JPS5993867A - Production of needle iron - Google Patents
Production of needle ironInfo
- Publication number
- JPS5993867A JPS5993867A JP57201400A JP20140082A JPS5993867A JP S5993867 A JPS5993867 A JP S5993867A JP 57201400 A JP57201400 A JP 57201400A JP 20140082 A JP20140082 A JP 20140082A JP S5993867 A JPS5993867 A JP S5993867A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- substrate
- reaction
- heater
- needle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/08—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
- C23C16/14—Deposition of only one other metal element
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は高密度記録可能な針状鉄の製造方法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing needle iron capable of high-density recording.
従来例の溝成とその問題点
現在実用に供されている磁気テープ、磁気ディスク用の
磁性粉体はほとんどγ−Fe2O3(マグヘマイト)の
針状粒子を使用している。しかし近年、磁気記録再生用
機器の小型軽量化が進むにつれて記録媒体に対する高性
能化の要求が高まってきている。すなわち高密度記録、
商用力持性および周波数特性の向上が要求されている。Conventional groove formation and its problems Most magnetic powders for magnetic tapes and magnetic disks currently in practical use use acicular particles of γ-Fe2O3 (maghemite). However, in recent years, as magnetic recording and reproducing equipment has become smaller and lighter, demands for higher performance recording media have been increasing. In other words, high-density recording,
Improvements in commercial strength and frequency characteristics are required.
磁気記録媒体において上記のような要求を満すために必
要な磁性材料の特性は大きな飽和磁化と高い保磁力を有
することである。ところで従来から磁気記録媒体に用い
られている磁性材料は上記したγ−Fe2O3(マグヘ
マイト)の他に、マグネタイト(Fe304)、二酸化
クロム(Cr02)等の磁性粉末があるが、これらの磁
性粉末の飽和磁化(C5)は高々gOemu/y、保磁
力(HC)は高々5000e(エールステッド)であり
、これらの磁性粉末を使用した磁気記録媒体では再生出
力および記録密度に限界を与えてしまう。In order to satisfy the above requirements in a magnetic recording medium, the characteristics of a magnetic material required are large saturation magnetization and high coercive force. By the way, in addition to the above-mentioned γ-Fe2O3 (maghemite), magnetic materials conventionally used in magnetic recording media include magnetic powders such as magnetite (Fe304) and chromium dioxide (Cr02). The magnetization (C5) is at most gOemu/y and the coercive force (HC) is at most 5000e (Oersted), which limits the reproduction output and recording density in magnetic recording media using these magnetic powders.
更にC9を含有したCo−γ−Fe203磁性粉で保磁
力(Hc)は8000eと高いが、飽和磁化(C5)は
60〜80 emu/pと低いものになってしまい、こ
れもまた再生出力および記録密度に限界を与えてしまう
。最近高田力および高密度記録に適する特性を有する磁
性粒子粉末、すなわち大きな飽和磁化と高い保磁力を有
する磁性粉体の開発が盛んである。そのような特性を有
するものとしては鉄(Fe)を主体とする針状磁性粉末
がある。FeO針状磁性粉末ではC5は150 emu
/f 、Hcは12000c程度が得られ、高い再生出
力と高い記録密度を有する媒体の作成が可能である。F
eの針状粒子を得るために従来から行なわれている方法
としては、
(1)酸化鉄還元法、すなわち針状の酸化鉄粉体を還元
性ガス中で還元し鉄の粉末とする方法。Furthermore, the Co-γ-Fe203 magnetic powder containing C9 has a high coercive force (Hc) of 8000e, but the saturation magnetization (C5) is low at 60 to 80 emu/p, which also affects the reproduction output and This puts a limit on recording density. Recently, there has been active development of magnetic particles having characteristics suitable for Takada power and high-density recording, that is, magnetic powders having large saturation magnetization and high coercive force. As a material having such characteristics, there is an acicular magnetic powder mainly composed of iron (Fe). For FeO acicular magnetic powder, C5 is 150 emu
/f and Hc of about 12000c can be obtained, making it possible to create a medium with high reproduction output and high recording density. F
Conventionally used methods for obtaining acicular particles of e are as follows: (1) Iron oxide reduction method, that is, a method in which acicular iron oxide powder is reduced in a reducing gas to obtain iron powder.
