JPS5993923A - Internal-combustion engine with supercharger - Google Patents

Internal-combustion engine with supercharger

Info

Publication number
JPS5993923A
JPS5993923A JP20363982A JP20363982A JPS5993923A JP S5993923 A JPS5993923 A JP S5993923A JP 20363982 A JP20363982 A JP 20363982A JP 20363982 A JP20363982 A JP 20363982A JP S5993923 A JPS5993923 A JP S5993923A
Authority
JP
Japan
Prior art keywords
engine
working chamber
supercharger
air supply
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20363982A
Other languages
Japanese (ja)
Inventor
Shuichi Kitamura
修一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20363982A priority Critical patent/JPS5993923A/en
Publication of JPS5993923A publication Critical patent/JPS5993923A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • F02B33/36Engines with pumps other than of reciprocating-piston type with rotary pumps of positive-displacement type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To improve fuel consumption in the partial load area of an engine, by causing a supercharger to generate power within a partial load area including a racing condition. CONSTITUTION:When an engine is in a racing condition, throttle valves 12 and 13 are closed, and after feed air flows in an operation chamber 7 through an air feed passage 11 on the inlet side, the feed air in the operation chamber 7 is adiabatically expanded, and is exhausted in an air feed passage 16 on the outlet side. In a partial load area, the throttle valves 13 and 12 are slightly opened, and feed air flows in the operation chamber 7 through the air feed passage 10 on the inlet side and the air feed passage 9 on the outlet side. This causes a supercharger 1 to generate a work, equivalent to a part shown by slant lines, i.e., power. The power is equivalent to the work which is generated when the feed air, flowing in the operation chamber 7 until its volume reaches a point Vc, is adiabatically expanded from its status with an atmospheric pressure Po to the status with a pressure Pi (negative pressure) in the air feed passage 16 on the outlet side.

Description

【発明の詳細な説明】 本発明の燃費を改善させた過給機付内燃機関に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a supercharged internal combustion engine with improved fuel efficiency.

一般に過給機付内燃機関においては、ノツキング防止の
為の圧縮比低減、過給機を駆動する事に起因する摩擦損
失の増大等の理由により機関の燃費は悪化する。
Generally, in a supercharged internal combustion engine, the fuel efficiency of the engine deteriorates due to reasons such as a reduction in the compression ratio to prevent knocking and an increase in friction loss caused by driving the supercharger.

本発明は、機関の空転状態を含む部分負荷域において過
給機自体に動力を発生させ、これを機関に伝達する事に
よつて燃費を大幅に改善しようとしたもので、以下図面
に従つて説明する。
The present invention aims to significantly improve fuel efficiency by generating power in the supercharger itself in a partial load range, including when the engine is idling, and transmitting this power to the engine. explain.

第1図は本発明による過給機付内燃機関の一実施例で、
チエーン・ベルト等を介して機関に(出力軸に)連結す
る過給機1を備えている(燃料供給装置としては、燃料
噴射弁2を有する燃料噴射装置を採用した)。
FIG. 1 shows an embodiment of a supercharged internal combustion engine according to the present invention.
The engine is equipped with a supercharger 1 connected to the engine (to the output shaft) via a chain belt or the like (a fuel injection device having a fuel injection valve 2 is used as the fuel supply device).

入口側給気通路9,10,11から作動室7(過給機1
における容積変化を伴う空間を言い、図ではローター3
,ベーン4,ローターハウジング5,サイドハウジング
6により形成される空間を言う)に流入した給気は、加
圧された後に出口側給気通路16を経て機関に供給され
、過給が行なわれる様になつている。
From the inlet side air supply passages 9, 10, 11 to the working chamber 7 (supercharger 1
Refers to the space with a change in volume at rotor 3 in the figure.
, the space formed by the vanes 4, the rotor housing 5, and the side housing 6) is pressurized and then supplied to the engine through the outlet side air supply passage 16 to perform supercharging. It's getting old.

今、機関の空転状態を考えると、絞弁12、13は共に
全閉しており、ある1つの作動室7に着目し、同作動室
7の容積の最小状態から最大状態へ到る行程の中途(以
下この時点をVc点と称する)でローター3に形成され
た切欠8と入口側給気通路11との連通、即ち切欠8と
入口側給気通路11の開口部14との連通が遮断される
様になつている(入口側給気通路10、11等は図面よ
りも手前のサイドハウジング6に形成されているので、
二点鎖線で示してある)。
Now, considering the idling state of the engine, the throttle valves 12 and 13 are both fully closed, and focusing on one working chamber 7, the process from the minimum volume state to the maximum volume state of the working chamber 7 is At some point (hereinafter referred to as point Vc), the communication between the notch 8 formed in the rotor 3 and the inlet air supply passage 11, that is, the communication between the notch 8 and the opening 14 of the inlet air supply passage 11 is cut off. (Since the inlet side air supply passages 10, 11, etc. are formed in the side housing 6 on the front side than in the drawing,
(indicated by a chain double-dashed line).

