JPS5994004A - Pupil diameter measuring apparatus - Google Patents

Pupil diameter measuring apparatus

Info

Publication number
JPS5994004A
JPS5994004A JP20396282A JP20396282A JPS5994004A JP S5994004 A JPS5994004 A JP S5994004A JP 20396282 A JP20396282 A JP 20396282A JP 20396282 A JP20396282 A JP 20396282A JP S5994004 A JPS5994004 A JP S5994004A
Authority
JP
Japan
Prior art keywords
pupil
signal
circuit
measurement window
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20396282A
Other languages
Japanese (ja)
Inventor
Takasumi Yui
敬清 由井
Shigeo Maruyama
茂男 丸山
Reiji Hirano
平野 令二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP20396282A priority Critical patent/JPS5994004A/en
Publication of JPS5994004A publication Critical patent/JPS5994004A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/11Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils
    • A61B3/112Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils for measuring diameter of pupils

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To improve measuring conditions by automatically varying the opening area of a measuring window prior to the measurement to set the measuring window matching the size of the pupil. CONSTITUTION:A pupil section signal 17a is integrated with an integration circuit 18 and an offset voltage Vo is applied to a pupil lateral diameter signal 19a which is memorized and held in a sample hold circuit 19 after amplified with an amplifier 30. The output signal 30a is inputted into a comparator 32 while into a comparator 34 via a code inverter 33. A saw tooth wave 31a is inputted into other input ends of the two respective comparators. When outputs of the comparators 32 and 34 are ANDed with an AND gate 35, a signal 35a has a lateral diameter corresponding to the pupil diameter of the pupil section signal 17a. The same results are obtained with the vertical diameter. Thus, the measuring window is obtained automatically to match the size of the pupil thereby improving measuring conditions.

Description

【発明の詳細な説明】 本発明は眼科機器特罠眼精疲労或いは屈折調節力の程度
等を診断するために必要な瞳孔の形状1寸法またこれら
ファクターの時uu的変化を求める11m孔径測定装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an 11-meter pore diameter measuring device that measures the shape and size of the pupil necessary for diagnosing asthenopia, the degree of refractive accommodation, etc., and changes in these factors over time. Regarding.

瞳孔の大きさは、被検眼に応じて、すなわち被検者の年
令、疲労度、症状また周囲条件(明るさ)等によってま
ちまちであり、縮瞳している場合と散瞳している場合で
異なることは周知である。
The size of the pupil varies depending on the eye to be examined, that is, the patient's age, degree of fatigue, symptoms, and surrounding conditions (brightness), and there are cases where the pupil is constricted or mydriatic. It is well known that there is a difference between

因みに一般健康人の瞳孔径は5乃至9 mmの範囲内に
ある。
Incidentally, the pupil diameter of an average healthy person is within the range of 5 to 9 mm.

従来、瞳孔径測定装置として第1図に示されるように、
被検眼前部をテレビモニタによって観察し、走査線ごと
に明暗の出力信号を検出しく瞳孔部Pは暗部となる)、
カーソルマーカーたる基帛線X。
Conventionally, as shown in Fig. 1, a pupil diameter measuring device is used.
The front part of the eye to be examined is observed on a TV monitor, and bright and dark output signals are detected for each scanning line (the pupil P becomes a dark part),
Basic line X is the cursor marker.

Yの箇所の走査線による検出より瞳孔径を、更には走査
線毎罠積分して瞳孔面積を測定するものが知られている
It is known to measure the pupil diameter by detecting the Y location on the scanning line, and further to measure the pupil area by performing trap integration for each scanning line.

ここで瞳孔領域以外まで測定すると、被検眼前眼部への
照明むらによるシェーディング等によって瞳孔領域検出
に有害となる信号をとりこむことがあり、これを避ける
ため、ゲート処理によって破蝕で示される電子r&W(
以下、計測窓という)を設けていた。
If measurements are taken outside the pupil area, signals harmful to pupil area detection may be captured due to shading due to uneven illumination of the anterior segment of the subject's eye. r&W(
A measurement window (hereinafter referred to as a measurement window) was installed.

しかしこの計測窓の面積は予め定められた一定サイズで
あり、瞳孔の大きな被検眼と、小さな被検眼では、その
計測条件に良否の差を生じていた。
However, the area of this measurement window is a predetermined constant size, and there is a difference in measurement conditions between an eye to be examined with a large pupil and an eye to be examined with a small pupil.

すなわち瞳孔の小さな被検眼の場合には、計測窓の窓枠
と瞳孔の間に広いスペースができ、このスペースより前
述の有害信号がとりこまれる可能性があった。
That is, in the case of an eye to be examined with a small pupil, a large space is created between the frame of the measurement window and the pupil, and there is a possibility that the above-mentioned harmful signal may be taken in through this space.