(わ ボロハイドライド法、すなわち水素化ホウ素ナト
リウムを還元剤として、水溶液中で鉄の塩類(例えば硫
酸第1鉄)を還元する方法。(b) Borohydride method, a method in which iron salts (e.g. ferrous sulfate) are reduced in an aqueous solution using sodium borohydride as a reducing agent.
等がある。これら■■の従来の方法から得られる磁性粉
末は次のような欠点を有している。これらの方法で得た
鉄粒子はすべて酸化しやすい。特に反応後の粉末を空気
中にいきなり取り出すと空気中の酸素と反応し、発火し
たりする恐れがあるため、還元あるいは析出後ただちに
アセトン等の有機溶剤中に入れて空気中に取り出し、そ
の後空気に触れないようにして樹脂や高級脂肪酸等と混
合分散させる処理をしなければならない。またこのよう
な方法で得られた鉄粒子は酸化鉄の還元や水溶液中の析
出過程でいろいろな欠陥が導入され、鉄の理論的飽和磁
化σs−5−218e//ccより低イ150emu/
。。程度にしかなっていないし、I(oも12oooe
程度で低く、耐候性も良くない(耐湿テストにょるσS
の減少、主に酸化による)という欠点を持っている。etc. The magnetic powder obtained by these conventional methods has the following drawbacks. All iron particles obtained by these methods are susceptible to oxidation. In particular, if the powder after the reaction is suddenly taken out into the air, it may react with oxygen in the air and cause a fire. It must be mixed and dispersed with resins, higher fatty acids, etc., without coming into contact with them. In addition, the iron particles obtained by this method have various defects introduced during the reduction of iron oxide and the precipitation process in an aqueous solution, resulting in an iron particle of 150 emu//, which is lower than the theoretical saturation magnetization of iron σs-5-218e//cc.
. . It's only about 12 ooo
The weather resistance is also poor (σS in the moisture resistance test).
(mainly due to oxidation).
発明の目的
本発明は上記従来の欠点を解消するもので、粒子の形状
が針状であり、しかも高い飽和磁化と高い保磁力を有し
、さらに欠陥が少なく耐候性に富んで空気中でも容易に
扱かえる磁性粉体(針状鉄)の製造方法を提供すること
を目的とする。Purpose of the Invention The present invention solves the above-mentioned conventional drawbacks.The present invention has acicular shape of particles, has high saturation magnetization and high coercive force, has few defects, is highly weather resistant, and can be easily immersed in air. The purpose is to provide a method for producing reusable magnetic powder (acicular iron).
発明の構成
上記目的を達成するため、本発明の針状鉄の製造方法は
、減圧中で800’0−500’Cで加熱し気化せしめ
た塩化鉄と水素の混合ガスを600’GK] 200
”Cで加熱された基体上に流して針状の鉄を析出させた
後、基体より針状鉄を回収するものである。Structure of the Invention In order to achieve the above object, the method for producing needle iron of the present invention involves heating and vaporizing a mixed gas of iron chloride and hydrogen at 800'0-500'C in reduced pressure at 600'GK]200
After the iron is poured onto a substrate heated with C to precipitate needle-shaped iron, the needle-shaped iron is recovered from the substrate.
実施例の説明
以下、本発明の実施例について、図面に基づいて説明す
る。本発明は気相法によって針状の鉄粉末を得ようとす
るものである。すなわち鉄の針状結晶(ホイスカー)を
下記の化学反応によって基体上に析出させ、その後その
鉄の針状結晶を回収して磁性粉体とするものである。DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described based on the drawings. The present invention aims to obtain acicular iron powder by a gas phase method. That is, iron needle crystals (whiskers) are precipitated on a substrate by the following chemical reaction, and then the iron needle crystals are collected to form magnetic powder.
2FeC7?3+ 8H2−> 2Fe+ 6l−IC
!!−■ここでFeC1!3は塩化第8鉄(FeC1!