従つて、前記Vc点で作動室7と入口側給気通路11と
の連通が遮断、即ち過給機1の入口側給気通路から作動
室7へ流入する給気の流入が遮断され、この給気によつ
て機関の空転状態が維持される事になる。
Therefore, at the Vc point, the communication between the working chamber 7 and the inlet air supply passage 11 is cut off, that is, the inflow of air supply from the inlet air supply passage of the supercharger 1 into the working chamber 7 is cut off. The idling state of the engine is maintained by the air supply.

この場合、入口側給気通路11から作動室7へ流入する
給気は絞弁により絞らない様にし、Vc点における作動
室7内の圧力は大気圧となつている事が望ましい(もち
ろん、前記Vc点を遅らせ、これに伴い入口側給気通路
11を流れる給気を絞つても良いが、給気の絞りの度合
は最小限に止める様にする)。
In this case, it is desirable that the air supply flowing into the working chamber 7 from the inlet side air supply passage 11 is not throttled by the throttle valve, and that the pressure in the working chamber 7 at the Vc point is atmospheric pressure (of course, The Vc point may be delayed and the supply air flowing through the inlet air supply passage 11 may be throttled accordingly, but the degree of throttling of the supply air should be kept to a minimum).

そして、前記作動室7と入口側給気通路11との連通が
Vc点で遮断された後は、この作動室7内の給気は断熱
的に膨張し、過給機1の出口側、即ち出口側給気通路1
6内の圧力(負圧)にほぼ等しくなつた時点で、同作動
室7内の給気は図示の如く入口側給気通路9の開口部を
介して同作動室7よりも1つ進み側(ローター3の回転
方向)の作動室7内へ排出(吸引)され、かつこの1つ
進み側の作動室7は連通路17を介して出口側給気通路
16へ連通させてあるから、最終的には出口側給気通路
16内へ排出されるに到る。
After the communication between the working chamber 7 and the inlet air supply passage 11 is cut off at the Vc point, the air supply in the working chamber 7 expands adiabatically, and the air is transferred to the outlet side of the supercharger 1, i.e. Outlet side air supply passage 1
At the point when the pressure (negative pressure) in the working chamber 7 becomes almost equal to the pressure (negative pressure) in the working chamber 7, the air supply in the working chamber 7 advances one space ahead of the working chamber 7 through the opening of the inlet air supply passage 9 as shown in the figure. (direction of rotation of the rotor 3) into the working chamber 7, and this working chamber 7 on the forward side is communicated with the outlet side air supply passage 16 via the communication passage 17. Ultimately, the air is discharged into the outlet air supply passage 16.

絞弁12,13を全閉させた時の作動室7のP−V線図
(圧力−容積線図)を第2図に示す。
FIG. 2 shows a PV diagram (pressure-volume diagram) of the working chamber 7 when the throttle valves 12 and 13 are fully closed.

図からも明らかの様に本発明においては、過給機1は斜
線の部分に相当する仕事、即ち動力を発生する事になり
、言い換えるとVc点までに作動室7内へ流入した給気
が大気圧Poから出口側給気通路16内の圧力Pi(負
圧)まで断熱的に膨張する時に発生する仕事に相当する
動力を機関が得る事になるのである。
As is clear from the figure, in the present invention, the supercharger 1 generates work corresponding to the shaded area, that is, power. In other words, the supply air that has flowed into the working chamber 7 up to the Vc point The engine obtains power corresponding to the work generated when expanding adiabatically from the atmospheric pressure Po to the pressure Pi (negative pressure) in the outlet air supply passage 16.

次に、機関の出力を増大させる為に絞弁13を開いてゆ
くと、入口側給気通路10は、その開口部15が切欠8
に連通する事によつて作動室7へ連通し、かくしてより
多くの給気が作動室7内へ流入して機関の出力を増大さ
せる。
Next, when the throttle valve 13 is opened in order to increase the output of the engine, the inlet side air supply passage 10 has an opening 15 formed at the notch 8.
By communicating with the working chamber 7, more supply air flows into the working chamber 7, increasing the output of the engine.