本発明は上記欠点を解決する瞳孔径測定装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a pupil diameter measuring device that solves the above-mentioned drawbacks.

この目的を達成するため、本発明においては、計測前に
予め計測窓の1m積(サイズ)を自動的に変化させて瞳
孔の大きさに見合う計測窓を設定することを特徴どする
In order to achieve this object, the present invention is characterized in that, before measurement, the 1 m area (size) of the measurement window is automatically changed in advance to set a measurement window that matches the size of the pupil.

本発明を用いて被検眼の瞳孔の大きさに適合する計測窓
を設定するには数フィールドの走査が計測前に必要とな
るが、これに要する時間は極く短時間であり、実質的に
何等、計測に障害を与えない。
In order to set a measurement window that matches the pupil size of the eye to be examined using the present invention, several fields of scanning are required before measurement, but the time required for this is extremely short and practically It does not interfere with measurement in any way.

以下、図面に従って実施例を説明する。Hereinafter, embodiments will be described according to the drawings.

第2図は本発明の実施例の構成図である。図でEハ被検
眼、9は対物レンズ、10はテレビカメラ、10ILは
テレビカメラ10からのビデオ信号、11はビデオ信号
10aを増幅する増幅器、11aは増幅器11を経た信
号、12は前眼部観察用のテレビモニタ、15はビデオ
信号から水平同期信号及び垂直同期信号を発生する同期
分離回路、15aは水平同期信号、15bは垂直同期信
号、14はビデオ信号10a ラフランプするクランプ
回路、15はクランプ回路14でクランプされたビデオ
信号を反転2値化する反転2値化回路、15aはその2
値化信号、16は計測範囲を制限する計測窓回路、16
aは計測窓パルス、17は2値化信号15aと計測窓パ
ルス16&が共にHt ghレベルの部分を抽出する信
号17&で制御され横径計測用P2つの積分器を有する
積分回路、19は積分回路1Bでの積分結果を保持記憶
するサンプルホールド回路、19〜19bはそれぞれ瞳
孔縦径信号、瞳孔縦径信号、20はサンプルホールド回
路19のサンプルホールドタイミングを発生するサンプ
ルホールドタイミング発生回路、20aはサンプルホー
ルドタイミング−く/’ス、21はサンプルホールド回
路19で保持された計測値をアナログ−デジタル変換し
て表示する表示回路である。
FIG. 2 is a block diagram of an embodiment of the present invention. In the figure, E is the eye to be examined, 9 is the objective lens, 10 is the television camera, 10IL is the video signal from the television camera 10, 11 is the amplifier that amplifies the video signal 10a, 11a is the signal passed through the amplifier 11, 12 is the anterior segment of the eye A television monitor for observation, 15 a sync separation circuit that generates a horizontal sync signal and a vertical sync signal from a video signal, 15a a horizontal sync signal, 15b a vertical sync signal, 14 a clamp circuit that roughly ramps the video signal 10a, 15 a clamp 15a is a second inverting and binarizing circuit that inverts and binarizes the video signal clamped by the circuit 14;
Value conversion signal, 16 is a measurement window circuit that limits the measurement range, 16
a is a measurement window pulse; 17 is an integration circuit having two integrators; 17 is a transverse diameter measurement P in which the binarized signal 15a and the measurement window pulse 16& are both controlled by a signal 17& for extracting the Htgh level portion; 19 is an integration circuit A sample hold circuit holds and stores the integration result at 1B, 19 to 19b are a pupil longitudinal diameter signal and a pupil longitudinal diameter signal, respectively, 20 is a sample hold timing generation circuit that generates the sample hold timing of the sample hold circuit 19, and 20a is a sample A hold timing circuit 21 is a display circuit that performs analog-to-digital conversion of the measured value held by the sample hold circuit 19 and displays the result.

テレビカメラ10から出力されたビデオ信号10&は第
6図1Qaに示されるような信号で増幅器11゜同期分
離回路16.クランプ回路14に入力する。
The video signal 10 & outputted from the television camera 10 is a signal as shown in FIG. input to the clamp circuit 14.

