JPH0669011A - Manufacture of metal magnetic powder - Google Patents

Manufacture of metal magnetic powder

Info

Publication number
JPH0669011A
JPH0669011A JP4245791A JP24579192A JPH0669011A JP H0669011 A JPH0669011 A JP H0669011A JP 4245791 A JP4245791 A JP 4245791A JP 24579192 A JP24579192 A JP 24579192A JP H0669011 A JPH0669011 A JP H0669011A
Authority
JP
Japan
Prior art keywords
compound
metal
magnetic powder
iron
metal magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4245791A
Other languages
Japanese (ja)
Inventor
Ryoichi Hashimoto
良一 橋本
Hitoshi Takatani
仁 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP4245791A priority Critical patent/JPH0669011A/en
Publication of JPH0669011A publication Critical patent/JPH0669011A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To notably enhance the oxidation resistance of the metal magnetic powder by performing surface oxidizing step using a low oxygen concentration gas containing steam in specific concentration at specific temperature. CONSTITUTION:As for a metallic oxide mainly comprising iron, a spinel compound having no dehydrating hole at all bored by heating step in an inert gas atmosphere after particle surfaces are coated with a mixture layer containing at least dihydric transition metallic compound is used. Next, a metallic iron produced by reducing this metallic oxide using a reducing gas is surface oxidized. As for this oxidizing step, the reduced metallic iron is oxidized at the temperature of 60-120 deg.C in an inert gas containing moisture content at the partial steam pressure of 20-50mmHg and 100-2500ppm of oxygen. This surface oxidizing step, despite a simple one, can notably enhance the oxidation resistance thereby enabling the manufacturing method of metal magnetic powder having excellent magnetic characteristics to be devised.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気記録に用いられる金
属磁性粉末の製造方法に関し、更に詳しくは、メタル粉
前駆体を還元してメタル化した後の表面酸化安定化を特
定濃度の水蒸気を含む低酸素濃度ガスを用いて、かつ特
定の温度範囲で行うことにより、耐酸化性の優れた金属
磁性粉末を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal magnetic powder used for magnetic recording, and more specifically, it stabilizes the surface oxidation after reducing the metal powder precursor to metallize it with a specific concentration of water vapor. TECHNICAL FIELD The present invention relates to a method for producing a metal magnetic powder having excellent oxidation resistance by using a low oxygen concentration gas containing it and performing it in a specific temperature range.

【0002】[0002]

【従来の技術・発明が解決しようとする課題】近年、各
種の記録方式の発展は著しいものがあるが、中でも磁気
記録再生装置の小型軽量化の進歩は顕著である。これに
つれて磁気テープ・磁気ディスク等の磁気記録媒体に対
する高性能化の要求が大きくなってきている。
2. Description of the Related Art In recent years, various recording systems have been remarkably developed, but in particular, progress has been made in reducing the size and weight of a magnetic recording / reproducing apparatus. Along with this, there is an increasing demand for higher performance of magnetic recording media such as magnetic tapes and magnetic disks.

【0003】磁気記録に対するこのような要求を満足す
るためには高い保磁力と高い飽和磁化を有する磁性粉末
が必要である。従来、磁気記録用の磁性粉末として一般
には針状のマグネタイトやマグヘマイト又はこれらの磁
性酸化鉄粉末をコバルトで変性したいわゆるコバルト含
有酸化鉄が用いられているが、より高出力の媒体を得る
ためにはより高い保磁力・飽和磁化を持つ強磁性金属粉
末いわゆるメタル磁性粉が用いられ始めている。
In order to satisfy such requirements for magnetic recording, magnetic powder having high coercive force and high saturation magnetization is required. Conventionally, as magnetic powder for magnetic recording, generally needle-shaped magnetite or maghemite or so-called cobalt-containing iron oxide obtained by modifying these magnetic iron oxide powders with cobalt is used, but in order to obtain a medium with higher output. Has started to use ferromagnetic metal powders with higher coercive force and saturation magnetization, so-called metal magnetic powders.

【0004】このような金属磁性粉末の製造方法として
は、種々の方法が提案されているが、経済的な優位性か
ら、一般的には、針状のゲーサイトまたはこれを加熱脱
水して得られる酸化鉄粒子を水素等の還元性ガス雰囲気
中で加熱して金属鉄にまで還元する方法が用いられてい
る。
Various methods have been proposed as a method for producing such metallic magnetic powder, but they are generally obtained by heating and dehydrating needle-shaped goethite or it because of its economical advantage. A method is used in which the iron oxide particles obtained are heated in a reducing gas atmosphere such as hydrogen to reduce them to metallic iron.

【0005】しかしながら、このようにして得られた金
属磁性粉末には大きな問題が存在する。すなわち、金属
磁性粉末は化学的に不安定であり時間の経過と共に飽和
磁化が減少するという欠点がある。この欠点の解決のた
めに種々提案がなされており、例えば、溶剤中での表面
酸化(例えば特開昭59−16901号公報、特開昭5
9−170201号公報)や、気相中で多段階に温度を
変えながら酸化を行う方法(特開平1−21002号公
報)が提案されているが、未だ十分な性能が得られてい
ない。また水蒸気を併用しながら高温(200〜600
℃)で酸化を行う方法(特開昭60−26602号公
報)も提案されているが、後で述べるように静磁気特性
の劣化が生じるため望ましい方法とは言えない。
However, the metal magnetic powder thus obtained has a serious problem. That is, the magnetic metal powder has the drawback that it is chemically unstable and its saturation magnetization decreases with the passage of time. Various proposals have been made to solve this drawback, for example, surface oxidation in a solvent (for example, JP-A-59-16901, JP-A-5-19501).
No. 9-170201) and a method of oxidizing in a gas phase while changing the temperature in multiple stages (Japanese Patent Laid-Open No. 1-21022), but sufficient performance has not been obtained yet. High temperature (200 ~ 600
Although a method of performing oxidation at (° C.) (Japanese Patent Laid-Open No. 60-26602) has also been proposed, it cannot be said to be a desirable method because it causes deterioration of magnetostatic characteristics as described later.