そして、絞弁13を更に開くと絞弁12が開き始め、給
気は入口側給気通路9からも作動室7内へ多量に流入し
て機関の出力を一層増大させ、遂には過給が行なわれる
様になる(この場合、絞弁12,13は互いに機械的に
連動させてあり、同時に開かせる様にしても良いもので
ある)。
When the throttle valve 13 is further opened, the throttle valve 12 begins to open, and a large amount of supply air flows into the working chamber 7 from the inlet air supply passage 9, further increasing the engine output, and finally supercharging occurs. (In this case, the throttle valves 12 and 13 are mechanically interlocked with each other and may be opened at the same time.)

絞弁13(又は12)が若干開いた機関の部分負荷域に
おいても、Vc点における作動室7内の圧力は過給機1
の出口側,即ち出口側給気通路16内の圧力(負圧)よ
りも十分に高いから、依然として過給機1は動力を発生
し、これを機関に伝達しているのである。
Even in the partial load range of the engine where the throttle valve 13 (or 12) is slightly open, the pressure in the working chamber 7 at point Vc remains at the supercharger 1.
Since the pressure is sufficiently higher than the pressure (negative pressure) on the outlet side of the air supply passage 16, the supercharger 1 still generates power and transmits it to the engine.

この様に本発明によれば、機関の空転状態を含む部分負
荷域においては過給機1に動力が発生しており、これを
機関に伝達する様にしてあるから、機関の部分負荷域に
おける燃費は著しく改善され、過給機付内燃機関にもか
かわらず(過給が行なわれる様になると燃費は悪化する
が)燃費は全体として大幅に改善される。
As described above, according to the present invention, power is generated in the supercharger 1 in the partial load range including the idling state of the engine, and this is transmitted to the engine, so that in the partial load range of the engine Fuel efficiency is significantly improved, and overall fuel efficiency is significantly improved despite being a supercharged internal combustion engine (although fuel efficiency worsens when supercharging is performed).

連通路17は、機関に過給が行なわれる様になつた時(
出口側給気通路16内の圧力が大気圧以上になつた時)
、出口側給気通路16内の圧力を感知して作動するダイ
アフラム装置19に連動する開閉弁18によつて閉鎖せ
しめ、給気の逆流を防止する様にする。
The communication passage 17 is connected when the engine starts to be supercharged (
(When the pressure inside the outlet side air supply passage 16 exceeds atmospheric pressure)
It is closed by an on-off valve 18 linked to a diaphragm device 19 that senses the pressure in the outlet side air supply passage 16 and operates, thereby preventing backflow of air supply.

第3図に連通路17を除去した時(形成していない時)
の作動室7のP−V線図を示すが、縦線で表わされる僅
かな部分(これは、入口側給気通路9の開口部をベーン
4が通過する際、作動室7が互いに連通する事によつて
生ずるものである)が負の仕事として過給機1で発生し
た動力を若干減少させるのみであるから、連通路17は
必要不可欠なものではない。
Figure 3 shows when the communication path 17 is removed (when it is not formed)
The P-V diagram of the working chamber 7 is shown, and the small part represented by the vertical line (this is the part where the working chambers 7 communicate with each other when the vane 4 passes through the opening of the inlet side air supply passage 9). The communication passage 17 is not indispensable, since it only slightly reduces the power generated by the supercharger 1 as negative work.

機関の減速時には入口側給気通路11をも全閉又はほぼ
全閉とすれば、給気の吸入抵抗損失により機関の(即ち
車両等の)減速特性が向上する。
When the inlet side air supply passage 11 is also fully closed or almost completely closed when the engine is decelerated, the deceleration characteristics of the engine (that is, of the vehicle, etc.) are improved due to intake resistance loss of the supply air.

尚、機関の空転状態において、Vc点で作動室7内への
給気の流入を遮断した後は、この作動室7内へ再び給気
を流入させない様にする(即ち、Vc点で給気の流入を
完全に遮断する)事が望ましいが、絞弁13を僅かに開
いて微小流量の給気を流入せしめ、機関の空転状態にお
ける回転速度を細かく調節する様にしても良い。
In addition, when the engine is idling, after cutting off the supply air into the working chamber 7 at the Vc point, prevent the supply air from flowing into the working chamber 7 again (that is, the supply air is cut off at the Vc point). Although it is desirable to completely cut off the inflow of the engine, the throttle valve 13 may be opened slightly to allow a minute flow of supply air to flow in, thereby finely adjusting the rotational speed when the engine is idling.