増幅器11で2倍に増幅されたビデオ信号は観察用テレ
ビモニタ12で受像される。同期分離回路16は水平同
期信号13a、垂直同期信号15に+を発生し次段以降
の種々の回路の制御信号として用いられる。さて、クラ
ンプ回路14に入力されたビデオ信号10&はその最低
レベルでり2ンプされ反転2値化回路15に入力される
。ここでは第6図10aのビデオ信号を一定の直流レベ
ルLでスライスし2値の量子化が行われる。この結果第
51凶いる。この2値化信号15aと計測窓回路16”
C発生した計測窓パルスi6aをA N Dゲート17
゛CANDをとり2値化信号中の瞳孔部すなわち信月P
のみを抽出する。この様子を第5図16a、17aに示
す。積分回路1Bは一定の直流電圧を積分ゲートの開閉
に従って積分を実行、停止するが、横1看計測について
は、瞳孔線信号がこのゲート開閉/<ルスとして働き、
縦直径計測に関しては、カーソルマーカーたる縦の基阜
線Yの発生Iくルスと瞳孔線信号のA、NDをとったも
のがゲート開閉I(ルスとして働く。その結果、開閉)
くルスの長さ、すなわち、瞳孔線信号のレベルがHi 
ghになってし)る時間に対応する積分出力を発生する
。該積分出力番まサンプルホールド/(ルス20aのタ
イミングCサンプルホールド回路19で記憶保持される
。この保持電圧すなわち瞳孔横径信号19a、跪孔縦l
径信号19bは表示回路21でアナログーフ゛ジタル変
換されその結果がデジタルで表示される。
The video signal which has been amplified twice by the amplifier 11 is received by a television monitor 12 for viewing. The synchronization separation circuit 16 generates + for the horizontal synchronization signal 13a and the vertical synchronization signal 15, which are used as control signals for various circuits in the next stage and thereafter. Now, the video signal 10 & inputted to the clamp circuit 14 is 2-amplified at its lowest level and inputted to the inversion binarization circuit 15 . Here, the video signal of FIG. 6 10a is sliced at a constant DC level L and binary quantization is performed. As a result, there is a 51st bad guy. This binary signal 15a and the measurement window circuit 16''
The measurement window pulse i6a generated by C is connected to the A N D gate 17.
゛The pupil area in the binarized signal after CAND, that is, Shinzuki P
Extract only. This situation is shown in FIGS. 16a and 17a. The integration circuit 1B executes and stops integrating a constant DC voltage according to the opening and closing of the integration gate, but for horizontal 1-view measurement, the pupil line signal acts as the opening/closing of this gate.
Regarding vertical diameter measurement, the gate opening/closing I (acts as a pulse. As a result, opening/closing) is obtained by taking the generation I pulse of the vertical base line Y, which is a cursor marker, and the A and ND of the pupil line signals.
The length of the curve, that is, the level of the pupil line signal is Hi.
gh). The integral output number is stored and held in the sample hold circuit 19 of the pulse 20a.
The diameter signal 19b is converted from analog to digital by a display circuit 21, and the result is displayed digitally.

さて、ここで、本発明の特徴事項である可変計測窓につ
いて第4図乃至第5図を用いて詳述する。
Now, the variable measurement window, which is a feature of the present invention, will be explained in detail with reference to FIGS. 4 and 5.

第4図は第3図16aに対応した計測窓回路の構成例で
ある。入力は水平同期信号15a、垂直同期信19bの
4信号である。図に示す回へは、相似な2つの回路と計
測窓の基準位置を観察用テレビモニタ上に表示するため
の回路から成シ、拘;号50〜!+5で示されているの
が横径方向、符号40〜45で示されているのが縦径方
向の計測窓を制御する回路であり、以下、これを各々横
窓制御回路、縦窓制御回路と呼ぶことにする。最後に符
号61゜42、、!56〜40で構成されているのが基
準位置表示回路である。ここで、横窓制御回路と縦窓制
御回路は、その入力が水平同期信号15aK対して垂直
同期信号15b及び瞳孔横径信号194 K対して瞳孔
4[往信号19bという相違があるだけで回路構成上全
く同じであるので以後、横窓制御回路と基準位置表示回
路について説明する。50は瞳孔横径信号19&を1/
2倍に増幅し所定のオフセット電圧を加える増幅器、6
0aはその出力、61は水平同期信号が入る毎にリセッ
トする鋸歯状波発生器、51mはその出力、52はコン
パレータ、521はその出力、35は増幅器50の出力
50aの符号を反転する符号反転器、34はコンパレー
タ、54&はその出力、55はコンパレータ32.コン
パレータ64の各出力52a、 34aのANDをとる
ANDゲート、551Lはその出力、56は基準線Yの
タイミングを発生するコンパレータ、57は単安定マル
チバイブレータ、68は基準@Xのタイミングを発生す
るコンパレータ、69は走査線抽出回路、40はORゲ
ー)、40aはその出力である。
FIG. 4 shows a configuration example of a measurement window circuit corresponding to FIG. 3 16a. Inputs are four signals: a horizontal synchronizing signal 15a and a vertical synchronizing signal 19b. The circuit shown in the figure consists of two similar circuits and a circuit for displaying the reference position of the measurement window on the observation television monitor. The circuit indicated by +5 is the circuit that controls the measurement window in the horizontal radial direction, and the ones indicated by 40 to 45 are the circuits that control the measurement window in the vertical radial direction. I will call it. Finally, the code is 61°42,,! 56 to 40 constitute a reference position display circuit. Here, the horizontal window control circuit and the vertical window control circuit have circuit configurations that differ only in that their inputs are a vertical synchronization signal 15b for the horizontal synchronization signal 15aK, and a pupil 4 [outgoing signal 19b] for the pupil horizontal diameter signal 194K. Since the above are exactly the same, the side window control circuit and the reference position display circuit will be explained hereafter. 50 is the pupil transverse diameter signal 19 & 1/
an amplifier that doubles the amplification and applies a predetermined offset voltage, 6
0a is its output, 61 is a sawtooth wave generator that is reset every time a horizontal synchronization signal is input, 51m is its output, 52 is a comparator, 521 is its output, 35 is a sign inverter that inverts the sign of the output 50a of the amplifier 50. 34 is a comparator, 54& is its output, and 55 is a comparator 32. An AND gate that ANDs the outputs 52a and 34a of the comparator 64, 551L is its output, 56 is a comparator that generates the timing of the reference line Y, 57 is a monostable multivibrator, and 68 is a comparator that generates the timing of the reference @X. , 69 is a scanning line extraction circuit, 40 is an OR game), and 40a is its output.

