JPS599492A - Condenser - Google Patents

Condenser

Info

Publication number
JPS599492A
JPS599492A JP11835982A JP11835982A JPS599492A JP S599492 A JPS599492 A JP S599492A JP 11835982 A JP11835982 A JP 11835982A JP 11835982 A JP11835982 A JP 11835982A JP S599492 A JPS599492 A JP S599492A
Authority
JP
Japan
Prior art keywords
steam
condenser
tubes
turbine bypass
introducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11835982A
Other languages
Japanese (ja)
Other versions
JPS6119912B2 (en
Inventor
Wataru Igarashi
渉 五十嵐
Yoshio Sumiya
住谷 吉男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11835982A priority Critical patent/JPS599492A/en
Publication of JPS599492A publication Critical patent/JPS599492A/en
Publication of JPS6119912B2 publication Critical patent/JPS6119912B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/02Auxiliary systems, arrangements, or devices for feeding steam or vapour to condensers

Abstract

PURPOSE:To deal with turbine bypass steam effectively by a method wherein a plenty of turbine bypass steam is distributed uniformly. CONSTITUTION:The introducing tubes 5 of the turbine bypass steam 3 are branched into two tubes corresponding to two groups of cooling tubes 13 and are arranged along the whole length of the lengthwise direction of the upper cylinder 10 above the groups of the cooling tubes 13. The turbine bypass steam 3 is injected and diffused into the condenser from the introducing tubes 5 as injected steam flows 4, 4'. The injected steam flows 4, 4', from two introducing tubes 5 collide at the center of the condenser and are condensed by the groups of cooling tubes 13 after passing through the central flow path 18 of the condenser. A steam dealing amount per unit length of the introducing tube may be reduced, a distance between an impact plate 16 and the introducing tube 5 may be shortened and increase of a height may be prevented by a method wherein the introducing tubes are arranged along the whole length of the lengthwise direction of the condenser. The steam dealing amount per unit length is small, therefore, the width of an opening for the impact plate 16 may be narrowed, the width of spread of the injected steam flows 4, 4' is also narrowed, an affection against the structure in the upper cylinder may be reduced and thereby, a highly reliable structure may be obtained.

Description

【発明の詳細な説明】 本発明は蒸気タービン発電プラントにおける蒸気タービ
ンの排気を凝縮する表面接触式の復水器に係り、特に、
タービンバイパス蒸気の均一分布を図る復水器に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface contact condenser for condensing the exhaust gas of a steam turbine in a steam turbine power plant, and in particular,
This invention relates to a condenser that achieves uniform distribution of turbine bypass steam.

従来の復水器の構造を第1図(a)、(b)に示す。タ
ービンよりの排気1は復水器の上部胴10を経て、下部
胴11内に入り、水室8と連通ずる冷却管群13を構成
する冷却管7内?流れる冷却水2と熱交換して、凝縮し
て復水となり、下部胴11のホットウェル9に水位を持
ち、再度ボイラ給水として復水出口12より排出される
。一方、ボイラ起動系統よりの比較的少量のタービンバ
イパス蒸気3は、プラントの起動時に導入管5を経て、
噴射蒸気流4となり、上部胴10内に導入され、冷却水
2と熱交換して凝縮する。このバイパス蒸気導入部の構
造は第2図(a)、(b)のように、導入管5の上面及
び下面に多数のオリフィス穴6を設け、それに相対して
設置された衝撃板16より成り、タービンバイパス蒸気
3を処理する構造ケもっている。一方、近年、変圧運転
、石炭専焼ボイラの採用、特殊運動の適用などにより、
復水器へ導入されるタービンバイパス蒸気の量が大幅に
増加する傾向にあり、通常運転時のタービン排気量の2
倍以上となる場合もある。従って、通常運転時には導入
されない多量のタービンバイパス蒸気を、いかに効果的
に処理する構造とするかが、復水器にとって大きな課題
となってきた。
The structure of a conventional condenser is shown in FIGS. 1(a) and 1(b). Exhaust gas 1 from the turbine passes through the upper shell 10 of the condenser, enters the lower shell 11, and enters the cooling pipes 7 forming a cooling pipe group 13 communicating with the water chamber 8. It exchanges heat with the flowing cooling water 2, condenses and becomes condensate, has a water level in the hot well 9 of the lower shell 11, and is discharged from the condensate outlet 12 again as boiler feed water. On the other hand, a relatively small amount of turbine bypass steam 3 from the boiler startup system passes through the introduction pipe 5 at the time of plant startup.
The injected steam stream 4 is introduced into the upper shell 10, exchanges heat with the cooling water 2, and condenses. As shown in FIGS. 2(a) and 2(b), the structure of this bypass steam introduction section consists of a large number of orifice holes 6 provided on the upper and lower surfaces of the introduction pipe 5, and an impact plate 16 installed opposite to the orifice holes 6. , has a structure for processing the turbine bypass steam 3. On the other hand, in recent years, due to variable pressure operation, adoption of coal-fired boilers, and application of special motion,
There is a tendency for the amount of turbine bypass steam introduced into the condenser to increase significantly, and the amount of turbine bypass steam introduced into the condenser is about 2
In some cases, it can be more than double. Therefore, a major challenge for condensers has been how to effectively process the large amount of turbine bypass steam that is not introduced during normal operation.