【0006】本発明の目的は、かかる課題を解決すべ
く、簡易な表面酸化処理により、耐酸化性が大幅に改良
され、磁気特性にも優れる金属磁性粉末の製造方法を提
供することにある。
[0006] An object of the present invention is to provide a method for producing a metal magnetic powder, which has a significantly improved oxidation resistance and is excellent in magnetic properties by a simple surface oxidation treatment in order to solve the above problems.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記の目
的を達成するため、鉄を主体とする金属酸化物を還元し
て得た金属磁性粉末の酸化安定化について検討を行なっ
た結果、表面酸化処理を特定濃度の水蒸気を含む低酸素
濃度ガスを用い、特定の温度で行うことにより、金属磁
性粉末の耐酸化性を大幅に改良することができることを
見いだし、本発明の完成に至った。
In order to achieve the above-mentioned object, the present inventors have studied the oxidative stabilization of a magnetic metal powder obtained by reducing a metal oxide mainly composed of iron. It was found that the oxidation resistance of the metal magnetic powder can be greatly improved by performing the surface oxidation treatment at a specific temperature using a low oxygen concentration gas containing a specific concentration of water vapor, resulting in completion of the present invention. It was

【0008】即ち、本発明の要旨は、鉄を主体とする金
属酸化物を還元性ガスにより還元し、得られる金属鉄を
表面酸化処理して金属磁性粉末を製造する方法におい
て、表面酸化処理が、還元後の金属鉄を水蒸気分圧20
〜50mmHgの水分と100〜2500ppmの酸素
を含む不活性ガス中で、温度60〜120℃で酸化する
ものであることを特徴とする金属磁性粉末の製造方法に
関する。また、本発明の製造方法において、鉄を主体と
する金属酸化物が、針状晶の含水酸化鉄粒子の粒子表面
に少なくとも2価の遷移金属化合物を含有する混合物層
を被覆した後、不活性雰囲気で加熱して得られる実質的
に脱水孔の存在しないスピネル化合物を用いると本発明
の効果は特に有効である。
That is, the gist of the present invention is a method for producing a metal magnetic powder by reducing a metal oxide containing iron as a main component with a reducing gas and subjecting the obtained metal iron to a surface oxidation treatment. , Steam reduction of metallic iron after reduction 20
The present invention relates to a method for producing a magnetic metal powder, characterized in that it is oxidized at a temperature of 60 to 120 ° C. in an inert gas containing water of ˜50 mmHg and oxygen of 100 to 2500 ppm. In addition, in the production method of the present invention, the iron-based metal oxide is inactive after coating the mixture layer containing at least a divalent transition metal compound on the particle surface of the acicular hydrous iron oxide particles. The effect of the present invention is particularly effective when a spinel compound obtained by heating in an atmosphere and having substantially no dehydration pores is used.

【0009】本発明に用いられる鉄を主体とする金属酸
化物の軸比、大きさは一般的に金属磁性粉末の原料とし
て通常用いられるものであれば良く、特に制限はない。
さらに、磁気特性のコントロールや分散性その他の特性
の改良のために種々の金属元素を含むものであっても差
し支えない。鉄を主体とする金属酸化物のメタルへの還
元は、一般的に用いられる公知の還元法が適用され、例
えば水素気流中で350〜550℃に2時間以上保つ方
法が挙げられる。
The axial ratio and size of the metal oxide mainly composed of iron used in the present invention are not particularly limited as long as they are generally used as a raw material of metal magnetic powder.
Further, various metal elements may be contained in order to control magnetic properties and improve dispersibility and other properties. A commonly used known reduction method is applied to the reduction of the metal oxide mainly composed of iron to a metal, and for example, a method of keeping the temperature at 350 to 550 ° C. for 2 hours or more in a hydrogen stream.

【0010】得られたメタル粉は非常に活性が強く酸化
を受けやすいために、本発明の製造方法では、以下のよ
うな表面酸化処理が行われる。即ち、本発明における表
面酸化処理方法は、通常、水蒸気分圧20〜50mmH
gの水分および100〜2500ppmの酸素を含む不
活性ガスを通じる事により行われ、好ましくは、水蒸気
分圧20〜50mmHgの水分および200〜500p
pmの酸素を含む不活性ガスが用いられる。水蒸気分圧
が20mmHgより低いと水蒸気を含有することの効果
が見られなくなり、50mmHgより高いとかえって耐
酸化性が不良となる。また、酸素濃度は2500ppm
を越えると、局部的な発熱のためと考えられるが、磁気
特性の低下が起こるため好ましくない。酸素濃度が低い
場合は特に大きな問題はないが、所定の厚さの酸化膜を
得るまでの時間が長くなり作業性の面からは100pp
m程度が下限と考えられる。
Since the obtained metal powder has a very high activity and is susceptible to oxidation, the following surface oxidation treatment is carried out in the production method of the present invention. That is, the surface oxidation treatment method in the present invention is usually performed with a steam partial pressure of 20 to 50 mmH.
g of water and an inert gas containing 100 to 2500 ppm of oxygen, and preferably a water vapor partial pressure of 20 to 50 mmHg and 200 to 500 p.
An inert gas containing pm oxygen is used. If the water vapor partial pressure is lower than 20 mmHg, the effect of containing water vapor will not be seen, and if it is higher than 50 mmHg, the oxidation resistance will be rather poor. Also, the oxygen concentration is 2500 ppm
It is considered that when the value exceeds the above range, it is considered to be due to local heat generation, but it is not preferable because the magnetic characteristics are deteriorated. When the oxygen concentration is low, there is no particular problem, but it takes 100 pp from the viewpoint of workability because it takes a long time to obtain an oxide film having a predetermined thickness.
It is considered that about m is the lower limit.