2でも可能)、H1!は水素、HCJ?は塩化水素であ
る。この反応は通常常圧で600℃以上の温度で起こり
、FcCJ3やIH2の流量、あるいは反応装置全体の
気圧および基体の温度等により種々の結晶の形態の物が
得られるが、一般に0式で示される反応は塩化物の還元
析出反応であり、高純度でしかも欠陥の少ない結晶が得
られる。特にホイスカーの場合は無欠陥に近いものが得
られるとされている。次に鉄の針状粉末を作成する装置
の原理的な構造の例について図面を用いて説明する。図
において(1)は水素供給ボンベ、(2)は反応用炉芯
管(石英製) 、 (3)はFeC1!2蒸発用ヒータ
、(4月よ鉄の針状結晶析出反応用のヒータ、(5)は
FeC1!3を入れておくボー1− (Iモ製)、(6
)は針状鉄析出用基体、(7)は排気用兼圧力調整用ロ
ータリーポンプ、(8ンはバルブである。先ず反応用炉
芯管(2)内のボート(5)にFeCl3を入れそれを
ヒータ(3)の所に置く。次にモリブデン製の析出用基
体(6)をヒータ(4)の所にfMjきロータリーポン
プ(7)を使用して反応用炉芯管(2)内の空気を排出
し、ヒータ(3)を800℃〜550″Oに、ヒータ(
4)を600’C〜1200”0に夫々加熱して、水素
供給ボンベ(1)のバルブ(8)を開き水素を100C
C/分〜xt/分の量で流して針状鉄の析出分解反応を
基体(6)上で起こさせる。反応中はロータリーポンプ
(7)のバルブ(8)を調整し、10Torr 〜20
0Torrにしておく。反応終了後ヒータ(3)(4)
を切り、炉の温度が低下してから基体(6)を取8oo
″C以下ではFeC1!3の蒸気圧が低く、従ってFe
Cl!3の流量が少なく、基体(6)上で鉄が析出しに
くいためである。また550”C以下にしたのは、55
0℃以上になるとFeCl!3の蒸発量が多くなり過ぎ
て基体(6)上で針状結晶が得にくくなるためである(
粒状のFCになりやすい)。水素の流量を100Cc/
分〜1t/分にしたのは100 ccZ分以下ではF。2FeC7?3+ 8H2-> 2Fe+ 6l-IC
! ! -■Here, FeC1!3 is ferric chloride (FeC1!
2 is also possible), H1! Is hydrogen, HCJ? is hydrogen chloride. This reaction usually occurs at normal pressure and at a temperature of 600°C or higher, and various crystal forms can be obtained depending on the flow rate of FcCJ3 or IH2, the atmospheric pressure of the entire reactor, the temperature of the substrate, etc. The reaction involved is a reduction-precipitation reaction of chloride, resulting in highly pure crystals with few defects. In particular, whiskers are said to be nearly defect-free. Next, an example of the basic structure of an apparatus for producing acicular iron powder will be explained with reference to the drawings. In the figure, (1) is a hydrogen supply cylinder, (2) is a reactor core tube (made of quartz), (3) is a heater for FeC1!2 evaporation, (April, heater for iron needle crystal precipitation reaction, (5) contains FeC1!3 board 1- (manufactured by Imo), (6
) is a substrate for acicular iron precipitation, (7) is a rotary pump for exhaust and pressure adjustment, and (8 is a valve.) First, FeCl3 is poured into the boat (5) in the reaction furnace tube (2). is placed in the heater (3).Next, the molybdenum precipitation substrate (6) is placed in the heater (4), and the rotary pump (7) is used to pump the inside of the reaction furnace tube (2). Exhaust the air and turn the heater (3) to 800℃~550''O.
4) respectively to 600'C to 1200'0, open the valve (8) of the hydrogen supply cylinder (1) and add hydrogen to 100C.
C/min to xt/min to cause a precipitation and decomposition reaction of needle iron on the substrate (6). During the reaction, adjust the valve (8) of the rotary pump (7) to a pressure of 10 Torr to 20 Torr.
Set it to 0 Torr. Heater after reaction (3) (4)
8oo and remove the base (6) after the temperature of the furnace has decreased.
Below ``C, the vapor pressure of FeC1!3 is low, so Fe
Cl! This is because the flow rate of No. 3 is low and iron is difficult to precipitate on the substrate (6). Also, the temperature below 550”C is 55
When the temperature exceeds 0℃, FeCl! This is because the amount of evaporation of 3 becomes too large, making it difficult to obtain needle-shaped crystals on the substrate (6).
(prone to granular FC). Hydrogen flow rate 100Cc/
1 t/min is F for 100 ccZ min or less.
の析出速度が遅いためで、II!/分以上では良質の針
状結晶が得られにくいためである(粒状のFeになりや
すい)。ヒータ(4)の温度を600°C〜1200’
C!にしたのは、600°C以下では針状鉄の析出が起
こらず、1200υ以上では基体と析出鉄が反応を起こ
し、磁気特性の良好なものが得られないためである。さ
らに反応中の圧力を10Torr〜200To r r
にしたのは、LO′rorr 以下(’ I Qmm
HII以下)では気体分子の数が少なく析出速度が遅い
ためで、200Torr以上では熱力学的に過飽和度が
低くなり針状よりも粒状や粉末状(球状)の鉄が析出し
やすいためである(記圧では過飽和度が低く針状になり
にくい)。This is because the precipitation rate of II! This is because it is difficult to obtain high-quality acicular crystals when the heating time exceeds 1/min (grainy Fe tends to form). Set the temperature of the heater (4) to 600°C to 1200'
C! This is because acicular iron does not precipitate below 600°C, and above 1200υ the substrate and precipitated iron react, making it impossible to obtain good magnetic properties. Furthermore, the pressure during the reaction was increased from 10 Torr to 200 Torr.
I made it below LO'rorr ('I Qmm
This is because at temperatures below 200 Torr, the number of gas molecules is small and the precipitation rate is slow, and at temperatures above 200 Torr, the degree of supersaturation is thermodynamically low and granular or powder (spherical) iron is more likely to precipitate than acicular iron ( With pressure writing, the degree of supersaturation is low and it is difficult to become needle-like).
以下に具体実施例について説明する。先ず幅8α、長さ
2CCIIL1厚さ8顛のモリブデン板(基体)を炉芯
管の中の反応ゾーンに1)、次にFeC73100fr
ヲFe製のボートに載せ、蒸発ゾーンに置いた。Specific examples will be described below. First, a molybdenum plate (substrate) with a width of 8α, a length of 2CCIIL, and a thickness of 8cm is placed in the reaction zone in the furnace core tube1), then FeC73100fr
It was placed on a boat made of Fe and placed in the evaporation zone.
次いでロータリーポンプで空気を排出し、蒸発ゾーン(
FeC13を置いた所)を300°C1反応ゾーン(モ
リブデン板を置いた所)を600°Cにして、水素(H
2)を100 CC7分の割り合いで流し、炉内の圧力
を10’rorrとなるようバルブを調整し約30分反
応させた。次に、各ゾーンのヒータを切り温度が100
℃以下になるまで水素を流し続け、100°C以下にな
ったとき空気を入れてモリブデン基体を取り出し、この
上に析出した針状鉄の結晶を払い落して回収する。この
粉末を電子顕微鏡で観察したところ、軸比(長軸/短軸
)は約40で長軸の長さは1.0μmであった。次にこ
の針状粉末の飽和磁化σ8と保磁力H,を測定した結果
1,5== 185 em+i/c c、Ho=125
00eであった。次に耐候テストとしてこの針状粉末を
60°C590%の相対湿度(RH)中に7日間放置し
た後、C5を測定したところ、その変化が−2,596
の減少であった。結果は次表の試料番号1に示す。The air is then pumped out using a rotary pump and placed in the evaporation zone (
The reaction zone (where the molybdenum plate was placed) was set at 300°C (where the FeC13 was placed) and 600°C (where the molybdenum plate was placed), and hydrogen (H
2) was flowed at a rate of 100 CC for 7 minutes, the valve was adjusted so that the pressure in the furnace was 10'rorr, and the reaction was carried out for about 30 minutes. Next, turn off the heater in each zone until the temperature reaches 100.