第1図においては作動室7と入口側給気通路11との連
通をVc点で遮断させる為、その開口部14をサイドハ
ウジング6に形成してあるが、ベーン4の数を増すと(
例えば6枚に増加させると)、第4図に略図的に示す如
くこの開口部14をローターハウジング5に形成する事
ができる(この場合、切欠8は開口部15と連通する目
的にのみ必要なものである)。
In FIG. 1, an opening 14 is formed in the side housing 6 in order to cut off the communication between the working chamber 7 and the inlet air supply passage 11 at point Vc, but if the number of vanes 4 is increased (
For example, if the number of cutouts 8 is increased to 6), this opening 14 can be formed in the rotor housing 5 as schematically shown in FIG. ).

第1図において入口側給気通路10を流れる給気流量を
制御する他の形式を、第5,6図に略図的に示す(これ
らの形式は、入口側給気通路9にも適用可能なものであ
る)。
5 and 6 schematically show other types of controlling the air supply flow rate flowing through the inlet side air supply passage 10 in Fig. 1 (these types can also be applied to the inlet side air supply passage 9). ).

先ず第5図において、(ロ)は(イ)のA−A′線断面
を示し、入口側給気通路10の開口部に相当する位置に
多数の長孔20をローター3の半径方向へ向けて形成し
、ベーン4の厚さaに対して長孔20の高さbをa>b
となる様に構成してある。
First, in FIG. 5, (B) shows a cross section taken along the line A-A' in (A), and a large number of long holes 20 are oriented in the radial direction of the rotor 3 at positions corresponding to the openings of the inlet side air supply passages 10. The height b of the elongated hole 20 is set to a>b with respect to the thickness a of the vane 4.
It is configured so that.

かつ、これらの長孔20を開鎖する如くサイドハウジン
グ6に絞弁13′が備えられている。
In addition, a throttle valve 13' is provided in the side housing 6 to open and close these long holes 20.

従つて、ベーン4がこれらの長孔20を通過する時、作
動室7が長孔20を介して互いに連通する事はない(作
動室7が互いに連通すると、作動室7内へVc点までに
流入した給気が十分に膨張しない内に、これより1つ進
み側の作動室7内へ吸引され、かつ出口側給気通路16
内へ排出される結果となり、過給機の発生動力が減少す
る)。
Therefore, when the vane 4 passes through these long holes 20, the working chambers 7 do not communicate with each other via the long holes 20 (when the working chambers 7 communicate with each other, there is no flow into the working chamber 7 until the point Vc). Before the inflowing supply air is sufficiently expanded, it is sucked into the working chamber 7 on the advance side by one space, and the outlet air supply passage 16
(As a result, the power generated by the supercharger decreases.)

機関の出力を増大させるには、絞弁13′を絞弁12と
同時か、又は絞弁12よりも若干早い時期から回転させ
、長孔20を順次開いてゆく様にすれば良い。
In order to increase the output of the engine, the throttle valve 13' may be rotated at the same time as the throttle valve 12, or slightly earlier than the throttle valve 12, so that the elongated holes 20 are sequentially opened.

次に第6図(第5図を更に簡略化して、要部のみ描いて
ある)において、(ロ)は(イ)のB−B′線断面を示
し、入口側給気通路10の開口部15を絞弁13′′に
より閉鎖する様にし、かつこの絞弁13′′をサイドハ
ウジング6の内壁から微小間隔■Sだけ引込めた位置に
備えて、絞弁13′′とベーン4との衝突を避ける様に
構成してある。
Next, in FIG. 6 (FIG. 5 is further simplified and only the main parts are drawn), (B) shows a cross section taken along line B-B' of (A), and shows the opening of the inlet side air supply passage 10. 15 is closed by the throttle valve 13'', and this throttle valve 13'' is provided at a position retracted by a minute distance ■S from the inner wall of the side housing 6, so that the throttle valve 13'' and the vane 4 are connected to each other. It is designed to avoid collisions.

従つて、ベーン4がこの絞弁13′′を通過する時、作
動室7が互いに連通する事は殆ど無視する事ができる。
Therefore, when the vane 4 passes through this throttle valve 13'', it can be almost ignored that the working chambers 7 communicate with each other.

機関の出力を増大させるには絞弁13′′を回転させ、
開口部15の作動室7へ連通する有効断面積を順次増加
させる様にするのである。
To increase the output of the engine, rotate the throttle valve 13'';
The effective cross-sectional area of the opening 15 communicating with the working chamber 7 is gradually increased.