【0011】さらに、酸化を行う際の酸化温度も重要で
あり、通常60〜120℃、好ましくは70〜90℃で
行う必要がある。即ち、温度が低すぎると配管内での結
露等により所定の水蒸気分圧を維持することが困難とな
り、逆に高すぎると共存水蒸気の効果が不十分となり十
分な耐酸化性が得にくく、磁気特性の低下をともなう等
の問題が発生するためである。処理の時間は、表面酸化
が実質的に進まなくなるまでの時間を設定すればよく、
例えば入口酸素濃度にもよるが出口酸素濃度と入口酸素
濃度の差が約30ppm以下になるようにすればよい。
一般的には、70℃で酸素濃度250ppmの条件で行
う場合、30時間程度行えばよい。このように本発明に
おける表面酸化処理方法は、簡易な方法であるにもかか
わらず、耐酸化性が大幅に改善される。
Further, the oxidation temperature at the time of carrying out the oxidation is also important, and it is usually necessary to carry out at 60 to 120 ° C, preferably 70 to 90 ° C. That is, if the temperature is too low, it becomes difficult to maintain a predetermined water vapor partial pressure due to dew condensation in the piping, and if it is too high, the effect of coexisting water vapor becomes insufficient and it is difficult to obtain sufficient oxidation resistance. This is because problems such as deterioration of characteristics occur. The treatment time may be set to the time until the surface oxidation does not substantially progress,
For example, depending on the inlet oxygen concentration, the difference between the outlet oxygen concentration and the inlet oxygen concentration may be about 30 ppm or less.
Generally, when the condition is 70 ° C. and the oxygen concentration is 250 ppm, it may be carried out for about 30 hours. As described above, although the surface oxidation treatment method of the present invention is a simple method, the oxidation resistance is significantly improved.

【0012】本発明の製造方法においては、鉄を主体と
する金属酸化物が、針状晶の含水酸化鉄粒子の粒子表面
に少なくとも2価の遷移金属化合物を含有する混合物層
を被覆した後、不活性雰囲気で加熱して得られる実質的
に脱水孔の存在しないスピネル化合物である場合がより
好ましいが、このようなスピネル化合物は、次のように
して得ることが出来る。
In the manufacturing method of the present invention, after the metal oxide mainly composed of iron coats the mixture layer containing at least a divalent transition metal compound on the particle surface of the iron oxide hydroxide particles in the form of needles, A spinel compound obtained by heating in an inert atmosphere and having substantially no dehydration pores is more preferable, but such a spinel compound can be obtained as follows.

【0013】2価の遷移金属化合物としては、Co、F
e、Zn、Cu、Cr、Ni化合物などが挙げられ、特
に制限されるものではない。2価の遷移金属化合物とと
もに混合物層を構成する他の化合物としては、通常ケイ
素、アルミニウム、スズ、チタン化合物など公知の化合
物が用いられ、例えばコバルト化合物とケイ素化合物の
混合物からなる層、コバルト化合物とアルミニウム化合
物の混合物からなる層、あるいはコバルト化合物、ケイ
素化合物およびアルミニウム化合物の3種の化合物の混
合物からなる層などが挙げられる。
Examples of divalent transition metal compounds include Co and F.
Examples thereof include e, Zn, Cu, Cr, and Ni compounds, and are not particularly limited. As the other compound forming the mixture layer together with the divalent transition metal compound, a known compound such as silicon, aluminum, tin or titanium compound is usually used. For example, a layer composed of a mixture of a cobalt compound and a silicon compound, a cobalt compound Examples thereof include a layer formed of a mixture of aluminum compounds or a layer formed of a mixture of three kinds of compounds of cobalt compounds, silicon compounds and aluminum compounds.

【0014】2価の遷移金属化合物を含有する混合物層
には、2価の遷移金属化合物をゲーサイト中の鉄原子に
対する重量比として、通常3〜25%、好ましくは7〜
20%含有している。これは、2価の遷移金属の量が多
すぎても少なすぎても所望の特性が得られなくなるため
である。また、混合物層を構成する他の化合物、例えば
ケイ素化合物、アルミニウム化合物などのケイ素および
アルミニウム原子は、同様にゲーサイト中の鉄原子に対
する重量比として、通常0.2〜2%、好ましくは0.
5〜1%を含有している。また、2価の遷移金属化合物
と混合物層を構成する他の化合物との原子重量比は、通
常10:1〜20:0.5である。
In the mixture layer containing the divalent transition metal compound, the weight ratio of the divalent transition metal compound to the iron atoms in the goethite is usually 3 to 25%, preferably 7 to
Contains 20%. This is because the desired characteristics cannot be obtained if the amount of the divalent transition metal is too large or too small. Further, other compounds constituting the mixture layer, for example, silicon and aluminum atoms such as silicon compounds and aluminum compounds are similarly 0.2 to 2% by weight ratio to iron atoms in goethite, preferably 0.
It contains 5-1%. The atomic weight ratio of the divalent transition metal compound to the other compound constituting the mixture layer is usually 10: 1 to 20: 0.5.