多量のタービンバイパス蒸気を第1図(a)、Φ)及び
第2図(a)、 (b)のように、従来と同様な導入位
置。
A large amount of turbine bypass steam is introduced at the same introduction position as in the past, as shown in Fig. 1 (a), Φ) and Fig. 2 (a), (b).

構造で対処しようとしても、復水器全体への均一な蒸気
分布ができず、器内の局部圧力上昇によるプラントトリ
ップを招いたり、隣設する低圧ヒータ及び抽気管を損傷
しプラントの停止全余儀なくされたりするため、他の導
入方法を検討する必要かある。
Even if we tried to solve the problem with the structure, it would not be possible to distribute the steam uniformly throughout the condenser, leading to a plant trip due to a local pressure rise inside the condenser, or damaging the adjacent low-pressure heater and bleed pipe, forcing the plant to shut down completely. Therefore, it may be necessary to consider other implementation methods.

復水器全体への蒸気σ)均一分布のみを考えるのであl
ば、第3図(a)、 (b)に示すように、上部胴10
に多数の導入管5を配設ずjば良いが、系統が複雑にな
るばかりでなく、タービン排気1の流路の障害となり、
通常運転時の性能低下を招き、復水器本来の目的である
タービン排気の効果的凝縮を阻害することになるため実
用的ではない。また、復水器はタービン架台の柱脚によ
りほぼ全周を囲1れており、多数の導入管5を配管する
配置上の余地はない。
Since only the uniform distribution of steam σ) throughout the condenser is considered,
For example, as shown in FIGS. 3(a) and 3(b), the upper body 10
Although it would be possible to avoid arranging a large number of inlet pipes 5, it not only complicates the system but also obstructs the flow path of the turbine exhaust 1.
This is not practical because it causes performance deterioration during normal operation and prevents the condenser from effectively condensing the turbine exhaust gas, which is the original purpose of the condenser. Further, the condenser is surrounded almost all around by the column base of the turbine mount, and there is no room for installing a large number of introduction pipes 5.

上記のタービン排気の障害、配置上の問題全解消する次
善の策は、第4図(a)、 (b)のように、冷却管群
13の下部、ホットウェル9の上部にタービンバイパス
蒸気配管の母管17を接続し、復水器内部で蒸気の均一
分布ができるように導入管5を配設する方法があり、こ
れは多量のタービンバイパス蒸気を処理するプラントで
採用されている。
The next best solution to all the above-mentioned turbine exhaust obstructions and layout problems is to install turbine bypass steam at the bottom of the cooling pipe group 13 and at the top of the hot well 9, as shown in FIGS. 4(a) and 4(b). There is a method of connecting the main pipe 17 of the piping and arranging the introduction pipe 5 so that steam can be uniformly distributed inside the condenser, and this method is adopted in plants that process a large amount of turbine bypass steam.

しかし、この導入法は、導入管5の径の約3倍も下部胴
1】の高さが増力口すること、冷却管群13の損傷を防
止するための冷却管保護板16を必要とすること、噴射
蒸気流4に起因するホントウェルの波打ち全防止する対
策か必要となることなどの設備費の増加を招く経済的欠
点がめる。また、冷却管群13の配列など基本構造は、
本来上方より下方に蒸気が流入することで計画している
ため、下方から上方に流れる蒸気流に対して、性能低下
を招き、トラブルのポテンシャルになるなど、この導入
方法は復水器の計画基本にそぐわない。
However, this introduction method requires that the height of the lower body 1 is approximately three times the diameter of the introduction pipe 5, and that a cooling pipe protection plate 16 is required to prevent damage to the cooling pipe group 13. In addition, there are economic disadvantages such as the necessity of taking measures to completely prevent undulation of the real well caused by the jetted steam flow 4, leading to an increase in equipment costs. In addition, the basic structure such as the arrangement of the cooling pipe group 13 is as follows.
Since the plan is for steam to originally flow from the top to the bottom, the steam flow flowing from the bottom to the top will lead to performance deterioration and the potential for trouble.This introduction method is the basis of condenser planning. It doesn't suit me.