ここで瞳孔横径信号191Lは瞳孔部信号17aを積分
回路18で積分しサンプルホールド回路19で配憶保持
される出力信号である。
Here, the pupil transverse diameter signal 191L is an output signal that is obtained by integrating the pupil portion signal 17a in the integrating circuit 18 and stored and held in the sample hold circuit 19.

瞳孔横径信号19aは増幅器60で1/2 f+!rに
増幅され所定のオフセット電圧Voを加えられる。この
様子を第5図19a、30aに示す。
The pupil transverse diameter signal 19a is converted to 1/2 f+! by the amplifier 60. r, and a predetermined offset voltage Vo is applied thereto. This state is shown in FIG. 5, 19a and 30a.

更にこの信号の一方はコンパレータ52に、他方は符号
反転器′54で符号反転されてコンパレータ54にそれ
ぞれ入力するこれら2つのコンパレータのもう一方の入
力はいずれも鋸歯状波発生器51で発生される鋸歯状波
51&である。この鋸歯状波51aは第5図51aに示
す通り、周期は水平同期信号と同一でOボルトを中心に
等電圧で振シ分けるように設定しである。更に鋸歯状波
発生回路51の時定数は第2図の積分回路1Bの時定数
と等しいか又はそれ以上に設定されている。さてコンパ
レータ52,34の入力端子の極性を、第4図の如く選
びA N Dゲート55でそれぞれのコンパレータの出
力のANDをとると、第5図60へ51&。
Further, one of these signals is input to a comparator 52, and the other signal is inverted by a sign inverter '54 and input to the comparator 54. The other inputs of these two comparators are both generated by a sawtooth wave generator 51. This is a sawtooth wave 51&. As shown in FIG. 551a, this sawtooth wave 51a has the same period as the horizontal synchronizing signal, and is set to distribute the voltage equally around O volts. Furthermore, the time constant of the sawtooth wave generating circuit 51 is set to be equal to or greater than the time constant of the integrating circuit 1B shown in FIG. Now, the polarities of the input terminals of the comparators 52 and 34 are selected as shown in FIG. 4, and the outputs of the respective comparators are ANDed by the A N D gate 55.

52a、 !141L、 55&に示す様な一連の関係
が得られる。
52a, ! A series of relationships as shown in 141L, 55& are obtained.

これよシ信号55aが瞳孔部信号17aの瞳孔径に対応
した幅をもつことが理解される。コンパレータ56は鋸
歯状波51aが0■を通過する時点でその出力がHtg
hとなるように設定されている。この信号の立上シで単
安定iルデバイプレータ67は極めて幅の短いパルスを
出力する。このパルスは、基準線Yを発生するパルスで
ある。一方、走査線抽出回路39は先の51mと56と
同様な関係で鋸歯状波42mを受けてコンパレータ58
から出力される信号が立上った時点でトレースしている
走査線の次の一走査線に対応する時間だけHtgh h
なるようなパルスを出力する。このI(ルスは基準線X
を発生するパルスである。これら2つのI(ルス出力は
ORゲート40でORをとられその出力40’aを第2
図11mに混合すると観測用テレビモニタ上に十字線が
撮像される。計測に際しては、この十字線の交点と瞳孔
中心が一致するように瞳孔部の位置決めをする。
It is understood that the width signal 55a has a width corresponding to the pupil diameter of the pupil signal 17a. The comparator 56 outputs Htg when the sawtooth wave 51a passes through 0.
h. At the rising edge of this signal, the monostable I/L divisor 67 outputs an extremely short pulse. This pulse is the pulse that generates the reference line Y. On the other hand, the scanning line extraction circuit 39 receives the sawtooth wave 42m in the same manner as the previous 51m and 56, and the comparator 58 receives the sawtooth wave 42m.
Htgh h for the time corresponding to the next scanning line of the scanning line being traced when the signal output from rises
Outputs a pulse that looks like this. This I (Rus is the reference line
This is a pulse that generates These two I(rus outputs) are ORed by an OR gate 40 and the output 40'a is
When mixed with Fig. 11m, a crosshair is imaged on the observation television monitor. During measurement, the pupil is positioned so that the intersection of the crosshairs matches the center of the pupil.