【0015】このような2価の遷移金属化合物を含有す
る混合物層を針状含水酸化鉄粒子表面へ形成する方法
は、溶液状態からの不溶物の析出、コロイド状化合物等
の沈着等に用いられる公知の方法により行なわれる。そ
の具体例として、例えばコバルト化合物とケイ素化合物
の混合物からなる層を形成させるには、3号ケイソーを
添加後、硫酸コバルト水溶液にて系のpHを7付近と
し、コバルト化合物とアルミニウム化合物の混合物から
なる層を形成させるには、硫酸アルミニウム水溶液と硫
酸コバルト水溶液を同時添加した後、アルカリ水溶液に
て系のpHを7付近とし、またコバルト化合物、ケイ素
化合物およびアルミニウム化合物の3種の化合物の混合
物からなる層を形成させるには、3号ケイソーを添加
後、硫酸コバルトおよび硫酸アルミニウム水溶液にて系
のpHを7とし、その後アルカリ水溶液にて系のpHを
10とするなど、通常、ゲーサイトのスラリーに硫酸塩
等の酸性水溶性化合物水溶液を加え、次いでアルカリ性
水溶液により系のpHを調節することにより不溶性酸化
物ないし水和酸化物を析出させる方法が挙げられる。
The method of forming such a mixture layer containing a divalent transition metal compound on the surface of the acicular iron oxide hydroxide particles is used for depositing insoluble matter from a solution state, depositing colloidal compounds and the like. It is carried out by a known method. As a specific example, for example, in order to form a layer composed of a mixture of a cobalt compound and a silicon compound, after adding No. 3 silica, the system pH is adjusted to about 7 with an aqueous solution of cobalt sulfate, and a mixture of the cobalt compound and the aluminum compound is added. In order to form a layer, the aqueous solution of aluminum sulfate and the aqueous solution of cobalt sulfate are simultaneously added, and then the pH of the system is adjusted to about 7 with an aqueous alkali solution, and a mixture of three compounds of cobalt compound, silicon compound and aluminum compound is used. In order to form a layer consisting of, No. 3 sodium hydroxide is added, the pH of the system is adjusted to 7 with an aqueous solution of cobalt sulfate and aluminum sulfate, and then the pH of the system is adjusted to 10 with an aqueous alkali solution. To the system, add an acidic water-soluble compound aqueous solution such as sulfate, and then add an alkaline aqueous solution to p The method of precipitating an insoluble oxide or hydrous oxide by regulating the like.

【0016】本発明で言うスピネル化合物とは酸化鉄を
主とした酸化物であり、面間隔2.97±0.05、
2.53±0.05、2.10±0.05オングストロ
ームに相当する位置にX線回折の主要ピークを有するも
のをさしている。
The spinel compound referred to in the present invention is an oxide mainly composed of iron oxide and has a surface spacing of 2.97 ± 0.05,
Those having a main peak of X-ray diffraction at positions corresponding to 2.53 ± 0.05 and 2.10 ± 0.05 angstroms are shown.

【0017】一般に、ゲーサイトを空気中で加熱脱水す
ると脱水孔が生じやすくなるが、この脱水孔は電子顕微
鏡により観察することができる。脱水孔の有無を簡単に
判断する方法としては、流動式比表面積自動測定装置
(フローソーブ2300形、島津製作所製)により測定
された粒子の比表面積値と脱水孔の有無とは相関がみら
れるので、脱水孔の有無を比表面積値から得られる減少
率を用いて判断することができる。即ち、本発明で言う
実質的に脱水孔の存在しないスピネル化合物とは、高温
加熱処理する前後での粒子の比表面積の減少率が10%
以上のスピネル化合物であり、10%未満のものは脱水
孔がみられるものである。ここで減少率は次式により求
められる。 減少率=(熱処理前の比表面積−熱処理後の比表面積)
/熱処理前の比表面積
Generally, when dehydration of goethite is carried out by heating in air, dehydration holes tend to be formed, which can be observed by an electron microscope. As a method for easily determining the presence or absence of a dehydration hole, there is a correlation between the specific surface area value of particles measured by a flow type automatic specific surface area measuring device (Flowsorb 2300 type, manufactured by Shimadzu Corporation) and the presence or absence of a dehydration hole. The presence / absence of dehydration holes can be determined by using the reduction rate obtained from the specific surface area value. That is, the spinel compound in the present invention, which is substantially free of dehydration pores, has a reduction rate of the specific surface area of particles of 10% before and after the high temperature heat treatment.
Of the above spinel compounds, those having less than 10% have dehydration pores. Here, the reduction rate is calculated by the following equation. Reduction rate = (specific surface area before heat treatment-specific surface area after heat treatment)
/ Specific surface area before heat treatment

【0018】本発明の方法において、このような実質的
に脱水孔の存在しないスピネル化合物を形成させるに
は、針状晶の含水酸化鉄粒子を不活性ガス気流中で含水
酸化鉄粒子を高温加熱処理することにより容易になし得
る。この処理は、針状晶の含水酸化鉄粒子表面に前記の
ようにして少なくとも2価の遷移金属化合物を含有する
混合物層を被覆した後になされる。この場合、不活性ガ
スとしては特に制限されることはなく、通常窒素ガス、
アルゴンガスなどが用いられるが、安価である点から好
ましくは窒素ガス気流中で行うのが良い。
In the method of the present invention, in order to form such a spinel compound having substantially no dehydration holes, the iron oxide hydroxide particles in the form of needles are heated at a high temperature in an inert gas stream. This can be easily done by processing. This treatment is performed after coating the surface of the acicular hydrous iron oxide particles with a mixture layer containing at least a divalent transition metal compound as described above. In this case, the inert gas is not particularly limited, usually nitrogen gas,
Although argon gas or the like is used, it is preferably performed in a nitrogen gas stream because it is inexpensive.