本発明の目的は、多量のタービンバイパス蒸気を均一に
分布させることによりタービンバイパス蒸気を効果的に
処理できる復水器を提供するにある。
An object of the present invention is to provide a condenser that can effectively treat turbine bypass steam by uniformly distributing a large amount of turbine bypass steam.

以下、本発明の実施例を第5図(a)、 (b)で説明
する。タービンバイパス蒸気3の導入管5は、2組の冷
却管群13に対応して2本に分岐し、上部胴10の冷却
管群13の上部の長手方向全長にわたつて配設される。
Examples of the present invention will be described below with reference to FIGS. 5(a) and 5(b). The introduction pipe 5 for the turbine bypass steam 3 branches into two pipes corresponding to the two cooling pipe groups 13, and is disposed over the entire length in the longitudinal direction of the upper part of the cooling pipe group 13 of the upper body 10.

タービンバイパス蒸気3は導入管5より噴射蒸気流4.
4′となって復水器内部に噴射拡散される。2本の導入
管5からの噴射蒸気流4は復水器中央で衝撃し、中央流
路18を経て冷却管群13で凝縮する。復水器外壁方向
への噴射蒸気流4′は冷却管群13に直接衝突1−ない
ため、第4図(a)、 (b)に示すような冷却管保護
板16を必要としない。復水器長手方向全長にわたって
導入管5を配設することにより、導入管50単位長さ幽
りの処理蒸気量は従来構造に比べて少なく、衝撃板16
と導入管5との距離を狭くすることが可能となり、従来
構造を使用した場合の欠点である高さの増加を防ぐこと
ができる。また、単位長さ当りの処理蒸気量が少ないこ
とから、衝撃板16の開口部の幅を狭くできることによ
り、噴射蒸気流4.4′の広かり幅も狭くなり、上部胴
10内の構造物に対する影#を軽減することができ、信
頼性の高い構造となる。さらに、導入管5を冷却管群5
3の上部に配設することは、通常運転のタービン排気1
の流路の大きな障害とはならず、性能(5) 向上の面からも有利となる。なお、図中14は抽気管、
15は低圧ヒータである。
Turbine bypass steam 3 is injected from an inlet pipe 5 into a steam flow 4.
4' and is injected and diffused into the condenser. The injected steam stream 4 from the two inlet pipes 5 is impacted at the center of the condenser, passes through the central channel 18 and condenses in the cooling pipe group 13 . Since the injected steam flow 4' toward the outer wall of the condenser does not directly impinge on the cooling tube group 13, there is no need for the cooling tube protection plate 16 as shown in FIGS. 4(a) and 4(b). By arranging the introduction pipe 5 over the entire length of the condenser in the longitudinal direction, the amount of steam to be processed per unit length of the introduction pipe 50 is smaller than in the conventional structure.
It becomes possible to narrow the distance between the inlet tube 5 and the introduction tube 5, and it is possible to prevent an increase in height, which is a drawback when using the conventional structure. Furthermore, since the amount of steam to be processed per unit length is small, the width of the opening of the impact plate 16 can be narrowed, and the width of the jetted steam flow 4.4' can also be narrowed. It is possible to reduce the shadow # on the image, resulting in a highly reliable structure. Furthermore, the introduction pipe 5 is connected to the cooling pipe group 5.
3 is installed on top of turbine exhaust 1 during normal operation.
It does not become a major obstacle to the flow path, and is also advantageous in terms of improving performance (5). In addition, 14 in the figure is an air bleed pipe,
15 is a low pressure heater.

本発明によれば多量のタービン蒸気を信頼度高く、復水
器の性能に影餐を与えることなく、復水器に導入するこ
とができる。
According to the present invention, a large amount of turbine steam can be reliably introduced into the condenser without affecting the performance of the condenser.

本発明により、ば、多量のタービンバイパス蒸気を復水
器に均一に拡散分布できるので、信頼度の高い復水器を
提供することができる。
According to the present invention, for example, a large amount of turbine bypass steam can be uniformly diffused and distributed in the condenser, so that a highly reliable condenser can be provided.

【図面の簡単な説明】 第1図(a)は従来構造の復水器の長手方向断面図。 (b)はその横方向断面図、第2図(a)はタービンバ
イパス蒸気の導入部斜視図、(b)はその横方向断面図
、第3図(a)及び第4図伸)は多量のタービンバイパ
ス蒸気を導入する従来構造の復水器の長手方向断面図、
第3図(b)及び第4図(b)はそれらの横方向断面図
、第5図(a)は本発明の一実施例を示す復水器の長手
方向断面図、(b)はその横方向断面図である。 5・・・導入管、10・・・上部胴、13・・・冷却管
群、15・・・低圧ヒータ。 め1の Cb) /4 め20 (久) (b) 第30 と71Z) / (b) 第4 口 (0L) (b)
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1(a) is a longitudinal sectional view of a condenser with a conventional structure. (b) is a lateral sectional view, FIG. 2(a) is a perspective view of the introduction part of the turbine bypass steam, (b) is a lateral sectional view, and FIGS. 3(a) and 4) show a large amount of Longitudinal cross-sectional view of a condenser of conventional construction introducing turbine bypass steam of
3(b) and 4(b) are lateral sectional views thereof, FIG. 5(a) is a longitudinal sectional view of a condenser showing an embodiment of the present invention, and (b) is a sectional view thereof. FIG. 5...Introduction pipe, 10...Upper body, 13...Cooling pipe group, 15...Low pressure heater. Cb of eye 1) /4 eye 20 (kyu) (b) 30th and 71Z) / (b) 4th mouth (0L) (b)

Claims (1)

【特許請求の範囲】[Claims] 1、 タービンバイパス蒸気を冷却管群に接触させる表
面接触式の復水器において、前記冷却管群の上部の管長
手方向全長にわたり、前記冷却管群の数に対応して、前
記タービンバイパス蒸気の導入管を配設することを特徴
とする復水器。
1. In a surface contact type condenser that brings turbine bypass steam into contact with a group of cooling tubes, the amount of the turbine bypass steam is increased over the entire length in the longitudinal direction of the upper part of the group of cooling tubes, corresponding to the number of the groups of cooling tubes. A condenser characterized by having an introduction pipe installed.
JP11835982A 1982-07-09 1982-07-09 Condenser Granted JPS599492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11835982A JPS599492A (en) 1982-07-09 1982-07-09 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11835982A JPS599492A (en) 1982-07-09 1982-07-09 Condenser

Publications (2)

Publication Number Publication Date
JPS599492A true JPS599492A (en) 1984-01-18
JPS6119912B2 JPS6119912B2 (en) 1986-05-20

Family

ID=14734751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11835982A Granted JPS599492A (en) 1982-07-09 1982-07-09 Condenser

Country Status (1)

Country Link
JP (1) JPS599492A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160363314A1 (en) * 2015-06-12 2016-12-15 Alstom Technology Ltd Steam dump device for a nuclear power plant
JP2020122628A (en) * 2019-01-31 2020-08-13 株式会社東芝 Condenser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160363314A1 (en) * 2015-06-12 2016-12-15 Alstom Technology Ltd Steam dump device for a nuclear power plant
CN106246250A (en) * 2015-06-12 2016-12-21 通用电器技术有限公司 Steam dump device for nuclear power plant
US10480779B2 (en) * 2015-06-12 2019-11-19 General Electric Technology Gmbh Steam dump device for a nuclear power plant
CN106246250B (en) * 2015-06-12 2020-02-28 通用电器技术有限公司 Steam dump device for nuclear power plant
JP2020122628A (en) * 2019-01-31 2020-08-13 株式会社東芝 Condenser

Also Published As

Publication number Publication date
JPS6119912B2 (en) 1986-05-20

Similar Documents

Publication Publication Date Title
JPS59122803A (en) Reheater for steam turbine
US6233941B1 (en) Condensation system
JP3735405B2 (en) Condenser
JPS6119347Y2 (en)
JP6309351B2 (en) Air-cooled steam condensing device
JPS599492A (en) Condenser
RU2305227C1 (en) Steam-water heat exchanger
FI64993C (en) MATARVATTENFOERVAERMARE
US20060010869A1 (en) Deaerating and degassing system for power plant condensers
JPS5773392A (en) Corrugated fin type heat exchanger
US6619042B2 (en) Deaeration of makeup water in a steam surface condenser
US3472315A (en) Protective device for condenser tubes
JPH0926272A (en) Condenser
JP7002420B2 (en) Direct contact condenser and power plant
JPS5828985A (en) Condenser
KR100922120B1 (en) Moisture separation heater
SU1097859A1 (en) Surface heat exchanger
JPS58178186A (en) Condenser
JPH08121979A (en) Direct contact condenser
JPH05312994A (en) Humidity separation heating device
KR102072086B1 (en) Cooling structure for flash tank of power plant
RU2306427C1 (en) System of regenerative heating of water in steam-turbine plants (versions)
JPS59112185A (en) Condenser
JPS59167690A (en) Gas cooling device for jet condenser
JPS631515B2 (en)