Hydrogen is continued to flow until the temperature falls below 100°C, and when the temperature falls below 100°C, air is introduced to take out the molybdenum substrate, and the acicular iron crystals deposited thereon are brushed off and collected. When this powder was observed with an electron microscope, the axial ratio (major axis/minor axis) was about 40 and the length of the major axis was 1.0 μm. Next, the saturation magnetization σ8 and coercive force H of this acicular powder were measured and the results were 1,5==185 em+i/c c, Ho=125
It was 00e. Next, as a weather resistance test, this acicular powder was left at 60°C and 590% relative humidity (RH) for 7 days, and then the C5 was measured, and the change was -2,596.
There was a decrease in The results are shown in sample number 1 in the following table.
以下余白
以下、上記具体実施例と同様にしてモリブデン基体上に
Feを析出させた。そのときの蒸発ゾーンの温度、反応
ゾーンの温度、水素の流量、析出結晶の形態、σ、 、
HC1耐湿特性(60℃90%RH中7日間放置後σ
Sの変化率)を試料番号2〜8に示す。In the following margins, Fe was deposited on a molybdenum substrate in the same manner as in the above specific example. At that time, the temperature of the evaporation zone, the temperature of the reaction zone, the flow rate of hydrogen, the form of precipitated crystals, σ, ,
HC1 moisture resistance (σ after being left for 7 days at 60°C and 90%RH)
The rate of change in S) is shown in sample numbers 2 to 8.
上記温度条件および圧力条件を本発明の範囲外とした試
料番号9〜16および他の針状鉄の製造方法との比較例
(試料番号17〜18)も合せて示している。Comparative examples (sample numbers 17 to 18) with sample numbers 9 to 16 and other needle iron manufacturing methods in which the above temperature conditions and pressure conditions are outside the range of the present invention are also shown.
発明の効果
以上のように本発明によれば次の効果を得ることができ
る。前記表の実施例(試料番号1〜8)と比較例(試料
番号9〜18)とを対比して分かるように、針状鉄を作
成する過程において気相反応を用いて作成した針状鉄粉
末は高い飽和硫化(σ3)と高い保磁力が得られ、且つ
耐候性(耐湿特性)に優れている。特にFeCZ3の蒸
発温度がsoo”o−550°C1分解析出反応の温度
が600’C!〜1200’Oで、水素の流量がxoo
cc15.)〜100OCシ分の間にありしかも炉の気
圧が10〜200Torrの範囲にある場合はより優れ
た特性が得られる。Effects of the Invention As described above, according to the present invention, the following effects can be obtained. As can be seen by comparing the examples (sample numbers 1 to 8) and comparative examples (sample numbers 9 to 18) in the table above, needle iron produced using a gas phase reaction in the process of producing needle iron The powder has high saturated sulfidation (σ3) and high coercive force, and has excellent weather resistance (moisture resistance). In particular, the evaporation temperature of FeCZ3 is soo'o-550°C, the temperature of the 1 minute precipitation reaction is 600'C!~1200'O, and the flow rate of hydrogen is xoo
cc15. ) to 100 OC and the furnace pressure is in the range of 10 to 200 Torr, better properties can be obtained.