第6図は被検眼の瞳孔の大きさに適した計測窓がテレビ
モニタ上に形成される過程を図示したものである。
FIG. 6 illustrates a process in which a measurement window suitable for the size of the pupil of the eye to be examined is formed on the television monitor.

外側の長方形はテレビモニタ画面、中心の黒く塗シつぶ
した直径Pの円は瞳孔、画面上の十字線は基準線で縦線
が基準腺Y1横線が基準線Xである。
The outer rectangle is the television monitor screen, the black circle in the center with diameter P is the pupil, the crosshair on the screen is the reference line, the vertical line is the reference gland Y1, and the horizontal line is the reference line X.

第6図(a)で斜線でノ・ツブした部分は瞳孔部と同じ
輝度の雑音があるとしたもので、ビデオ信号上°C見る
と、この雑音と瞳孔部のレベルは全く同じであυ信号の
レベルでは全く判別できず、ただ位置情報のみに相違が
あるものとする。
The hatched area in Figure 6(a) is assumed to contain noise with the same brightness as the pupil, and when viewed on the video signal, the levels of this noise and the pupil are exactly the same. It is assumed that the difference cannot be determined at all based on the signal level, and only the positional information differs.

第6図(、)で破線で示した正方形と瞳孔の間は雑音の
ない領域で、この領域に対する条件は後述する。
The area between the square indicated by the broken line and the pupil in FIG. 6(,) is a noise-free area, and the conditions for this area will be described later.

第6図(b)は1フイールド目の画面である。ここで実
線にて示したのが、この状態での計測窓の窓枠である。
FIG. 6(b) is the screen of the first field. Here, the solid line indicates the frame of the measurement window in this state.

なお窓枠については更に@7図に1第6図の各状態(b
)〜(f) K対応して示されておシ、最終的な計測窓
は第7図(、)の如くなる。
Regarding the window frame, see @7 in Figure 1 for each state in Figure 6 (b
) to (f) are shown correspondingly to K, and the final measurement window is as shown in FIG. 7(, ).

ここで第7図(、)は第6図(f)の計測窓を拡大した
図である。第6図(b)でDは第5図501のVoK相
当するオフセットの量である。
Here, FIG. 7(,) is an enlarged view of the measurement window in FIG. 6(f). In FIG. 6(b), D is the amount of offset corresponding to VoK in FIG. 5 501.

以後、図を見易くするため、計測窓の内側にあり、実際
に計測されている雑音についてのみハツチを施している
が、雑音はすべての図において、第6図ta+で設定し
た通り存在している。
From now on, in order to make the figures easier to read, only the noise that is inside the measurement window and is actually measured is hatched, but noise exists in all figures as set in Figure 6 ta+. .

第6図(b)で画面最上位から走査線がトレースしてい
くが、雑音の無い領域に達するまでは、全画面幅Xoに
渡って第2図の積分回路1Bは積分するので、その積分
出力に変化が無く、従って横窓枠にも変化は無い。走査
線が雑音の無い領域を一度トレースすると、先の積分出
力はXsの長′さの分だけ小さくなる。これらは成る走
査線で走査方向の暗部の幅が計測されると、この幅が画
面中心で対称的に振シ分けられ、次の走査線での計測幅
とされ、これが順次行われることVC因る。
In Fig. 6(b), the scanning line traces from the top of the screen, but until it reaches a noise-free area, the integration circuit 1B in Fig. 2 integrates over the entire screen width Xo, so the integral There is no change in the output, so there is no change in the side window frame either. Once the scanning line traces a noise-free area, the previous integrated output becomes smaller by the length of Xs. When the width of the dark area in the scanning direction is measured using the scanning lines consisting of these, this width is distributed symmetrically around the center of the screen and used as the measurement width for the next scanning line, and this is done sequentially. Ru.

たけ横窓枠が縮み、その結果、基準線Yの両側にXz−
1−Dの大きさの横窓枠が設定される。
The horizontal window frame shrinks, and as a result, Xz- on both sides of the reference line Y.
A horizontal window frame with a size of 1-D is set.