第7図は、作動室7と入口側給気通路11との連通をV
c点で遮断すると共に、入口側給気通路21の開口部に
相当する位置に形成された多数の長孔20を、絞弁23
によつて順次開く事により機関の出力を増大させる様に
したものである。
FIG. 7 shows the communication between the working chamber 7 and the inlet air supply passage 11 by V.
The throttle valve 23 is cut off at point c, and a large number of elongated holes 20 formed at positions corresponding to the openings of the inlet side air supply passage 21 are
The output of the engine is increased by opening them sequentially.

ベーン4の厚さと長孔20の高さとの関係、絞弁23の
構成等は第5図で説明した通りとする。
The relationship between the thickness of the vane 4 and the height of the elongated hole 20, the configuration of the throttle valve 23, etc. are as explained in FIG. 5.

この場合、絞弁23はアクセルペダル(図示せず)によ
り開閉させる様にしても良いが、図示の如く絞弁23よ
りも上流側の入口側給気通路21の所定位置に絞弁22
を配置し、両者間の空間の圧力を感知して作動するダイ
アフラム装置24によつて開閉させる様にしても良い(
この時、絞弁23と22との間の空間には圧力導入通路
25を介して出口側給気通路16内の圧力を導入してあ
る)。
In this case, the throttle valve 23 may be opened and closed by an accelerator pedal (not shown);
may be arranged and opened and closed by a diaphragm device 24 that operates by sensing the pressure in the space between them (
At this time, the pressure in the outlet air supply passage 16 is introduced into the space between the throttle valves 23 and 22 via the pressure introduction passage 25).

機関の空転状態では絞弁22は全閉しており、従つて絞
弁23もダイアフラム装置24により全閉しているが、
この状態からアクセルペダルに連動する絞弁22を開く
と、絞弁23と22との間の空間の圧力が直ちに高まる
から(両者間の空間の負圧が直ちに低下するから)、絞
弁23は即座に開かれ、機関の出力を増大させる。
When the engine is idling, the throttle valve 22 is fully closed, and therefore the throttle valve 23 is also fully closed by the diaphragm device 24.
When the throttle valve 22 linked to the accelerator pedal is opened from this state, the pressure in the space between the throttle valves 23 and 22 immediately increases (the negative pressure in the space between them immediately decreases), so the throttle valve 23 opens. It opens instantly and increases the output of the engine.

この場合、機関に供給される給気の流量は実質的には絞
弁22が制御するのである。
In this case, the flow rate of the air supply supplied to the engine is essentially controlled by the throttle valve 22.

機関に過給が行なわれる様になると、出口側給気通路1
6を流れる給気は圧力導入通路25を介して逆流する事
になるが、圧力導入通路25の径は極めて小さいから、
その逆流量は無視できる(圧力導入通路25に逆止弁を
備えれば、給気の逆流は完全に防止できる)。
When the engine is supercharged, the outlet air supply passage 1
The supply air flowing through 6 will flow back through the pressure introduction passage 25, but since the diameter of the pressure introduction passage 25 is extremely small,
The backflow amount can be ignored (if the pressure introduction passage 25 is provided with a check valve, the backflow of the supply air can be completely prevented).

尚、長孔20はサイドハウジング6に形成してあるが、
ローターハウジング5に形成する事も可能である。
Although the elongated hole 20 is formed in the side housing 6,
It is also possible to form it in the rotor housing 5.

これを第11図に示してあるが、この場合ベーン4′は
二枚で一組とし、この一組のベーン4′において、各々
がローターハウジング5の内壁に接触する部分の距離を
cとすれば、長孔20の高さbに対してd>c>bとな
る様にすると、ベーン4′が長孔20を通過する時、作
動室7が互いに連通する事はない(即ち、過給機の発生
動力が意に反し減少する事は起らない)。
This is shown in FIG. 11. In this case, two vanes 4' are used as a set, and the distance between each vane 4' in contact with the inner wall of the rotor housing 5 is c. For example, if the height b of the elongated hole 20 is set such that d>c>b, when the vane 4' passes through the elongated hole 20, the working chambers 7 will not communicate with each other (that is, the supercharging (The power generated by the machine will not decrease unexpectedly.)

絞弁23の開閉は第7図で説明した通りとする。The opening and closing of the throttle valve 23 is as explained in FIG. 7.