【0019】高温加熱処理の温度範囲は、通常400〜
700℃であり、好ましくは450〜600℃である。
400℃より低いとヘマタイトのままであるため、不活
性ガス気流中の処理であっても脱水孔が生じやすくな
り、700℃より高いと粒子が融着を起こしやすくなる
ので、好ましくない。加熱時間は、加熱温度にもよるが
通常0.5〜4時間、好ましくは1〜2時間である。
The temperature range of the high temperature heat treatment is usually 400 to
The temperature is 700 ° C, preferably 450 to 600 ° C.
If the temperature is lower than 400 ° C, hematite remains, so that dehydration holes are likely to be formed even when the treatment is performed in an inert gas stream, and if the temperature is higher than 700 ° C, particles are likely to be fused, which is not preferable. The heating time is usually 0.5 to 4 hours, preferably 1 to 2 hours, depending on the heating temperature.

【0020】このような、高温加熱処理を特開昭63−
61413号公報に記載されているように空気中で行う
とスピネル化合物は形成されず、脱水孔の残ったヘマタ
イトを形成するに留まり、水素気流中での還元時に切断
が生じてしまい針状性を保持しなくなり、目的とする性
能をもつ金属磁性粉末を得ることができなくなる恐れが
あるので注意を要する。
Such high temperature heat treatment is disclosed in Japanese Patent Laid-Open No. 63-
When it is carried out in air as described in Japanese Patent No. 61413, a spinel compound is not formed, but only hematite having dehydration pores is formed, and cutting occurs during reduction in a hydrogen stream, resulting in needle-like properties. Be careful because it may not be retained and it may not be possible to obtain a metal magnetic powder having the desired performance.

【0021】本発明の製造方法は、以上のようなスピネ
ル化合物を好適に用いることができるが、本発明では必
要に応じて前記の混合物層とは別に更にその他の化合物
による被覆を行ったものを用いることもできる。例え
ば、加熱還元時において金属磁性粉末の粒子間の焼結を
防止するため、粒子の最外殻にケイ素、アルミニウムな
どの公知の化合物を沈着させることができる。最外層で
あるケイ素化合物、アルミニウム化合物層は単独あるい
は両者の併用の形で形成されるが、なかでもケイ素化合
物層形成後、アルミニウム化合物層を形成したものを用
いると、最終的に得られる金属磁性粉末の性能が特に優
れる。
In the production method of the present invention, the spinel compound as described above can be preferably used. However, in the present invention, the spinel compound may be coated with another compound in addition to the above-mentioned mixture layer, if necessary. It can also be used. For example, a known compound such as silicon or aluminum can be deposited on the outermost shell of the particles in order to prevent sintering between particles of the metallic magnetic powder during heating and reduction. The silicon compound layer and the aluminum compound layer, which are the outermost layers, are formed alone or in a combination of both. Among them, when the one in which the aluminum compound layer is formed after the formation of the silicon compound layer is used, the metal magnetic property finally obtained is obtained. The powder performance is particularly excellent.

【0022】この場合のケイ素および/またはアルミニ
ウム化合物層の形成はゲーサイト中の鉄原子に対するケ
イ素および/またはアルミニウムの合計の重量比として
1〜10%、好ましくは2〜6%である。これは、ケイ
素、アルミニウムの合計が10%よりも多すぎると得ら
れる金属磁性粉末の飽和磁化がかえって低くなり望まし
くないためである。また、1%未満では最外層としてこ
れらの被覆を行なった効果が得られないからである。
In this case, the formation of the silicon and / or aluminum compound layer is 1 to 10%, preferably 2 to 6% as the weight ratio of the total of silicon and / or aluminum to the iron atoms in the goethite. This is because when the total amount of silicon and aluminum is more than 10%, the saturation magnetization of the obtained metal magnetic powder is rather low, which is not desirable. On the other hand, if it is less than 1%, the effect of coating these as the outermost layer cannot be obtained.

【0023】このようにして得られた2価の遷移金属化
合物を含有する混合物層、ケイ素またはアルミニウム化
合物層を有するゲーサイトを前記のように不活性ガスと
して、例えば窒素気流中で400〜700℃に加熱する
と実質的に脱水孔の存在しないスピネル化合物に変換で
き、本発明に用いることができる。
The mixture layer containing the divalent transition metal compound thus obtained, and the goethite having the silicon or aluminum compound layer as the inert gas as described above, for example, in a nitrogen stream at 400 to 700 ° C. When heated to, it can be converted into a spinel compound having substantially no dehydration pores, and can be used in the present invention.