更に次のトレース時には、該積分回路は前記窓枠この状
態を第8図に示す。すなわち第8図は第6図(b)にお
いて水平走査線が破線で示した正方形の上辺から6本目
までトレースしたときのタイムチャート及び動作波形図
であり、これらは第5図のそれと対応する。なお171
LでN Lt瞳几と同じ輝度を有する雑音である。
Furthermore, at the time of the next trace, the integrating circuit is in this state as shown in FIG. 8. That is, FIG. 8 is a time chart and an operation waveform diagram when the horizontal scanning line is traced from the upper side of the square indicated by the broken line to the sixth line in FIG. 6(b), and these correspond to those in FIG. 5. Note 171
It is a noise having the same brightness as the N Lt pupil.

このようにして、やがて横窓枠が、雑音の無い領域に達
すると該積分出力はゼロとなるためオフセット址りのみ
が基準線Yの両側にあるような窓枠となる。この細い横
窓枠が瞳孔の上端に達すると再び該積分出力は増大し、
次のトレース時には、その出力の半分に相当する長さに
オフセット量りを加えた長さを、基準線Yの両側にとっ
た窓枠ができ、以後、これらと同様にして画面最下位ま
で走査すると第7図(b)に示すような計測窓ができる
In this way, when the horizontal window frame eventually reaches a noise-free region, the integral output becomes zero, resulting in a window frame in which only the offset is on both sides of the reference line Y. When this thin horizontal window frame reaches the upper end of the pupil, the integral output increases again,
During the next trace, a window frame with a length equivalent to half of that output plus the offset measurement will be created on both sides of the reference line Y, and from now on, if you scan to the bottom of the screen in the same way. A measurement window as shown in FIG. 7(b) is created.

第6図(0)は2フイールド目の画面である。1フイー
ルド目で得た基準線Yに沿う積分出力情報で横窓と同様
にして縦窓枠を基1(It Ii[Xを中心軸として形
成しフィールド毎にその窓枠を更新していく。
FIG. 6(0) is the screen of the second field. Using the integral output information along the reference line Y obtained in the first field, a vertical window frame is formed using the center axis as the horizontal window, and the window frame is updated for each field.

すなわち前のフィールドでの基準13 Y方向の暗部の
幅が形成され、この幅が画面中心で対称的に振υ分けら
れ次のフィールドでの計測値とされる。
That is, the width of the dark area in the reference 13 Y direction in the previous field is formed, and this width is divided symmetrically around the center of the screen and used as the measured value in the next field.

換言すれば横窓枠が各走査線毎に更新されていくのに対
し縦窓枠は各フィールド毎に更新されていく。第6図f
n +8)は各々5フィールド目、6フイールド目であ
る。
In other words, the horizontal window frame is updated for each scanning line, whereas the vertical window frame is updated for each field. Figure 6 f
n+8) are the 5th field and the 6th field, respectively.

第6図(f)は7フイールド目であるが、これが計測窓
の最終的な状71jであり拡大図である第7図+al力
)られかるように1オフセット量りが瞳孔の外側に加え
られた形の計測窓となる。計測窓が上記のように縮少し
ていくためには、瞳孔のまわりに有害な雑音のないドー
ナツ状の領域を描けることが必要であシ更に最終的に形
成される計測窓内に有害な雑音が混入しないための条件
は、瞳孔端から最も近い有害な雑音領域までの距離がオ
フセットLD、J1.シ大きいことである。
Figure 6(f) is the 7th field, and this is the final shape of the measurement window 71j, which is an enlarged view of Figure 7 (+al force).One offset scale was applied to the outside of the pupil. It becomes a measurement window for shape. In order for the measurement window to shrink as described above, it is necessary to draw a donut-shaped area around the pupil that is free from harmful noise, and furthermore, it is necessary to draw a donut-shaped area around the pupil that is free from harmful noise. The condition for not mixing is that the distance from the pupil edge to the nearest harmful noise area is offset LD, J1. This is a big thing.

なおこのように設定される計測窓は、固定的なものでな
く、瞳孔a面積が変化すれば、第6図(fjの段階から
逐次、瞳孔の外側にオフセラ)Dだけ広がった計測窓を
設定していく。
Note that the measurement window set in this way is not fixed; if the area of the pupil a changes, a measurement window that is widened by D is set as shown in Fig. 6 (sequentially from the stage of fj, offset to the outside of the pupil). I will do it.

第9図は手動計測窓制御回路の碑成図である。図で15
は水平同期信号、15bは垂直同期信号、61は横窓制
御のための可変直?ie ′tit圧源、62は61の
出力を2倍に増幅する増幅器、62は縦窓制御のための
可変直流電圧源、63は62の出力を2倍に増幅する増
幅器、60は第41図′51γ40゜42〜47でII
IIγ成される同図の回路と全く同じ回路、16aは計
測窓回路の出力である計測窓パルス、40aは基準位置
表示回路の出力である。
FIG. 9 is a schematic diagram of the manual measurement window control circuit. 15 in figure
is a horizontal synchronization signal, 15b is a vertical synchronization signal, and 61 is a variable directivity signal for side window control. ie 'tit pressure source, 62 is an amplifier that doubles the output of 61, 62 is a variable DC voltage source for controlling the vertical window, 63 is an amplifier that doubles the output of 62, 60 is shown in FIG. '51γ40°42-47 II
16a is the measurement window pulse which is the output of the measurement window circuit, and 40a is the output of the reference position display circuit.