第8図(イ)は、作動室7が切欠8を介して入口側給気
通路11とVc点まで連通した後、この作動室7内に流
入した給気が断熱的に膨張する事なく直ちに入口側給気
通路21の開口部及び連通路17を介して過給機1の出
口側、即ち出口側給気通路16内へ排出される様にした
もので、作動室7のP−V線図を同図(ロ)に示してあ
る。
FIG. 8(a) shows that after the working chamber 7 communicates with the inlet air supply passage 11 through the notch 8 up to point Vc, the supply air flowing into the working chamber 7 does not expand adiabatically and immediately The air is discharged through the opening of the inlet side air supply passage 21 and the communication passage 17 to the outlet side of the supercharger 1, that is, into the outlet side air supply passage 16, and the PV line of the working chamber 7 is A diagram is shown in the same figure (b).

図において、過給機1には斜線の部分に相当する仕事、
即ち動力が発生し、機関の空転状態を含む部分負荷域に
おける燃費を大幅に改善する。
In the figure, turbocharger 1 has work corresponding to the shaded area.
In other words, power is generated and fuel efficiency is significantly improved in the partial load range, including when the engine is idling.

次に第9図において、(ロ)は(イ)の理解を助ける為
に特に絞弁28を取り出して描いてあり、環状溝27を
滑動する絞弁28を開閉(回転)させる事によつて機関
の出力を制御する様にしたものである。
Next, in FIG. 9, (b) is drawn with the throttle valve 28 taken out to help understand (a), and the throttle valve 28 sliding in the annular groove 27 is opened and closed (rotated). It is designed to control the output of the engine.

機関の空転状態では、入口側給気通路26の開口部が一
部(27′で示してある)絞弁28により既に開かれて
おり、この開口部27′が切欠8を介して作動室7と連
通すると共にVc点でその連通が遮断され、機関の空転
状態が維持される様になつている。
When the engine is idling, the opening of the inlet air supply passage 26 is already partially opened by the throttle valve 28 (indicated by 27'), and this opening 27' is connected to the working chamber 7 through the notch 8. At the same time, the communication is cut off at the Vc point, so that the engine is maintained in an idling state.

絞弁28をアクセルペダル(図示せず)により開けば、
入口側給気通路26の開口部の有効断面積が増加し(作
動室7との連通期間が長くなつて)、多量の給気が流入
して機関の出力を増大させる。
If the throttle valve 28 is opened by an accelerator pedal (not shown),
The effective cross-sectional area of the opening of the inlet air supply passage 26 increases (the period of communication with the working chamber 7 becomes longer), and a large amount of supply air flows in, increasing the output of the engine.

尚、絞弁28は第6図と同様にサイドハウジング6の内
壁から■Sだけ引込め、ベーン4との衝突を避けている
事は言うまでもない。
It is needless to say that the throttle valve 28 is retracted from the inner wall of the side housing 6 by an amount .smallcircle.S as shown in FIG. 6 to avoid collision with the vane 4.

この絞弁28をダイアフラム装置によつて開閉させる様
にした実施例を第10図に示す。
FIG. 10 shows an embodiment in which the throttle valve 28 is opened and closed by a diaphragm device.

即ち、第10図において(ロ)は(イ)の理解を助ける
為に特に絞弁28を取り出して描いてあり、機関の空転
状態では絞弁28及び29は全閉しているが、入口側給
気通路11からは切欠8を介して作動室7内に給気が流
入し、かつVc点で流入が遮断され、機関の空転状態が
維持される。
That is, in FIG. 10, (b) is drawn with the throttle valve 28 taken out to help understand (a), and when the engine is idling, the throttle valves 28 and 29 are fully closed, but the inlet side Supply air flows into the working chamber 7 from the air supply passage 11 through the notch 8, and the inflow is blocked at the Vc point, so that the engine is maintained in an idling state.

絞弁29をアクセルペダル(図示せず)によつて開けば
、ダイアフラム装置24により絞弁28が即座に開かれ
、入口側給気通路26の開口部から多量の給気が流入し
て、機関の出力を増大させるのである、25は圧力導入
通路で、ダイアフラム装置24が絞弁28を開閉させる
作用については第7図で説明した通りである。
When the throttle valve 29 is opened by the accelerator pedal (not shown), the throttle valve 28 is immediately opened by the diaphragm device 24, and a large amount of supply air flows in from the opening of the inlet side air supply passage 26, and the engine The diaphragm device 24 opens and closes the throttle valve 28 as described above with reference to FIG. 7.

尚、この形式の絞弁28を第7図に適用すれば、長孔2
0を入口側給気通路11の開口部14の近傍位置から形
成する事ができる。
Incidentally, if this type of throttle valve 28 is applied to the one shown in FIG.
0 can be formed from a position near the opening 14 of the inlet air supply passage 11.