【0024】以上のようにして得られる耐酸化性、磁気
特性に優れた金属磁性粉末を含有する磁気記録媒体の製
造は、常法に準じて行うことができる。すなわち、この
金属磁性粉末を、結合剤樹脂、有機溶剤およびその他の
必要成分とともに分散混合して磁性塗料を調製し、この
磁性塗料をポリエステルフィルムなどの基体上に、ドク
ターブレード法、グラビア法、リバース法、ロール塗り
など任意の手段で塗布し、必要により磁場配向後、乾燥
するなどの方法で行なう。
The magnetic recording medium containing the metal magnetic powder excellent in oxidation resistance and magnetic properties obtained as described above can be manufactured according to a conventional method. That is, the magnetic magnetic powder is dispersed and mixed with a binder resin, an organic solvent and other necessary components to prepare a magnetic paint, and the magnetic paint is applied onto a substrate such as a polyester film by a doctor blade method, a gravure method or a reverse method. Method, roll coating, or any other suitable method, and optionally magnetic field orientation, followed by drying.

【0025】[0025]

【実施例】以下、実施例、比較例により本発明をさらに
詳しく説明するが、本発明はこれらにより何等制限され
るものではない。
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0026】実施例1 反応槽の外部にパイプライン型分散機マイルダー(荏原
製作所製)を設置した循環ラインを設けた装置を用い、
ゲーサイト(長軸径:0.18μm、軸比:8)500
gを、ポイズ530(花王株式会社製)15g(対粉3
%)をイオン交換水10リットルに添加した溶液に約1
時間分散した。マイルダーによる分散を続けながら、3
号ケイソー(SiO2 分29%)17.2gを加えた。
ついで、硫酸コバルト七水和物270gを1000ml
のイオン交換水に溶解した水溶液をpH6.5まで滴下
して、表面にSi/Co混合物層を被着せしめた後、残
りの硫酸コバルト水溶液を滴下し、1.2mol/リッ
トル−NaOH水溶液を滴下し、pHを10とした。そ
の後、イオン交換水を用いて洗浄液の電気伝導度が10
0μS/cm以下になるまで洗浄した。さらに、これ
に、ポイズ530(15g)を加え再分散し、3号ケイ
ソー(SiO2 分29%)69gを加え、1時間後希硝
酸を滴下し、pHを6.5にして、ケイ素化合物層を被
着せしめた。最後に、この懸濁液に濃度2NのNaOH
水溶液172mlを添加した後、ただちに、硫酸バンド
(Al2 3 分9.3%)34gをイオン交換水165
gに溶解した水溶液を滴下し、アルミニウムの水酸化物
の層を被着せしめ、この沈澱を水洗、濾過、乾燥した。
Example 1 An apparatus provided with a circulation line equipped with a pipeline type dispersing machine Milder (manufactured by EBARA CORPORATION) outside the reaction tank was used.
Goethite (major axis diameter: 0.18 μm, axial ratio: 8) 500
15 g of Poise 530 (manufactured by Kao Corporation)
%) To a solution of 10 liters of deionized water
Time dispersed. While continuing dispersion by Milder, 3
17.2 g of No. Keiso (SiO 2 content 29%) was added.
Then, 1000 ml of 270 g of cobalt sulfate heptahydrate
After adding an aqueous solution dissolved in ion-exchanged water to pH 6.5 to deposit a Si / Co mixture layer on the surface, the remaining cobalt sulfate aqueous solution is added dropwise, and 1.2 mol / liter-NaOH aqueous solution is added dropwise. The pH was adjusted to 10. After that, the electric conductivity of the cleaning liquid is 10 using ion-exchanged water.
It was washed until it became 0 μS / cm or less. Furthermore, Poise 530 (15 g) was added and redispersed to this, 69 g of No. 3 sodium hydroxide (SiO 2 content 29%) was added, and 1 hour later, dilute nitric acid was added dropwise to adjust the pH to 6.5, and the silicon compound layer was added. I put it on. Finally, add 2N NaOH to the suspension.
Immediately after adding 172 ml of the aqueous solution, 34 g of a sulfuric acid band (Al 2 O 3 content 9.3%) was added to ion-exchanged water 165.
An aqueous solution dissolved in g was added dropwise to apply a layer of aluminum hydroxide, and the precipitate was washed with water, filtered and dried.

【0027】以上のようにして得たメタル前駆体を48
〜64メッシュに整粒し、内径62mmの流動槽炉でガ
ス線速度7cm/秒の窒素気流中500℃で1時間加熱
処理を行なった。次いで水素気流中500℃で6時間還
元した。還元終了後、80℃で250ppmの酸素を含
む水蒸気分圧34mmHgの窒素ガスをガス線速度7c
m/秒で通気し、出口酸素濃度が230ppm以上にな
るまで表面の酸化を行なった。その後、窒素ガス中で乾
燥し、本発明品である金属磁性粉末1を得た。得られた
金属磁性粉末の特性を他の例(実施例2〜3,比較例1
〜3)とともに表1に示す。
The metal precursor obtained as described above was added to 48
The particles were sized to ˜64 mesh, and heat-treated at 500 ° C. for 1 hour in a nitrogen stream having a gas linear velocity of 7 cm / sec in a fluidized-bed furnace having an inner diameter of 62 mm. Then, reduction was performed in a hydrogen stream at 500 ° C. for 6 hours. After completion of the reduction, a nitrogen gas with a steam partial pressure of 34 mmHg containing 250 ppm of oxygen at 80 ° C. was supplied to a gas linear velocity of 7 c.
Aeration was performed at m / sec, and the surface was oxidized until the oxygen concentration at the outlet became 230 ppm or more. Then, it was dried in nitrogen gas to obtain a metal magnetic powder 1 of the present invention. The characteristics of the obtained metal magnetic powder are shown in other examples (Examples 2 to 3, Comparative Example 1).
Table 3 together with 3 to 3).

