JPS5995315A - Nox removing boiler - Google Patents

Nox removing boiler

Info

Publication number
JPS5995315A
JPS5995315A JP57204950A JP20495082A JPS5995315A JP S5995315 A JPS5995315 A JP S5995315A JP 57204950 A JP57204950 A JP 57204950A JP 20495082 A JP20495082 A JP 20495082A JP S5995315 A JPS5995315 A JP S5995315A
Authority
JP
Japan
Prior art keywords
gas
combustion gas
chamber
temperature
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57204950A
Other languages
Japanese (ja)
Inventor
Haruo Matsumura
春生 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57204950A priority Critical patent/JPS5995315A/en
Publication of JPS5995315A publication Critical patent/JPS5995315A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material

Abstract

PURPOSE:To remove NOX in combustion gas without wasting energy in the titled boiler, by mounting an injection nozzle of ammonia gas between a gas mixing chamber and a catalytic chamber and providing a damper within a bypass duct. CONSTITUTION:A temperature of combustion gas is lowered through heat exchange between the combustion gas and water in a heating evaporating tube 13, a sulfide is generated by reacting ammonia spouting out into the combustion gas to SOX in the combustion gas and a catalyst is made to inactivate by adhering to the surface of the catalyst. When the temperature of the combustion gas is risen excessively, NOX is increased by reacting the ammonia poured into the combustion gas to oxygen contained in the combustion gas. It becomes important, hereupon, to keep the temperature of the combustion gas available prior to its inflow into a denitration chamber 3 at 300 deg.C- 400 deg.C. When the temperature of the gas is lowered due to a decrease of a load, it is detected by a gas temperature sensor 19 through a control signal of which an opening of a flow adjusting damper 16 is adjusted, part of the combustion gas streamed into a vapor generation chamber 2 is streamed into the damper 16 without passing through the circumference of the heating evaporating tube 13, being mixed with the combustion gas passed through the circumference of the heating evaporating tube 13 within a gas mixing chamber 14 and then the combustion gas is adjusted at a fixed temperature.

Description

【発明の詳細な説明】 本発明は排ガス中に含まれるNOXを除去することを目
的とした脱NOxボイラーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a NOx removal boiler for removing NOX contained in exhaust gas.

重油や石炭などの化石燃料を燃焼させると燃料中や窒気
中に含まれる窒素が酸累と、結合してN。
When fossil fuels such as heavy oil and coal are burned, the nitrogen contained in the fuel and nitrogen combines with acids to form N.

又はNOXとなる。Or it becomes NOx.

NOXの発生率は燃焼条件によっても異なるが、火力発
電所などの大型ボイラーではガスの場合で150〜30
0 ppm、石炭の場合で500〜1000 ppm 
The generation rate of NOX varies depending on combustion conditions, but in large boilers such as those used in thermal power plants, it is 150 to 30% when using gas.
0 ppm, 500-1000 ppm for coal
.

重油の場合で250〜400 ppmであるといわれて
いる。NOxは、これが大気中に放散されるとオキシダ
ント公害の原因となるため、昭和48年5月の中央公害
対策審議会ではN02の許容値を一時間値の一日平均値
が0.02 ppm以下という厳しい基準値を作95年
以内にこの基準を達成することを答申に盛込んでいる。
In the case of heavy oil, it is said to be 250 to 400 ppm. When NOx is released into the atmosphere, it causes oxidant pollution, so in May 1972, the Central Pollution Control Council set the permissible value for N02 at an hourly daily average of 0.02 ppm or less. The report includes the goal of achieving this strict standard within 95 years of production.