第12図は、トロコイド面で形成されたローターハウジ
ング32を有する過給機30を備えた内燃機関に本発明
を実施したもので、機関の空転状態では絞弁36は全閉
しており、主軸40の回転の1/2に減速して駆動され
るロータリ弁37により、入口側給気通路39と作動室
34との連通をVc点で遮断して(ロータリ弁37に形
成された閉鎖部38が入口側給気通路39を閉鎖して)
、機関の空転状態を維持する様にしている。
FIG. 12 shows an example in which the present invention is implemented in an internal combustion engine equipped with a supercharger 30 having a rotor housing 32 formed of a trochoidal surface. When the engine is idling, the throttle valve 36 is fully closed and the main shaft The rotary valve 37, which is driven at a speed of 1/2 of the rotation of (closes the inlet side air supply passage 39)
, the engine is kept running idle.

従つて、前記Vc点までに作動室34内へ流入した給気
は過給機30の出口側の圧力(出口側給気通路42内の
負圧)まで断熱的に膨張した後に、連通路41を介して
過給機30の出口側へ(出口側給気通路42内へ)排出
され、かくして過給機30には動力が発生し、機関の燃
費を大幅に改善する。
Therefore, the supply air that has flowed into the working chamber 34 up to the Vc point expands adiabatically to the pressure on the outlet side of the supercharger 30 (negative pressure in the outlet side air supply passage 42), and then flows into the communication passage 41. The air is discharged to the outlet side of the supercharger 30 (into the outlet side air supply passage 42) through the supercharger 30, thus generating power in the supercharger 30 and greatly improving the fuel efficiency of the engine.

絞弁36を開けば、入口側給気通路35から多量の給気
が作動室34へ流入し、機関の出力を増大させる。
When the throttle valve 36 is opened, a large amount of supply air flows into the working chamber 34 from the inlet air supply passage 35, increasing the output of the engine.

機関に過給が行なわれる様になると、連通路41は第1
図と同様に閉鎖される事は言うまでもない。
When the engine is supercharged, the communication passage 41 is
Needless to say, it will be closed as shown in the figure.

本発明は以上の如く、機関の空転状態を含む部分負荷域
においては過給機に動力が発生し、機関は過給機から動
力を伝達されるので、燃費は大幅に改善される。
As described above, in the present invention, power is generated in the supercharger in a partial load range including the idling state of the engine, and power is transmitted from the supercharger to the engine, so that fuel efficiency is significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による過給機付内燃機関の断面図、第2
・3・8(ロ)図は作動室のP−V線図、第4・5・6
・7・8(イ)・9・10・11図は本発明における過
給機の略図的に描いた図、第12図は本発明における過
給機の断面図である。 1・30は過給機、2は燃料噴射弁、3・31はロータ
ー,4・4′はベーン,5・32はローターハウジング
,6・33はサイドハウジング,7・34は作動室,8
は切欠,9・10・11・21・26・35・39は入
口側給気通路,12・13・13′・13′′・23・
22・28・36は絞弁,14・15・27′は開口部
,16・42は出口側給気通路,17・41は連通路,
18は開閉弁,19・24はダイアフラム装置,20は
長孔,25は圧力導入通路,27は環状溝,37はロー
タリ弁,38は閉鎖部,40は主軸である。 特許出願人 北村修一
FIG. 1 is a sectional view of a supercharged internal combustion engine according to the present invention, and FIG.
・Figures 3 and 8 (b) are P-V diagrams of the working chamber, Nos. 4, 5, and 6.
・Figures 7, 8 (a), 9, 10, and 11 are schematic diagrams of the supercharger according to the present invention, and FIG. 12 is a sectional view of the turbocharger according to the present invention. 1 and 30 are superchargers, 2 is a fuel injection valve, 3 and 31 are rotors, 4 and 4' are vanes, 5 and 32 are rotor housings, 6 and 33 are side housings, 7 and 34 are working chambers, and 8
are notches, 9, 10, 11, 21, 26, 35, 39 are inlet side air supply passages, 12, 13, 13', 13'', 23,
22, 28, 36 are throttle valves, 14, 15, 27' are openings, 16, 42 are outlet air supply passages, 17, 41 are communication passages,
18 is an on-off valve, 19 and 24 are diaphragm devices, 20 is a long hole, 25 is a pressure introduction passage, 27 is an annular groove, 37 is a rotary valve, 38 is a closing portion, and 40 is a main shaft. Patent applicant Shuichi Kitamura

Claims (3)

【特許請求の範囲】[Claims] (1)機関に供給される給気の密度を変えて出力を制御
する内燃機関において、容積変化を伴う作動室を有する
過給機を機関に連結し、この過給機のある1つの作動室
に着目し、同作動室の容積の最小状態から最大状態へ到
る行程の中途で同作動室へ流入する給気の流入を遮断す
る様にすると共にこの時の同作動室内の圧力が前記過給
機の出口側の圧力よりも十分に大である如くならしめ、
この状態から機関の出力を増大させる場合には同作動室
へ給気を更に流入させる様にして機関の出力を制御しつ
つ、遂には機関に過給を行う様にした事を特徴とする過
給機付内燃機関。
(1) In an internal combustion engine that controls output by changing the density of air supply supplied to the engine, a supercharger having a working chamber with a volume change is connected to the engine, and one working chamber in which the supercharger is located is connected to the engine. Focusing on this, the supply air flowing into the working chamber is cut off in the middle of the process from the minimum volume state to the maximum volume state, and the pressure inside the working chamber at this time is Make sure that the pressure is sufficiently higher than the pressure on the outlet side of the feeder,
When the output of the engine is increased from this state, the engine output is controlled by further inflowing supply air into the same working chamber, and the engine is finally supercharged. Internal combustion engine with feeder.
(2)作動室の容積の最小状態から最大状態へ到る行程
の中途で、作動室へ流入する給気の流入を完全に遮断す
る様にした特許請求の範囲第1項記載の過給機付内燃機
関。
(2) The supercharger according to claim 1, wherein the inflow of supply air into the working chamber is completely blocked in the middle of the process from the minimum volume state to the maximum state of the working chamber volume. Internal combustion engine.
(3)作動室の容積の最小状態から最大状態へ到る行程
の中途で作動室へ流入する給気の流入を遮断した後も、
この作動室へ微小流量の給気を流入させる様にした特許
請求の範囲第1項記載の過給機付内燃機関。
(3) Even after cutting off the supply air flowing into the working chamber in the middle of the process from the minimum volume state to the maximum state,
An internal combustion engine with a supercharger according to claim 1, wherein a minute flow rate of supply air is allowed to flow into the working chamber.
JP20363982A 1982-11-22 1982-11-22 Internal-combustion engine with supercharger Pending JPS5993923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20363982A JPS5993923A (en) 1982-11-22 1982-11-22 Internal-combustion engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20363982A JPS5993923A (en) 1982-11-22 1982-11-22 Internal-combustion engine with supercharger

Publications (1)

Publication Number Publication Date
JPS5993923A true JPS5993923A (en) 1984-05-30

Family

ID=16477375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20363982A Pending JPS5993923A (en) 1982-11-22 1982-11-22 Internal-combustion engine with supercharger

Country Status (1)

Country Link
JP (1) JPS5993923A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302130A (en) * 1987-06-01 1988-12-09 Anretsuto:Kk Supercharger using roots blower
US4998525A (en) * 1989-06-12 1991-03-12 Eftink Aloysius J Air supply system for an internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302130A (en) * 1987-06-01 1988-12-09 Anretsuto:Kk Supercharger using roots blower
US4998525A (en) * 1989-06-12 1991-03-12 Eftink Aloysius J Air supply system for an internal combustion engine

Similar Documents

Publication Publication Date Title
EP0048027B1 (en) Turbo-compound internal combustion engine
US4315488A (en) Rotary piston engine having supercharging means
EP0277945B1 (en) An internal combustion engine provided with a supercharger
US4909034A (en) Low speed back pressure generator for affecting torque of an internal combustion engine
US4315489A (en) Rotary piston engine having supercharging means
JPS5993923A (en) Internal-combustion engine with supercharger
JPS58152123A (en) Suction valve for internal-combustion engine
JPS59119018A (en) Internal-combustion engine equipped with pump
JPS59126030A (en) Internal-combustion engine with pump
JPS593111A (en) Internal combustion engine
JPH0578651B2 (en)
JPS5823245A (en) Internal combustion engine having loss of suction resistance reduced
JPS597729A (en) Speed governor of internal-combustion engine
JPS63983Y2 (en)
US4750458A (en) Intake system for rotary piston engine
JPS59138719A (en) Compressive ignition engine with pump
JPH0249936A (en) Exhaust gas control device of engine
JPH0310344Y2 (en)
JPS6133210Y2 (en)
JPS6045719A (en) Internal-combustion system with supercharger
JPS6085219A (en) Deceleration controller for internal-combustion engine with pump
JPS59213923A (en) Diesel engine with pump
JPS6332342Y2 (en)
JPS59224418A (en) Internal-combustion engine with pump
JPS6090924A (en) Internal-combustion engine with supercharger