【0028】[0028]

【表1】 [Table 1]

【0029】実施例2 実施例1と同様にメタル前駆体の還元までを行なった
後、70℃で250ppm酸素を含む水蒸気分圧34m
mHgの窒素ガスをガス線速度7cm/秒で通気し、出
口酸素濃度が230ppm以上になるまで表面の酸化を
行なった。その後、窒素ガス中で乾燥し、本発明品であ
る金属磁性粉末2を得た。
Example 2 After the reduction of the metal precursor was carried out in the same manner as in Example 1, the partial pressure of water vapor containing oxygen of 250 ppm at 70 ° C. was 34 m.
Nitrogen gas of mHg was bubbled at a gas linear velocity of 7 cm / sec to oxidize the surface until the outlet oxygen concentration reached 230 ppm or more. Then, it was dried in nitrogen gas to obtain a metal magnetic powder 2 of the present invention.

【0030】実施例3 実施例1と同様にメタル前駆体の還元までを行なった
後、70℃で500ppmの酸素を含む水蒸気分圧34
mmHgの窒素ガスをガス線速度7cm/秒で通気し、
出口酸素濃度が470ppm以上になるまで表面の酸化
を行なった。その後、窒素ガス中で乾燥し、本発明品で
ある金属磁性粉末3を得た。
Example 3 After the reduction of the metal precursor was performed in the same manner as in Example 1, the partial pressure of water vapor containing oxygen of 500 ppm at 70 ° C. 34
Nitrogen gas of mmHg is ventilated at a gas linear velocity of 7 cm / sec,
The surface was oxidized until the outlet oxygen concentration became 470 ppm or more. Then, it was dried in nitrogen gas to obtain a magnetic metal powder 3 of the present invention.

【0031】比較例1 実施例1と同様にメタル前駆体の還元までを行なった
後、80℃で250ppmの酸素を含み水蒸気を含まな
い窒素ガスをガス線速度7cm/秒で通気し、出口酸素
濃度が230ppm以上になるまで表面の酸化を行な
い、金属磁性粉末(比較品1)を得た。
Comparative Example 1 After the reduction of the metal precursor was carried out in the same manner as in Example 1, nitrogen gas containing 250 ppm of oxygen and containing no water vapor was passed at 80 ° C. at a gas linear velocity of 7 cm / sec, and the outlet oxygen was discharged. The surface was oxidized until the concentration became 230 ppm or more, and a metal magnetic powder (Comparative Product 1) was obtained.

【0032】比較例2 実施例1と同様にメタル前駆体の還元までを行なった
後、80℃で250ppmの酸素を含む水蒸気分圧10
0mmHgの窒素ガスをガス線速度7cm/秒で通気
し、出口酸素濃度が230ppm以上になるまで表面の
酸化を行なった。その後、窒素ガス中で乾燥し、表面を
酸化した金属磁性粉末(比較品2)を得た。
Comparative Example 2 After reducing the metal precursor in the same manner as in Example 1, a partial pressure of water vapor containing oxygen of 250 ppm at 80 ° C. of 10
Nitrogen gas of 0 mmHg was passed through at a gas linear velocity of 7 cm / sec to oxidize the surface until the outlet oxygen concentration reached 230 ppm or more. Then, it was dried in nitrogen gas to obtain a metal magnetic powder (Comparative Product 2) whose surface was oxidized.

【0033】比較例3 実施例1と同様にメタル前駆体の還元までを行なった
後、150℃で250ppmの酸素を含む水蒸気分圧3
4mmHgの窒素ガスをガス線速度7cm/秒で通気
し、出口酸素濃度が230ppm以上になるまで表面の
酸化を行なった。その後、窒素ガス中で乾燥し、表面を
酸化した金属磁性粉末(比較品3)を得た。
Comparative Example 3 After the reduction of the metal precursor was performed in the same manner as in Example 1, the partial pressure of water vapor 3 containing 250 ppm of oxygen at 150 ° C. was 3
Nitrogen gas of 4 mmHg was passed at a gas linear velocity of 7 cm / sec, and the surface was oxidized until the outlet oxygen concentration reached 230 ppm or more. Then, it was dried in nitrogen gas to obtain a surface-oxidized metal magnetic powder (Comparative Product 3).

【0034】以上の様に、実施例1〜3では高保磁力
(Hc)、高角型比(σr/σs)をもつ金属磁性粉末
が得られ、得られた金属磁性粉末は、60℃/90%R
H雰囲気下で1週間保存した後でも高い飽和磁化(σ
s’)を保ち、耐酸化性が優れることがわかる。一方、
比較例1、2で得られた金属磁性粉末は、磁気特性は十
分であるが60℃/90%RH雰囲気下で1週間保存し
た後には飽和磁化(σs’)が低く、耐酸化性が劣る。
また、比較例3では酸化温度が高いため磁気特性の劣化
がみられる。
As described above, in Examples 1 to 3, a metal magnetic powder having a high coercive force (Hc) and a high squareness ratio (σr / σs) was obtained, and the obtained metal magnetic powder was 60 ° C./90%. R
High saturation magnetization (σ
It can be seen that s') is maintained and the oxidation resistance is excellent. on the other hand,
The magnetic magnetic powders obtained in Comparative Examples 1 and 2 have sufficient magnetic properties, but have a low saturation magnetization (σs ′) after being stored for 1 week in an atmosphere of 60 ° C./90% RH, and are inferior in oxidation resistance. .
Further, in Comparative Example 3, since the oxidation temperature is high, the magnetic characteristics are deteriorated.