しかし、実状は排煙脱硝装置の開発が遅れており、実用
化に到ったものは非常に少なく、シかも実用化されてい
るといっても発電所などで用いられる超大型ボイラーが
数基稼動しているにすぎない。その主たる理由は脱硝装
置が犬がかシでしかも複雑であるため、ぼり犬な設備投
置を必要とし、また装置の運転保守に多額の費用を要す
るからである。したがってこれら超大型ボイラーを除く
殆んどのボイラーについてはそのNOx対策として(1
)ボイラー効率を犠牲にして低温燃焼させる。(2)ガ
スなどの低NOx燃料に切替える。(3)ボイラーの稼
動率を下げて総量規制の枠内で運転する々どの手段を講
じているにすぎなかった。このような事情によシ前記答
申の達成は程遠いのが現実である。
However, the reality is that the development of flue gas denitrification equipment has been delayed, and very few have been put into practical use. It's just working. The main reason for this is that the denitrification equipment is bulky and complicated, requires extensive equipment installation, and requires a large amount of money to operate and maintain the equipment. Therefore, for most boilers except these super large boilers, the NOx countermeasure (1
) Lower temperature combustion at the expense of boiler efficiency. (2) Switch to low NOx fuel such as gas. (3) They simply took measures such as lowering the operating rate of boilers to operate within the framework of total volume regulations. Due to these circumstances, the reality is that the above-mentioned report is far from being achieved.

一方具体的装置について、NOxの発生が排ガス温度に
大きく影響することから熱交換後の燃焼ガスを脱硝装置
に吹き込む直前にアフターバーナでガスを加熱してその
温度調整を行なうものもあるが、後処理のために燃料が
必要であるばかシではなく、アフターバーナに供給する
空気を加熱しなければならないなどエネルギーの損失を
きたし、決して有効な方法であるということはできない
On the other hand, some specific devices use an afterburner to heat the combustion gas after heat exchange and adjust the temperature immediately before blowing the combustion gas into the denitrification device, since the generation of NOx has a large effect on the exhaust gas temperature. Not only does it require fuel for the process, but it also requires heating the air supplied to the afterburner, which results in a loss of energy, so it can never be considered an effective method.

本発明は上記問題点を解消し、エネルギーに無駄を生じ
させず有効に燃焼ガス中のNOXを除去できるボイラー
を提供するものである。以下本発明の実施例を図によっ
て説明する。図において、本発明ボイラーは燃焼室1、
熱交換による蒸気発生室2、脱蛸酸用触媒反応室(以下
単に脱硝室という)6、排気室4を備えている。燃焼室
1と、蒸気発生室2と排気室6とはケーシング5内に列
状に区画形成され、燃焼室1と蒸気発生室2とは隔壁6
に設けた連通孔7で連通し、蒸気発生室2と排気室4と
の間は隔壁8で隔離されている。一方、ケーシング5上
面には蒸気発生室2と排気室4との間を連通させる筒状
部9が設けられ、該筒状部9内は前記隔壁8の立上り部
分8aで仕切られ、その内部に屈曲通路を形成している
。この筒状部9は断熱材からなシ、その頭部が着脱可能
となっており、あるいは外周を断熱材で覆って内部を保
温する。燃焼室1の一端には前記連通孔7に向き合せて
バーナー10を設置し、これに燃料油ポンプ11の配管
を接続する。
The present invention solves the above problems and provides a boiler that can effectively remove NOX from combustion gas without wasting energy. Embodiments of the present invention will be described below with reference to the drawings. In the figure, the boiler of the present invention includes a combustion chamber 1,
It includes a steam generation chamber 2 by heat exchange, a deoxidation catalyst reaction chamber (hereinafter simply referred to as a denitrification chamber) 6, and an exhaust chamber 4. The combustion chamber 1, the steam generation chamber 2, and the exhaust chamber 6 are divided into rows in the casing 5, and the combustion chamber 1 and the steam generation chamber 2 are separated by a partition wall 6.
The steam generation chamber 2 and the exhaust chamber 4 are separated by a partition wall 8. On the other hand, a cylindrical part 9 is provided on the upper surface of the casing 5 to communicate between the steam generation chamber 2 and the exhaust chamber 4. The inside of the cylindrical part 9 is partitioned by the rising part 8a of the partition wall 8, It forms a curved passage. This cylindrical part 9 is made of a heat insulating material, and its head is removable, or its outer periphery is covered with a heat insulating material to keep the inside warm. A burner 10 is installed at one end of the combustion chamber 1 facing the communication hole 7, and the piping of a fuel oil pump 11 is connected to the burner 10.

蒸気発生室2内には給水ポンプ12に接続された加熱蒸
発管16を多層に巻装して収容し、連通孔7より加熱蒸
発管16の巻I−中心の中空部に流入した燃焼ガスを屈
曲通路内のガス混合室14に向けて流出させる流路を形
成する。また、加熱蒸発管16の巻層中心の中空部2a
に対応して一端を蒸気発生室2内に開口し、他端を蒸気
発生室2の下流側すなわちガス混合室14内に開口した
バイパス通路15を隔壁8内に形成し、このバイパス通
路15内に流量調整ダンパー16を介装する。
A heating evaporation pipe 16 connected to a water supply pump 12 is wound in multiple layers and housed in the steam generation chamber 2, and the combustion gas flowing into the hollow part at the center of the volume I of the heating evaporation pipe 16 through the communication hole 7 is stored. A flow path is formed to flow out toward the gas mixing chamber 14 within the curved passage. Also, the hollow part 2a at the center of the winding layer of the heating evaporation tube 16
Correspondingly, a bypass passage 15 is formed in the partition wall 8 with one end opened into the steam generation chamber 2 and the other end opened into the downstream side of the steam generation chamber 2, that is, into the gas mixing chamber 14. A flow rate adjustment damper 16 is interposed therein.

屈曲通路はその一部が脱硝室3となるもので、前記隔壁
8の立上り部分8aをはさんでその両側の通路内にそれ
ぞれ筒状の触媒17.17の束をガスの流動方向と平行
に収容する。この触媒17としてはSOxや媒じんを多
量に含んだガスを接触させた場合でも失活しない性状の
ものを用いる必要がある。実験によれば、酸化鉄を主成
分としたものを用いて好成績を得た。この脱硝室乙の直
前にはアンモニアガス噴出ノズル18を設置し、またガ
ス混合室14より流出した燃焼ガスの温度を感知して前
記ダンパー16の開度を制御する温度感知器19および
燃焼ガスの低温を感知してアンモニアガス噴出ノズル1
8のアンモニアガス供給管P1に設けた悲常閉止弁2o
の開閉制御を行なう低温感知器21をそれぞれ設置する
A part of the bent passage serves as the denitrification chamber 3, and bundles of cylindrical catalysts 17 and 17 are installed parallel to the gas flow direction in the passages on both sides of the rising portion 8a of the partition wall 8. accommodate. It is necessary to use a catalyst 17 that does not become deactivated even when it is brought into contact with a gas containing a large amount of SOx or dust. According to experiments, good results were obtained using a material whose main component was iron oxide. Immediately before this denitration chamber B, an ammonia gas jet nozzle 18 is installed, and a temperature sensor 19 that senses the temperature of the combustion gas flowing out from the gas mixing chamber 14 and controls the opening degree of the damper 16, and a temperature sensor 19 that controls the opening degree of the damper 16, and Ammonia gas jet nozzle 1 detects low temperature
Emergency shutoff valve 2o installed in the ammonia gas supply pipe P1 of No. 8
A low temperature sensor 21 is installed for controlling the opening and closing of each.

排気室4には燃焼ガスの排気口22を備えている。この
排気室4はまたバーナー16に供給する空気又は蒸気発
生室2内に供給する水の予熱室になるものである。実施
例では空気予熱室として用いた例を示すもので、排気室
4内には給気パイプ26が配管され、その配管がブロア
ー24を経てバーナー10に接続されている。なお図中
25はアンモニア供給管Plの途中に画けたアンモニア
制御弁で、燃料流−緻計26から送られる信号によって
作動する。また、アンモニア非常閉止弁20はアンモニ
ア制御弁25よシ下流の供給管P、に介装され、前記低
温感知器21よシの信号を受け、燃焼ガスの低温時に閉
弁してアンモニアガスの噴出を停止するものである。ア
ンモニアガスはガス混合室14内の燃焼ガス温度が高い
ときにおいてのみ、アンモニア制御弁25の開弁によf
i NOXを還元するに必要な蛍が供給される。
The exhaust chamber 4 is provided with an exhaust port 22 for combustion gas. This exhaust chamber 4 also serves as a preheating chamber for the air supplied to the burner 16 or the water supplied to the steam generation chamber 2. In the embodiment, an example is shown in which the exhaust chamber 4 is used as an air preheating chamber, and an air supply pipe 26 is installed in the exhaust chamber 4, and the piping is connected to the burner 10 via a blower 24. In the figure, reference numeral 25 denotes an ammonia control valve provided in the middle of the ammonia supply pipe Pl, which is operated by a signal sent from the fuel flow meter 26. Further, the ammonia emergency shutoff valve 20 is installed in the supply pipe P downstream of the ammonia control valve 25, and receives a signal from the low temperature sensor 21 and closes when the combustion gas is low, so that the ammonia gas is ejected. It is intended to stop. Ammonia gas is released by opening the ammonia control valve 25 only when the combustion gas temperature in the gas mixing chamber 14 is high.
i The fireflies necessary to reduce NOX are supplied.

実施例において、燃料油ポンプ11の駆動によシバーナ
ー10に燃料油を送シこみ点火する。燃料の燃焼によっ
て生じた燃焼ガスは燃焼室1内より連通孔7を通じて蒸
気発生室2内に入シ、加熱蒸発管16の周囲を通ってガ
ス混合室14内へ流出し、さらに脱硝室6を経て排気室
4よシ外気中へ放出される。給水ポンプ12で汲み上げ
られた水は加熱蒸発−1−?13内で加熱され、その然
気は送出肯路P2内に送出される。ここにおいて、燃焼
ガスと加熱蒸発管16内の水との間の熱交倶によって燃
焼ガスの温度が低下する。カスの温度か低下すると、後
述するように、燃焼ガス中に噴出するアンモニアと、ガ
ス中のSOXが反応して硫化物が生成し、これが触媒の
表面に付着して触媒を失活させるという現象が生ずる。
In the embodiment, fuel oil is pumped into the burner 10 by driving the fuel oil pump 11 and ignited. Combustion gas generated by combustion of the fuel enters the steam generation chamber 2 from the combustion chamber 1 through the communication hole 7, flows around the heating evaporation pipe 16, flows out into the gas mixing chamber 14, and then passes through the denitrification chamber 6. After that, it is released into the outside air through the exhaust chamber 4. The water pumped up by the water supply pump 12 undergoes heating and evaporation -1-? 13, and the air is sent out into the delivery path P2. Here, the temperature of the combustion gas decreases due to heat exchange between the combustion gas and the water in the heating evaporation tube 16. When the temperature of the scum decreases, the ammonia ejected into the combustion gas reacts with SOX in the gas, producing sulfides, which adhere to the surface of the catalyst and deactivate the catalyst, as described below. occurs.

捷た通にガス温、髪が上シすぎると注入したアンモニア
がガス中のは素と反応してNOxを増大させることにな
る。いずれにしても脱硝室6円に流入する前でのガス温
1iを一定具体的には300℃〜400℃に保たせるこ
とは非常に重要な要件である。
If the gas temperature is too high, the injected ammonia will react with the gas in the gas and increase NOx. In any case, it is a very important requirement to keep the gas temperature 1i constant, specifically at 300° C. to 400° C., before it flows into the denitrification chamber 6 yen.

そこで不発明は燃汀Lガスの温度を一定(600℃〜4
00℃)に保持するため、ボイラーの最大負荷時におけ
る蒸気発生室2の出口(ガス混合室14内)のガス温度
を300°〜4CO℃の411川内にIAI整するもの
である。すなわち、負荷が下ってガス温度が下降したと
きにはそのときの温度がガス温度感知器19にイ英知さ
れ、その制御信号によって流量調整ダンパー16の開度
が調ゼされ、蒸気発生室2内に流入した燃焼ガスの一部
は、加熱蒸発管13の周囲を経由せずにダンパー16内
に流入し、直接ガス混合室14内に流入し、加熱蒸発管
16の周面を経由した燃焼ガスとガス混合室14内で混
合され、燃焼ガスは一定温度に直整される。燃焼ガスは
次いで脱硝室ろ内に送りこまれるが、これに先立ってア
ンモニアガスの供給を受ける。アンモニアガスは演出ノ
ズル18を通して効率よ〈耐時に拡散されるため、拡散
に女する空間はわずかでよいか、脱硝室ろ(ハ)におけ
るNOxとアンモニアとの還元反応は非常にデリケート
であり、特に硫黄酸化物を大量に含んだガスの場合には
硫化物が前述のように触媒の表面に付着し、これが触媒
の失活や閉そくを起す原因となるため、これを防止する
にはアンモニアはNOXを還元するに必−決な適量を注
入すること並びに燃焼ガスの低温時には直ちにアンモニ
アガスの供4@を停止することが必要である。ガス混合
室14内の温度は低温1へ知器21で検知され、温度が
低下すると、その横細信号でアンモニア非常閉止弁20
が閉弁する。脱硝室6内に送り込まれた燃焼ガスは触媒
17と接触し、ガス中のNOXとアンモニアとが反応し
てNOxが除去される。アンモニアとNOxとの益元反
応は条件さえ揃えば容易に行なわれる。ただし触媒は熱
応力に対して比較的弱いのでボイラーの熱上げは時間を
かけてゆつくシと行なうこと、硫化物の付着を防ぐため
熱上げ中の燃料はS成分の少ない灯油などを便所するこ
とが望ましい。脱硝室より流出した燃焼ガスの温度は未
だ高温でるる、すF気室4内では燃焼排ガスと給気ノく
イブ26内の空気との同で熱交侠され、バーナー10に
供給する空気を予熱し、給気に熱エネルギーを奪われて
低温となった排ガスは排気口22よシ犬気中に放故され
る。勿−輪ボイラーの給水の予熱に用いることができる
のはいうまでもない。
Therefore, the invention was to keep the temperature of the combustion L gas constant (600℃ ~ 4℃).
00°C), the gas temperature at the outlet of the steam generation chamber 2 (inside the gas mixing chamber 14) at the maximum load of the boiler is adjusted to within 411 degrees of 300° to 4CO°C. That is, when the load decreases and the gas temperature decreases, the temperature at that time is detected by the gas temperature sensor 19, and the opening degree of the flow rate adjustment damper 16 is adjusted according to the control signal, and the gas flows into the steam generation chamber 2. A part of the combustion gas that has been heated flows into the damper 16 without passing through the periphery of the heating evaporation tube 13, directly flows into the gas mixing chamber 14, and is mixed with the combustion gas that has passed through the circumferential surface of the heating evaporation tube 16. The combustion gases are mixed in the mixing chamber 14 and brought to a constant temperature. The combustion gas is then sent into the denitrification chamber filter, but prior to this, it is supplied with ammonia gas. Ammonia gas is efficiently diffused through the production nozzle 18, so only a small space is needed for diffusion.The reduction reaction between NOx and ammonia in the denitrification chamber filter (c) is very delicate, especially In the case of a gas containing a large amount of sulfur oxides, the sulfides adhere to the surface of the catalyst as described above, causing deactivation and blockage of the catalyst.To prevent this, ammonia is It is necessary to inject an appropriate amount necessary to reduce the ammonia gas, and to immediately stop the supply of ammonia gas when the combustion gas is at a low temperature. The temperature inside the gas mixing chamber 14 is detected by the low temperature detector 21, and when the temperature drops, the ammonia emergency shut-off valve 20 is activated by the horizontal thin signal.
is closed. The combustion gas sent into the denitrification chamber 6 comes into contact with the catalyst 17, and NOx and ammonia in the gas react to remove NOx. The Masumoto reaction between ammonia and NOx can easily occur if the conditions are met. However, the catalyst is relatively weak against thermal stress, so heat up the boiler slowly over time, and to prevent sulfide buildup, use kerosene or other fuel with low S content as fuel during heating. This is desirable. The temperature of the combustion gas flowing out from the denitrification chamber is still high.In the F air chamber 4, heat exchange occurs between the combustion exhaust gas and the air in the supply air nozzle 26, and the air supplied to the burner 10 is heated. The exhaust gas, which has been preheated and has a low temperature due to the heat energy taken away from the supply air, is released into the air through the exhaust port 22. Needless to say, it can be used to preheat feed water to a boiler.

本発明によれば、アフターバーナその他の大がかりな設
備全戦せず、コンノζクトでめり、燃焼ガスの一部を第
1用して脱硝室内へ送シこ1J排ガスの温度を一定に保
たせることができ、触媒機能を有効に働かせてC重油、
石炭などの低質燃料を用い、その燃焼ガス中のNOXを
効率よく除去すること75玉できる。本発明によるとき
には95%の脱硝効率を告ることは容易に実現すること
ができ、燃料の低質化を図るとともに筒部燃焼によって
生ずるNOxの増加にも左右されず、排ガス中のN0X
Q量を極汲に減らずことができ、環境改善に大きく寄与
できる効果を肩するものである。
According to the present invention, without using afterburners and other large-scale equipment, a part of the combustion gas is used as the first one and sent into the denitrification chamber, keeping the temperature of the 1J exhaust gas constant. The catalytic function can be effectively used to reduce heavy oil C,
Using low-quality fuel such as coal, it is possible to efficiently remove NOX from the combustion gas. According to the present invention, a denitrification efficiency of 95% can be easily achieved, and it is possible to reduce the quality of the fuel and is not affected by the increase in NOx caused by combustion in the cylinder, reducing NOx in the exhaust gas.
It is possible to reduce the amount of Q to a minimum, and has the effect of contributing greatly to environmental improvement.

以下に本発明の芙月例について主な仕様と実測テークと
を示す。
The main specifications and actual measurements of the Fuzuki example of the present invention are shown below.

○ボイラー蒸気量:10トン/時、蒸気圧:10に9/
 era O使用燃料:C重油(S成分60%) ○燃焼呈内温度1200℃、ボイラ(ス辿路内温度:1
000℃ ○脱硝室内温1扼:350℃ ○1JC気至(予熱至)人口温度:650℃、出口温波
100℃ ○吸収剤:アンモニアガス ○脱蛸効率=95%(脱硝家人口1111280 pp
rn、出口1則 15ppm)
○Boiler steam amount: 10 tons/hour, steam pressure: 10 to 9/hour
era O Fuel used: C heavy oil (S component 60%) ○ Combustion temperature 1200℃, boiler (temperature inside the passageway: 1
000℃ ○Denitrification chamber temperature 1st: 350℃ ○1JC air temperature (preheating) population temperature: 650℃, exit temperature wave 100℃ ○Absorbent: ammonia gas ○Denitrification efficiency = 95% (denitrification house population 1111280 pp
rn, exit 1 rule 15ppm)

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明ボイラーの一実施例を示す断面図である。 1・・・燃焼室、     2・・・蒸気発生室ろ・・
・脱硝酸用触媒反応室(脱硝室)14・・・ガス混合室
、  15・・・バイパス通路16・・・流量調整ダン
パー 18・・・アンモニア噴出ノズル 19・・・温度感却器
The drawing is a sectional view showing an embodiment of the boiler of the present invention. 1... Combustion chamber, 2... Steam generation chamber...
- Catalytic reaction chamber for denitrification (denitrification chamber) 14... Gas mixing chamber, 15... Bypass passage 16... Flow rate adjustment damper 18... Ammonia jet nozzle 19... Temperature sensor

Claims (1)

【特許請求の範囲】[Claims] (i)脱硝酸用触媒反応室を備えたボイラーにおいて、
該触媒反応室の上流側に、ガス燃焼室内より流体を加熱
する蒸気発生室を経由した燃焼ガスと、ガス・燃焼室内
よシバイパス通路を通して直接流入する燃焼ガスとを混
合させるガス混合室を設け、該ガス混合室と脱硝酸用触
媒反応室との間にアンモニアガス噴出ノズルを設置し、
さらに前記バイパス通路内にガス混合室内の温度変化に
よってガス流の流動面積を制御する流量調整ダンパーを
装備したことを特徴とする脱NOXボイラー。
(i) In a boiler equipped with a catalytic reaction chamber for denitrification,
A gas mixing chamber is provided on the upstream side of the catalytic reaction chamber to mix the combustion gas that has passed through the steam generation chamber that heats the fluid from the gas combustion chamber and the combustion gas that directly flows into the gas combustion chamber through the bypass passage, An ammonia gas jetting nozzle is installed between the gas mixing chamber and the denitrification catalyst reaction chamber,
The NOx removal boiler is further characterized in that the bypass passage is equipped with a flow rate adjustment damper that controls the flow area of the gas flow according to temperature changes in the gas mixing chamber.
JP57204950A 1982-11-22 1982-11-22 Nox removing boiler Pending JPS5995315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57204950A JPS5995315A (en) 1982-11-22 1982-11-22 Nox removing boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57204950A JPS5995315A (en) 1982-11-22 1982-11-22 Nox removing boiler

Publications (1)

Publication Number Publication Date
JPS5995315A true JPS5995315A (en) 1984-06-01

Family

ID=16499001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57204950A Pending JPS5995315A (en) 1982-11-22 1982-11-22 Nox removing boiler

Country Status (1)

Country Link
JP (1) JPS5995315A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262013A (en) * 1986-05-08 1987-11-14 Olympus Optical Co Ltd Zoom lens
EP0483678A2 (en) * 1990-10-31 1992-05-06 JOSEF BERTSCH Gesellschaft m.b.H & Co. Steam boiler
JP2007275838A (en) * 2006-04-11 2007-10-25 Babcock Hitachi Kk Exhaust gas denitration apparatus and its operation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262013A (en) * 1986-05-08 1987-11-14 Olympus Optical Co Ltd Zoom lens
EP0483678A2 (en) * 1990-10-31 1992-05-06 JOSEF BERTSCH Gesellschaft m.b.H & Co. Steam boiler
JP2007275838A (en) * 2006-04-11 2007-10-25 Babcock Hitachi Kk Exhaust gas denitration apparatus and its operation method
JP4716325B2 (en) * 2006-04-11 2011-07-06 バブコック日立株式会社 Flue gas denitration device and operation method thereof

Similar Documents

Publication Publication Date Title
CA2099521C (en) Using flue gas energy to vaporize aqueous reducing agent for reduction of nox in flue gas
US4353207A (en) Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants
US5078973A (en) Apparatus for treating flue gas
US5252298A (en) Device for cleaning gases
US5165903A (en) Integrated process and apparatus for control of pollutants in coal-fired boilers
US5326536A (en) Apparatus for injecting NOx inhibiting liquid reagent into the flue gas of a boiler in response to a sensed temperature
CA2501995A1 (en) Method for treating emissions
US5315941A (en) Method and apparatus for injecting nox inhibiting reagent into the flue gas of a boiler
JPH03503735A (en) Two-stage boiler injection method and device for the purpose of reducing nitrogen oxides
KR100597961B1 (en) Cleaning Method of NO2 Visible Gas from Stationary Sources
JP7174208B2 (en) Exhaust gas treatment equipment for thermal power plants
US20080196763A1 (en) Ammonia vaporization system using non-flue gas intermediate heat transfer medium
JPS5995315A (en) Nox removing boiler
EP0189917B1 (en) Apparatus for treating flue gas
US5791268A (en) SO3 flue gas conditioning system with catalytic converter temperature control by injection of water
US20040197251A1 (en) Vaporization having fast start up
US5582802A (en) Catalytic sulfur trioxide flue gas conditioning
KR20190058242A (en) Apparatus for reducing yellow gas for thermal power plant
JPH0386212A (en) Method for denitrating waste gas
US5681375A (en) Boiler flue gas conditioning system using dilute sulfuric acid injection
JP3835957B2 (en) 3-position burner
JP3820509B2 (en) Ammonia injection equipment
KR102347814B1 (en) Vaporizer for selective catalytic reduction denitrification system for power generation
KR20190036659A (en) Gas heating system
CN214914829U (en) Denitration system and boiler equipment