図面は針状鉄を作成する装置の原理的な構造を示す説明
図である。
(1)・・・水素供給ボンベ、(2)・・・反応用炉芯
管、(3)・・・蒸発用ヒータ、(4)・・・析出反応
用ヒータ、(5)・・・ボート、(6)・・・析出用基
体、(7)・・・ロータリーポンプ、(8)・・・バル
ブ
代理人 森本義弘The drawing is an explanatory diagram showing the basic structure of an apparatus for producing needle iron. (1) Hydrogen supply cylinder, (2) Reaction core tube, (3) Evaporation heater, (4) Precipitation reaction heater, (5) Boat , (6)... Substrate for precipitation, (7)... Rotary pump, (8)... Valve agent Yoshihiro Morimoto
Claims (1)
しめた塩化鉄と水素の混合ガスを600’O〜1200
°Cで加熱された基体上に流して針状の鉄を析出させた
後、基体より針状鉄を回収する針状鉄の製造方法。 2、 水素ノ流量カ100cc/分〜1000CC/分
子ある特許請求の範囲第1項記載の針状鉄の製造方法。 8、減圧状態が10Torr 〜200 Torrであ
る特許請求の範囲第1項記載の針状鉄の製造方法。[Claims] 1. A mixed gas of iron chloride and hydrogen heated and vaporized at 300'C)-500°C under reduced pressure at 600'O to 1200
A method for producing acicular iron, in which the acicular iron is poured onto a substrate heated at °C to precipitate the acicular iron, and then the acicular iron is recovered from the substrate. 2. The method for producing needle iron according to claim 1, wherein the hydrogen flow rate is 100 cc/min to 1000 cc/molecule. 8. The method for producing needle iron according to claim 1, wherein the reduced pressure is 10 Torr to 200 Torr.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57201400A JPS5993867A (en) | 1982-11-16 | 1982-11-16 | Production of needle iron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57201400A JPS5993867A (en) | 1982-11-16 | 1982-11-16 | Production of needle iron |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5993867A true JPS5993867A (en) | 1984-05-30 |
Family
ID=16440456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57201400A Pending JPS5993867A (en) | 1982-11-16 | 1982-11-16 | Production of needle iron |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5993867A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0557406U (en) * | 1992-01-14 | 1993-07-30 | 三菱自動車工業株式会社 | Bimetallic member connection structure |
JPH07167152A (en) * | 1993-12-14 | 1995-07-04 | Mitsubishi Materials Corp | Assembled hollow movable shaft |
JPH11166526A (en) * | 1997-12-08 | 1999-06-22 | Nippon Seiko Kk | Rolling bearing device to support swinging member |
JP2013048005A (en) * | 2011-07-27 | 2013-03-07 | Nsk Ltd | Pivot bearing unit for hard disk actuator |
-
1982
- 1982-11-16 JP JP57201400A patent/JPS5993867A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0557406U (en) * | 1992-01-14 | 1993-07-30 | 三菱自動車工業株式会社 | Bimetallic member connection structure |
JPH07167152A (en) * | 1993-12-14 | 1995-07-04 | Mitsubishi Materials Corp | Assembled hollow movable shaft |
JPH11166526A (en) * | 1997-12-08 | 1999-06-22 | Nippon Seiko Kk | Rolling bearing device to support swinging member |
JP2013048005A (en) * | 2011-07-27 | 2013-03-07 | Nsk Ltd | Pivot bearing unit for hard disk actuator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3702270A (en) | Method of making a magnetic powder | |
US3770500A (en) | Magnetic materials and method of making same | |
JPS5993867A (en) | Production of needle iron | |
JPS5993806A (en) | Production of needle fe-co alloy | |
JPH0118961B2 (en) | ||
JPS6018609B2 (en) | Ferromagnetic powder and its manufacturing method | |
JPS5939814B2 (en) | Method for manufacturing magnetic recording media | |
JPH04157615A (en) | Treating method of magnetic powder | |
JPS60138002A (en) | Magnetic metallic particle powder consisting essentially of iron having spindle shape and its production | |
JPS61111921A (en) | Production of acicular particle containing iron carbide | |
JPH0122968B2 (en) | ||
JPH1025115A (en) | Iron oxide-base magnetic powder and magnetic recording medium using the same | |
JPS5976402A (en) | Manufacture of magnetic iron oxide powder for magnetic recording medium | |
JPS5921363B2 (en) | Method for producing acicular crystal metal iron magnetic particle powder | |
JPS5921922B2 (en) | Method for producing acicular Fe-Co-Zn alloy magnetic particle powder | |
JPS59169937A (en) | Production of magnetic powder | |
JPH0120201B2 (en) | ||
JPH0311531B2 (en) | ||
JPH071535B2 (en) | Magnetic recording medium | |
JPS607105A (en) | Manufacture of magnetic powder | |
JPS5946281B2 (en) | Method for producing acicular Fe-Co alloy magnetic particle powder | |
JPH11229005A (en) | Production of acicular iron alloy magnetic particle powder for magnetic recording | |
JPH0669011A (en) | Manufacture of metal magnetic powder | |
JPH05101917A (en) | Manufacture of metallic magnetic powder, and coating for magnetic record medium | |
JPH0459619A (en) | Magnetic powder for magnetic recording and magnetic recording medium therefrom |