入力の水平同期信号15aと垂直同期信号15bは前述
の自動計測窓制御回路での機能と全く同じ役割をもつ。
The input horizontal synchronizing signal 15a and vertical synchronizing signal 15b have exactly the same function as the above-mentioned automatic measurement window control circuit.

可変直流電圧源61.65を手動で調節するとそこで発
生した電圧は、それぞれ増幅器62.64で2倍に増幅
され各々回路60に入力されろ。回路60は前述の自動
計測窓回路での動作と全く同じ動作で計測窓パルス16
1Lと基準位置表示回路の出力40aを出力する。これ
によって、画面上に形成される計測窓は、縦方向、横方
向それぞれ別々に手動で拡大、縮少できる。
When the variable DC voltage sources 61,65 are manually adjusted, the voltages generated therein are amplified twice by amplifiers 62,64 and input into the circuit 60, respectively. The circuit 60 operates exactly the same as the automatic measurement window circuit described above, and generates the measurement window pulse 16.
1L and output 40a of the reference position display circuit. Thereby, the measurement window formed on the screen can be manually enlarged or reduced in both the vertical and horizontal directions.

以上説明したように、計測窓の開口面積を変化させる機
能を有することで、被検眼の個人差に影響されず、特に
自動で計測窓を制御する場合は、縮瞳、散脳に伴って計
測窓が変化するため、これら縮、散瞳の影響も受けずに
、効果的に2値化信号中の計測に不要な部分や有害な雑
音を除去し最適な計測条件を得ることができる。
As explained above, by having the function of changing the aperture area of the measurement window, it is not affected by individual differences in the eye being examined, and especially when automatically controlling the measurement window, it is possible to measure Since the window changes, it is possible to effectively remove portions unnecessary for measurement and harmful noise in the binary signal without being affected by constriction or mydriasis, and to obtain optimal measurement conditions.

なお撮像手段どして、上述した撮像管の他、例えば2次
元又は1次元イメージセンサ等の各種撮像第1図はモニ
タ上に観察される被検眼前部の図、第2図は本発明の実
施例の購成図、 第3図は第2図における各部の信号及び動作波形図 を示すタイムチャート、 Δ 第4図は計測窓回路の第1描成例の図、第5図は第4図
における各部の信号及び動411波形図 を示すタイ1ムチャ−1 第6図(&)〜(f)、第7図(,1〜(f)は計測窓
の形成過程を示した図、 第8図は第6図(b)についての横窓枠変化に関する図 各部の信号及び動作波形を示すタイムチャート、△ 第9図は計測窓回路の第2 +:#成例の図、図中、W
は計測窓、X、Yはカーソルマーカーたる基準線、Pは
瞳孔像、Eは被検眼、9は対物レンズ、10はテレビカ
メラ、12はテレビモニタ、1!1は垂直同期信号、1
3aは水平同期信号、16bは垂直同期信号、15は反
転2値化回路、16は計測窓回路、17はA N I)
ゲート、18は積分回路、50はオフセット電圧を加え
る増幅器、61A鋸歯状波発生器、52.54.56は
コンパレ〜り、65):i A N D り−) 、3
7 Ljラワンョットマルチハイブレーク、61.65
は可変面61e電圧源である〇W 1qα :35a (d)(e) (C) (イ) −J乙− 1 6プ      1
In addition to the above-mentioned image pickup tube, various types of imaging means may be used, such as a two-dimensional or one-dimensional image sensor. FIG. Figure 3 is a time chart showing signals and operation waveform diagrams of each part in Figure 2, Δ Figure 4 is a diagram of the first drawing example of the measurement window circuit, Figure 5 is the diagram of the fourth example. Figures 6 (&) to (f), Figure 7 (, 1 to (f) are diagrams showing the process of forming the measurement window, Figure 8 is a time chart showing the signals and operating waveforms of each part of the diagram related to the change in the horizontal window frame for Figure 6(b), △ Figure 9 is a diagram of the second +: # example of the measurement window circuit, in the figure, W
are measurement windows, X and Y are reference lines as cursor markers, P is a pupil image, E is an eye to be examined, 9 is an objective lens, 10 is a television camera, 12 is a television monitor, 1!1 is a vertical synchronization signal, 1
3a is a horizontal synchronization signal, 16b is a vertical synchronization signal, 15 is an inversion binarization circuit, 16 is a measurement window circuit, 17 is an A N I)
gate, 18 is an integration circuit, 50 is an amplifier that adds an offset voltage, 61A sawtooth wave generator, 52, 54, and 56 are comparators, 65): i AN D ri-), 3
7 Lj Rawanhot Multi High Break, 61.65
is the voltage source of the variable surface 61e 〇W 1qα :35a (d) (e) (C) (a) -JOtsu- 1 6pu 1

Claims (1)

【特許請求の範囲】 1 被検眼前部を電子走査によって撮像する被検眼前部
Wk像千手段、 a1°測範囲を制限する計測窓手段と、該撮像手段の出
力信号から被検眼瞳孔の大きさに対応する矩形波を抽出
する2値化手段を有し、該2値化手段の出力から被検眼
瞳孔の大きさを測定する瞳孔径測定装置において、 前記2値化手段の出力を積分して配憶保持する保持手段
と、 該手段の出力にオフセット量を与える手段と、該オフセ
ットflから被検眼瞳孔より所定量だけ大きい計測窓を
自動設定する手段とを有し、瞳孔測定に際し、被検眼瞳
孔に応じて前記計測窓の大きさを可変とすることを特徴
とする瞳孔径測定装置。 2 計測窓の大きさを外部よシWt調整する手段を有す
る特許請求の範囲第1項記載の瞳孔径測定装置。
[Scope of Claims] 1. A front part Wk image means for imaging the front part of the eye to be examined by electronic scanning, a measurement window means for limiting the a1° measurement range, and a size of the pupil of the eye to be examined from the output signal of the imaging means. In a pupil diameter measuring device that has a binarization means for extracting a rectangular wave corresponding to a rectangular wave, and measures the size of the pupil of an eye to be examined from the output of the binarization means, the output of the binarization means is integrated. a holding means for storing and storing the output of the means; a means for applying an offset amount to the output of the means; and a means for automatically setting a measurement window larger than the pupil of the eye to be examined by a predetermined amount from the offset fl; A pupil diameter measuring device characterized in that the size of the measurement window is variable depending on the pupil of the eye. 2. The pupil diameter measuring device according to claim 1, comprising means for externally adjusting the size of the measurement window.
JP20396282A 1982-11-19 1982-11-19 Pupil diameter measuring apparatus Pending JPS5994004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20396282A JPS5994004A (en) 1982-11-19 1982-11-19 Pupil diameter measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20396282A JPS5994004A (en) 1982-11-19 1982-11-19 Pupil diameter measuring apparatus

Publications (1)

Publication Number Publication Date
JPS5994004A true JPS5994004A (en) 1984-05-30

Family

ID=16482529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20396282A Pending JPS5994004A (en) 1982-11-19 1982-11-19 Pupil diameter measuring apparatus

Country Status (1)

Country Link
JP (1) JPS5994004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223507A (en) * 1987-03-13 1988-09-19 Matsushita Electric Ind Co Ltd Position shift inspecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223507A (en) * 1987-03-13 1988-09-19 Matsushita Electric Ind Co Ltd Position shift inspecting device

Similar Documents

Publication Publication Date Title
US3598107A (en) Pupillary motion observing apparatus
US4218707A (en) Thermographic areameter
CA1198767A (en) Apparatus for maintaining of a cathode ray tube image within the light acceptance range of a photographic film
US3551052A (en) Boundary detection apparatus
JPS6221532B2 (en)
JPS5994004A (en) Pupil diameter measuring apparatus
JPS6354378B2 (en)
Bijl et al. Bias-free procedure for the measurement of the minimum resolvable temperature difference and minimum resolvable contrast
JPS5991942A (en) Apparatus for measuring pupil diameter
JPH0634779B2 (en) Eye measuring device
US5117112A (en) Method and apparatus for monitoring astigmatism and focus in electron microscope
Kanal et al. Comparison of selected ultrasound performance tests with varying overall receiver gain and dynamic range, using conventional and magnified field of view
EP0099229A2 (en) Image measuring system
SU955179A1 (en) Device for displaying data on cathode-ray tube screen
SU133245A1 (en) Instrument for examining the fundus
JPS62254727A (en) Eyeground examination apparatus
JPH01501998A (en) Device for obtaining X-ray tomography images
US4068263A (en) Image analysis methods
KR0158405B1 (en) Measurement apparatus for color purity
JP3597039B2 (en) Image display method and apparatus for detection signal using statistical processing
SU1183063A1 (en) Apparatus for investigating visual system
KR920008310B1 (en) Apparatus of testing stray emission of cathode ray tube
JPH05130973A (en) Endoscope apparatus
JPS62280614A (en) Electrooptic type displacement measuring instrument
JPH0695634A (en) Image processing method in magnified image pickup device and its device