【0035】[0035]

【発明の効果】本発明の金属磁性粉末の製造方法による
と、簡易な表面酸化処理により、耐酸化性が大幅に改良
され、磁気特性にも優れる金属磁性粉末を得ることがで
きる。
According to the method for producing a metal magnetic powder of the present invention, it is possible to obtain a metal magnetic powder having greatly improved oxidation resistance and excellent magnetic properties by a simple surface oxidation treatment.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鉄を主体とする金属酸化物を還元性ガス
により還元し、得られる金属鉄を表面酸化処理して金属
磁性粉末を製造する方法において、表面酸化処理が、還
元後の金属鉄を水蒸気分圧20〜50mmHgの水分と
100〜2500ppmの酸素を含む不活性ガス中で、
温度60〜120℃で酸化するものであることを特徴と
する金属磁性粉末の製造方法。
1. A method for producing a metal magnetic powder by reducing a metal oxide containing iron as a main component with a reducing gas and subjecting the obtained metal iron to a surface oxidation treatment to produce a metal magnetic powder. In an inert gas containing 20 to 50 mmHg of water vapor and 100 to 2500 ppm of oxygen,
A method for producing a metal magnetic powder, which comprises oxidizing at a temperature of 60 to 120 ° C.
【請求項2】 鉄を主体とする金属酸化物が、針状晶の
含水酸化鉄粒子の粒子表面に少なくとも2価の遷移金属
化合物を含有する混合物層を被覆した後、不活性雰囲気
で加熱して得られる実質的に脱水孔の存在しないスピネ
ル化合物である請求項1記載の製造方法。
2. A metal oxide mainly composed of iron is coated with a mixture layer containing at least a divalent transition metal compound on the surface of acicular hydrous iron oxide particles and then heated in an inert atmosphere. The production method according to claim 1, which is a spinel compound obtained by substantially free of dehydration pores.
【請求項3】 少なくとも2価の遷移金属化合物を含有
する混合物層が、コバルト化合物とケイ素化合物および
/またはアルミニウム化合物からなる層である請求項2
記載の製造方法。
3. The mixture layer containing at least a divalent transition metal compound is a layer composed of a cobalt compound and a silicon compound and / or an aluminum compound.
The manufacturing method described.
JP4245791A 1992-08-21 1992-08-21 Manufacture of metal magnetic powder Pending JPH0669011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4245791A JPH0669011A (en) 1992-08-21 1992-08-21 Manufacture of metal magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4245791A JPH0669011A (en) 1992-08-21 1992-08-21 Manufacture of metal magnetic powder

Publications (1)

Publication Number Publication Date
JPH0669011A true JPH0669011A (en) 1994-03-11

Family

ID=17138891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4245791A Pending JPH0669011A (en) 1992-08-21 1992-08-21 Manufacture of metal magnetic powder

Country Status (1)

Country Link
JP (1) JPH0669011A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264214A (en) * 2004-03-17 2005-09-29 Tokyo Institute Of Technology Magnetic hollow-shaped material and method for producing the same
WO2005096326A1 (en) * 2004-03-31 2005-10-13 Tdk Corporation Rare earth magnet and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264214A (en) * 2004-03-17 2005-09-29 Tokyo Institute Of Technology Magnetic hollow-shaped material and method for producing the same
WO2005096326A1 (en) * 2004-03-31 2005-10-13 Tdk Corporation Rare earth magnet and method for manufacturing same
KR100841545B1 (en) * 2004-03-31 2008-06-26 티디케이가부시기가이샤 Rare earth magnet and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP2918619B2 (en) Method for producing metal magnetic powder and coating film for magnetic recording medium
JPH0669011A (en) Manufacture of metal magnetic powder
JP3750414B2 (en) Spindle-shaped goethite particle powder, spindle-shaped hematite particle powder, spindle-shaped metal magnetic particle powder containing iron as a main component, and production method thereof
EP1529017B1 (en) Iron oxide powder for undercoat layer of coat-type magnetic recording medium having multilayer structure and a process of producing the same
JPH0420241B2 (en)
JPH0696922A (en) Manufacture of metallic magnetic powder and film for magnetic recording medium
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JP2003247002A (en) Metal magnetic grain powder essentially consisting of iron, production method thereof and magnetic recording medium
JPS6118323B2 (en)
JP3428197B2 (en) Acicular magnetic iron oxide particles and method for producing the same
JP2744641B2 (en) Method for producing ferromagnetic metal powder
JPS63140005A (en) Production of fine ferromagnetic metal particle powder
JP2897794B2 (en) Method for producing cobalt-coated magnetic iron oxide particles
JP2933397B2 (en) Method for producing ferromagnetic iron oxide powder for magnetic recording
JPH06176912A (en) Manufacture of magnetic metal powder
JPH05109517A (en) Manufacture of magnetic metal powder and coating film for magnetic recording medium
JPS59172209A (en) Metal magnetic powder and manufacture thereof
JPH03250702A (en) Manufacture of metallic magnetic powder
JP3049374B2 (en) Method for producing acicular oxide magnetic powder
JPH0693313A (en) Production of magnetic metal powder
JPH06333711A (en) Manufacture of metallic magnetic powder
JPH05301718A (en) Production of magnetic iron oxide powder coated with cobalt
JPH05144620A (en) Manufacture of metallic magnetic powder and coated film for magnetic recording medium
JPH05101917A (en) Manufacture of metallic magnetic powder, and coating for magnetic record medium
JPH03123003A (en) Magnetic metal powder, manufacture thereof, and film for magnetic recording medium using the magnetic powder

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees