emissivities on one surface and the other surface, and a first plate-shaped piece oriented in the same direction as the one surface of the first plate-shaped piece and of the other surface. A second plate-like piece having one surface having a surface emissivity and the other surface having a surface emissivity of the one surface of the first plate-like piece; and the first plate-like piece A first thermocouple composed of first and second metal wires connected to one surface, and second and third metal wires connected to the one surface of the second plate-shaped piece. And a second thermocouple, which measures a potential difference between the first and third metal wires.
【請求項2】一方の表面が表面放射率の異なる第1及び
第2の2つの領域を有し、他方の表面が、前記第1の領
域に対応する裏面に前記第2の領域の表面放射率を有す
る第3の領域、及び前記第2の領域に対応する裏面に前
記第1の領域の表面放射率を有する第4の領域の2つの
領域を有する半導体または金属の板状小片と、前記第1
及び第2の領域にそれぞれ接続された金属線とを備え、
これら金属線間の電位差を測定することを特徴とする光
強度測定装置。
2. One surface has first and second regions having different surface emissivities, and the other surface has a surface emission of the second region on a back surface corresponding to the first region. A semiconductor or metal plate-like piece having two regions, a third region having a rate and a fourth region having a surface emissivity of the first region on the back surface corresponding to the second region; First
And a metal wire respectively connected to the second region,
A light intensity measuring device characterized by measuring a potential difference between these metal wires.
JP60154120A 1985-07-15 1985-07-15 Light intensity measuring device Expired - Fee Related JPH07119647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60154120A JPH07119647B2 (en) 1985-07-15 1985-07-15 Light intensity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60154120A JPH07119647B2 (en) 1985-07-15 1985-07-15 Light intensity measuring device

Publications (2)

Publication Number Publication Date
JPS6215817A JPS6215817A (en) 1987-01-24
JPH07119647B2 true JPH07119647B2 (en) 1995-12-20

Family

ID=15577359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60154120A Expired - Fee Related JPH07119647B2 (en) 1985-07-15 1985-07-15 Light intensity measuring device

Country Status (1)

Country Link
JP (1) JPH07119647B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2601431B2 (en) * 1988-03-22 1997-04-16 ウシオ電機株式会社 Light irradiation processing equipment
DE69117322T2 (en) * 1990-04-19 1996-10-02 Applied Materials Inc Heating and monitoring system for a semiconductor wafer and mode of operation
US5650082A (en) * 1993-10-29 1997-07-22 Applied Materials, Inc. Profiled substrate heating
US5809211A (en) * 1995-12-11 1998-09-15 Applied Materials, Inc. Ramping susceptor-wafer temperature using a single temperature input
DE10032465A1 (en) * 2000-07-04 2002-01-31 Steag Rtp Systems Gmbh Method and device for the thermal treatment of objects
JP2005079336A (en) * 2003-08-29 2005-03-24 Toshiba Corp Heat treatment apparatus, heat treatment method and method for manufacturing semiconductor device
JP4618705B2 (en) 2003-09-18 2011-01-26 大日本スクリーン製造株式会社 Heat treatment equipment
US8309421B2 (en) * 2010-11-24 2012-11-13 Applied Materials, Inc. Dual-bulb lamphead control methodology

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113336A (en) * 1979-02-23 1980-09-01 Chiyou Lsi Gijutsu Kenkyu Kumiai Light-annealing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113336A (en) * 1979-02-23 1980-09-01 Chiyou Lsi Gijutsu Kenkyu Kumiai Light-annealing

Also Published As

Publication number Publication date
JPS6215817A (en) 1987-01-24

Similar Documents

Publication Publication Date Title
US5359693A (en) Method and apparatus for a rapid thermal processing of delicate components
JPH0669027B2 (en) Method for forming thin film on semiconductor wafer
WO1999057751A2 (en) Method and apparatus for controlling the radial temperature gradient of a wafer while ramping the wafer temperature
Hill et al. Rapid thermal annealing-theory and practice
US6235110B1 (en) Method of producing recrystallized-material-member, and apparatus and heating method therefor
JPH07119647B2 (en) Light intensity measuring device
JP2781616B2 (en) Semiconductor wafer heat treatment equipment
RU2218631C2 (en) INFRARED RADIATION CONTROLLED CIRCUIT ( VARIANTS ), INFRARED RADIATION DETECTOR AND METHOD OF EMPLOYMENT OF INFRARED RADIATION BASED ON SiC
JP3911071B2 (en) High speed lamp heat treatment apparatus and high speed lamp heat treatment method
JP2011080790A (en) Reference light source device for radiation thermometer
US6437331B1 (en) Bolometer type infrared sensor with material having hysterisis
Lischner et al. Rapid large area annealing of ion-implanted Si with incoherent light
JPS6294925A (en) Heat treatment device
Yuasa et al. Single crystal silicon micromachined pulsed infrared light source
JPH10144618A (en) Heater for manufacturing semiconductor device
JPS60137027A (en) Optical irradiation heating method
Leitz et al. Investigation of dynamical temperature behaviour in RTP
JPH06300719A (en) Method and apparatus for measuring thermoelectric conversion characteristic
Chen et al. Photon effect on radiative properties of silicon during rapid thermal processing
US6051844A (en) Scanning system for rapid thermal cycle stress/curvature measurement
Wong et al. Optical effects of multilayer thin‐film structures during zone‐melting recrystallization with an infrared heat source
Gelpey et al. Uniformity Characterization of an RTP system
JPH06242840A (en) Sheet type heat treatment processor and heat treatment temperature monitoring method
RU2283481C2 (en) Transmission-type thermo-electric receiver of optical radiation
Robinson et al. Thermal analysis of incandescent lamp zone‐melting recrystallization of thin silicon films

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees