JPS5992909A - Preparation of flat plate of polycrystalline silicon - Google Patents

Preparation of flat plate of polycrystalline silicon

Info

Publication number
JPS5992909A
JPS5992909A JP20042382A JP20042382A JPS5992909A JP S5992909 A JPS5992909 A JP S5992909A JP 20042382 A JP20042382 A JP 20042382A JP 20042382 A JP20042382 A JP 20042382A JP S5992909 A JPS5992909 A JP S5992909A
Authority
JP
Japan
Prior art keywords
silicon
film
substrate
flat
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20042382A
Other languages
Japanese (ja)
Inventor
Naoaki Maki
真木 直明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20042382A priority Critical patent/JPS5992909A/en
Publication of JPS5992909A publication Critical patent/JPS5992909A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To enable the easy production of a large flat plate of polycrystalline silicon, by forming flat film of molten silicon on a high-melting substrate coated with a low-melting material wettable with molten silicon, and solidifying the molten liquid film. CONSTITUTION:A low-melting material 1.2 (e.g. tin) wettable with molten silicon in liquid state and having poor reactivity is applied to the surface of a high- melting substrate 1.1 (e.g. high purity alumina substrate) in the form of a film of about 200-300mu thick. The raw material silicon 1.3 is heated at 1,450 deg.C in the crucible 1.4 to form molten silicon 2.3. The crucible 1.4 is transferred above the substrate 1.1, the valve 1.5 is opened, and the crucible 1.4 is transferred along the direction of the arrow to form a molten silicon film 2.4 on the surface of the molten film of the low-melting material 2.2. When the temperature of the substrate 1.1 is lowered to about 1,300 deg.C, the molten silicon film 2.4 is solidified to a flat polycrystalling silicon leaving the low-melting material film in liquid state. Accordingly, the polycrystalline silicon plate can be separated easily by using the molten low-melting material film as the lubrication film.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は平板状シリコン結晶の製造方法に関する。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a method for manufacturing a flat silicon crystal.

〔従来技術とその問題点〕[Prior art and its problems]

最近、太陽電池がエネルギー源として注目されている。 Recently, solar cells have been attracting attention as an energy source.

従来、太陽電池用の平板状シリコン基板の製造方法とし
て、シリコン融液より円柱状インゴットを成長させる方
法(以下、CZ法と略記する)がある。この方歩では高
品質の結晶が得られるが、平板状に加工する切断工程が
必要であシ、その際の材料損失が太きいため、太陽電池
としての値段が非常に高価であるという欠点があった。
Conventionally, as a method for manufacturing a flat silicon substrate for a solar cell, there is a method (hereinafter abbreviated as CZ method) in which a cylindrical ingot is grown from a silicon melt. Although this method yields high-quality crystals, it requires a cutting process to process them into flat plates, which results in significant material loss, making the solar cells extremely expensive. Ta.

また、技術上の制御により大面積の基板を得ることが困
難であった。そこで、最近、低価格用の太陽電池として
、多結晶シリコンの開発が行なわれている。
Furthermore, it has been difficult to obtain a large-area substrate due to technical controls. Therefore, polycrystalline silicon has recently been developed as a low-cost solar cell.

多結晶シリコンの製造法として大きく3種類に区分する
ことができる3、その第1の技術はシリコン融液よυ平
板状の多結晶シリコンを引上げる技術である。この技術
には、EFG法(Edge −de f i ue 1
−f f 1m(ed−Growtb )、ウェブ法、
ESP (Edgc−8uppoted−pol I 
i+ig )法等がある。JIN FG法はシリコン融
液をノズル状成型材より引き出させて固化させる方法で
あり、ノズル先端の形・状を工夫することによって平板
状の多結晶シリコンを得ようとするものである。多結晶
基板はノズル先端から平板状の連続した伸長体として形
成される。ウェブ法はシリコン融液を適冷却状態に保持
して、樹枝状結晶を成長させ、その樹枝状結晶によりシ
リコン融液を平板状に成型するものである。ESP法は
ウェブ法と異り、シリコン融液を平板状に成型するに際
して、2本のフィラメントを用いるものである。このフ
ィラメントはシリコン融液に濡れる材料によって形成さ
れている。フィラメントを伸長体の幅方向の端部を形成
するごとく融液中に浸し、これを連続的に引き上げると
2本のフィラメントの間に張られたシリコン融液は固体
化し、平板状の多結晶シリコンが得られる。前記、3つ
の技術の欠点は液体が固体化する界面(以下、固液界面
と略記する)の温度制御が複雑で、温度制御が不良の場
合には平板状多結晶シリコンの継続成長ができなくなる
。このととは結晶幅が広くなるほど、技術上の困難性が
一層増すため、大量生産には不適当で、低価格の平板状
多結晶シリコンを提供してくれない。
Methods for producing polycrystalline silicon can be broadly classified into three types3.The first technique is a technique for pulling polycrystalline silicon in the form of a υ plate from a silicon melt. This technology includes the EFG method (Edge-def iue 1
-f f 1m (ed-Growtb), Web Law,
ESP (Edgc-8uppoted-pol I
i+ig) method etc. The JIN FG method is a method in which silicon melt is drawn out from a nozzle-shaped molding material and solidified, and attempts to obtain flat polycrystalline silicon by devising the shape and form of the nozzle tip. The polycrystalline substrate is formed as a continuous flat plate extending from the nozzle tip. In the web method, silicon melt is maintained in an appropriately cooled state to grow dendrites, and the silicon melt is shaped into a flat plate by the dendrites. Unlike the web method, the ESP method uses two filaments when molding silicon melt into a flat plate shape. The filament is made of a material that is wettable by the silicon melt. When the filaments are immersed in the melt so as to form the ends in the width direction of the elongated body and pulled up continuously, the silicon melt stretched between the two filaments solidifies, forming a flat plate of polycrystalline silicon. is obtained. The disadvantage of the above three technologies is that the temperature control at the interface where the liquid becomes solid (hereinafter abbreviated as solid-liquid interface) is complicated, and if the temperature control is poor, the continuous growth of flat polycrystalline silicon becomes impossible. . This is because the wider the crystal width, the greater the technical difficulty, making it unsuitable for mass production and unable to provide low-cost flat polycrystalline silicon.

第2の技術はシリコン融液に濡れる材料を用いて、ti
′Ii強平板を形成し、1111強平板自体にシリコン
融液を平板状にV・1体化させ、多結晶シリコンを製造
する方法である。この技術にはIt、、A、D法(R,
i bbonAgainst Drop )法、SCI
M (Si Iicon−Coating−Inver
ted−Meuiscus )法等がある。1tA1:
>法は補強平板にカーボンを使用し、シリコン融液に浸
した後、液外に引き出し、カーボン補強板」−二に多結
晶シリコンを製造する方法である。SCIM法はセラミ
ックで補強平板を形成し、その平面」二にカーボン粉を
伺着させ、シリコン融液を収納したロート状のルツボ上
を移動させることにより平板状の多結晶シリコンを製造
する方法である。前者の技術はカーボン補強基板に形成
された多結晶シリコンを補強基板から取りはずすことが
困難であり、カーボン補強基板を撚焼させることにより
、取り夕tすだめ多量の電力が心髄となる。後者の技術
はセラミック補強平板の形状を工夫しているため、多結
晶シリコンを補強平板よυ取りd二ずす必要はないが。
The second technique uses a material that gets wet with the silicon melt.
This is a method of manufacturing polycrystalline silicon by forming a 1111 strong flat plate and converting the silicon melt into a flat V-1 body on the 1111 strong flat plate itself. This technique includes the It, A, D method (R,
i bbonAgainstDrop) method, SCI
M (Si IIcon-Coating-Inver
ted-Meuiscus) method, etc. 1tA1:
The second method is to use carbon as a reinforcing plate, immerse it in a silicon melt, and then pull it out of the liquid to produce a carbon reinforcing plate.Second, polycrystalline silicon is produced. The SCIM method is a method of producing flat polycrystalline silicon by forming a reinforced flat plate with ceramic, adhering carbon powder to the flat surface, and moving it over a funnel-shaped crucible containing silicon melt. be. In the former technique, it is difficult to remove the polycrystalline silicon formed on the carbon reinforced substrate from the reinforced substrate, and the twisting and firing of the carbon reinforced substrate requires a large amount of electric power. In the latter technology, the shape of the ceramic reinforcing flat plate is devised, so there is no need to separate the polycrystalline silicon from the reinforcing flat plate.

補強平板が熱のだめ変形したり、補強平板からの不純物
が多結晶シリコンの粒界に濃染し、高品質の多結晶シリ
コンを得ることができない。第3の技術は鋳型を用い、
鋳型中のシリコン融液を直接、固体化することによ、り
鋳型に応じた形状のインゴットを製造する方法である。
The reinforcing plate may become deformed due to heat accumulation, or impurities from the reinforcing plate may stain the grain boundaries of polycrystalline silicon, making it impossible to obtain high-quality polycrystalline silicon. The third technique uses a mold,
This is a method of manufacturing an ingot with a shape according to the mold by directly solidifying the silicon melt in the mold.

この方法は第1、第2の技術に比較すると、複雑な温度
制御の必要はなく、簡単に製造することができるが、c
Z法と同様に、太陽電池の基板として使用するだめには
平板状に切断する必要があり、その際の材料11失が大
きいという欠点がある。
Compared to the first and second techniques, this method does not require complicated temperature control and can be easily manufactured.
Similar to the Z method, it is necessary to cut the material into a flat plate to be used as a substrate for a solar cell, and the disadvantage is that there is a large amount of material 11 lost during this process.

〔発明の目的〕[Purpose of the invention]

本発明は上記技術の欠点を考慮して、なされたもので、
平板状多結晶シリコンを簡単に製造することができ、し
かも大面積での大量生産が可能であるため、低価格の太
陽電池を提供することを目的とする。
The present invention was made in consideration of the drawbacks of the above technology, and
The purpose of the present invention is to provide a low-cost solar cell that can easily produce flat polycrystalline silicon and can be mass-produced over a large area.

〔発明の概要〕[Summary of the invention]

本発明はシリコン融液に濡れ、かつ融点がシリコンより
低い材料で被覆された高融点基板上に平板状シリコン融
液を作り、シリコン融液を固体化させることにより、平
板状多結晶シリコンを製造する方法である。
The present invention produces flat polycrystalline silicon by creating a flat silicon melt on a high melting point substrate that is wetted with silicon melt and coated with a material with a melting point lower than silicon, and solidifying the silicon melt. This is the way to do it.

〔発明の効果〕〔Effect of the invention〕

本発明は、平板状シリコン基板を得るだめの切断工程、
棲雑なR1度制徊1が不必要で、簡単に平板状シリコン
基板を製造することができ、か”り、高融点基板と平板
状シリコン基板との間にシリコンより融点の低い材料が
介在するため簡単に剥離することが可能で、しかも高融
点基板からの汚染を防止できる。さらに高融点基板に応
じて、大面積化が可能であるだめ、低価格の太陽電池を
提供するという効果がある。
The present invention includes a cutting process for obtaining a flat silicon substrate,
The complicated R1 degree control 1 is not required, and a flat silicon substrate can be manufactured easily, and a material with a melting point lower than that of silicon is interposed between the high melting point substrate and the flat silicon substrate. Therefore, it can be easily peeled off, and contamination from the high melting point substrate can be prevented.Furthermore, depending on the high melting point substrate, it is possible to increase the area, so it is effective in providing low-cost solar cells. be.

〔発明の実施例〕[Embodiments of the invention]

第1図(a) fb)に本発明の一実施例を示す。第1
図に示す如く、高融点基板(11)として高純度のアル
ミナ板を使用し、その基板上に200〜300ミクロン
程度の低融点材料(1,2)を付着させる。低融点材料
は液体状態でシリコン融液に語れ、かつ反応性の乏しい
材料でなければなら、ない。本発明者等は低融点材料と
してスズを用いた。スズの融点は23JCとシリコンの
融点より十分低く、まだシリコン融液にイ需れ、かつ、
固溶体を+W成しないという4′シ徴が、ちる。前記、
アルミナ基板上部に¥1.原料シリコン(1,3)を収
納するるつは(1,4)が設fig:されている。さら
にるつぼ先端部にはるつぼ口開閉機構(1,5)が設え
つけられている。不発り1者等は加熱装W(図示ぜず)
により1450trに加熱し、前記、原料シリコンとス
ズを融解し、シリコン融71& (2,3)とスズ融液
膜(2,2)を形成した。その後るつぼを一アルミナ基
板直上゛まで下降し、開閉U3構を開いて、図中矢印の
方向に動かし、スズ融液膜の上面にシリコン融液膜(2
,4>を形成した。さらに本発明者は約20C/min
の速度で加熱装置により高純度アルミナ基板の温度13
00Cまで下降させた。この温度状態下では、シリコン
の融点は1420t; T:あるだめ、シリコン融液膜
は固化して、Xp板状多結晶シリコンとなるがスズ融液
膜は温度が高いだめ液体状態が保持されている。従って
、この状態では、スズ融液膜を潤滑膜として平板状多結
晶シリコンだけを取シ除くことが容易に可能である。平
板状多結晶シl)コンに付■した少荘のスズはfL学的
処理を施すことで簡単に除去することンバIIJ’ i
iヒでちる。
FIG. 1(a) fb) shows an embodiment of the present invention. 1st
As shown in the figure, a high-purity alumina plate is used as a high-melting point substrate (11), and a low-melting point material (1, 2) of about 200 to 300 microns is adhered onto the substrate. The low melting point material must be a material that can interact with silicon melt in a liquid state and has poor reactivity. The inventors used tin as the low melting point material. The melting point of tin is 23JC, which is sufficiently lower than the melting point of silicon, so it is still in high demand for silicon melt, and
The 4' sign that +W does not form a solid solution is a problem. Said,
¥1 on the top of the alumina board. A crucible (1, 4) for storing raw material silicon (1, 3) is set. Furthermore, a crucible opening/closing mechanism (1, 5) is provided at the tip of the crucible. If there is one misfire, use heating device W (not shown)
was heated to 1450 tr to melt the raw material silicon and tin, forming a silicon melt 71 & (2,3) and a tin melt film (2,2). After that, lower the crucible to just above the one alumina substrate, open the opening/closing mechanism U3, move it in the direction of the arrow in the figure, and apply the silicon melt film (two
, 4> were formed. Furthermore, the inventor has determined that approximately 20C/min
The temperature of the high purity alumina substrate is increased by the heating device at a rate of 13
The temperature was lowered to 00C. Under this temperature condition, the melting point of silicon is 1420t; There is. Therefore, in this state, it is easily possible to remove only the flat polycrystalline silicon using the tin melt film as a lubricating film. Tin attached to flat polycrystalline silicon can be easily removed by applying fL chemical treatment.
ihi de chiru.

本発明19筈は高純juニアルミナ7h(板の太き式を
;N+ie100 m:lX6+li ] O(1mm
刈・jさ5万11り、ススB’A P+’ 5(10ミ
クロン、l!1′ト温速度2(JU/mi nで万1験
ヲ試みたところ、縦10oxx:’4FflO(Jmm
x厚−J 300〜500ミクo7の太きT5で結晶粒
径の大きな平5状多結晶シリコンが得られた。
The 19th aspect of the present invention is high-purity ju Ni-alumina 7h (plate thickness: N+ie100 m: lX6+li) O(1 mm
When I tested it at JU/min, the soot B'A P+' 5 (10 microns, l!
A polycrystalline silicon having a large crystal grain size was obtained with a thick T5 of x thickness - J of 300 to 500 microns o7.

〔発明の他の実施例〕[Other embodiments of the invention]

第2し1に他の実施例を示し、(a)し」は辻R:l−
的に平板秋冬結晶シリコンを製造する実hI¥1例装置
i)’7で、(b)し]はその温度分布である。高純度
アルミナ基板を乗せて、図中の矢印の方向に移ルI]さ
ぜる移動恢溝板(3,1)を設5)=する。前記移動減
車板の中央部にはシリコン融/1グ(32)を収納する
るつぼ(3,3>と加熱装置(34)があり、さらに熱
遮断を?”J 5熱遮蝕板(35)と移動板i臀板の温
度を制御する冷却機i’r8 (3,ti’>紅在△ する。移動機構板の温度分布は中央部において目、加熱
装置によ炒、1450t;に保持さAシ、(宿却数11
!を上部は1300Cに保持されている。本発明者等は
第3図左側の領域にスズ膜厚500ミクDンで被覆され
た縦100朋×横100朋×厚さ5市の高純度アルミナ
基板を入れた。温度はスズの融点以上であるので高純度
アルミナ基板上のスズ膜は融液に相変化する。その後、
前記、移動欅構板で高温部領域に移動させながらスズ融
液膜の上面にシリコン融液膜を付着させる。スズとシリ
コン融液は濡れるため、シリコン融液は、高純度アルミ
ナ基板の形状に広がる。
2nd and 1 show other examples, (a) ``Tsuji R:l-''
In an actual example device i)'7 for manufacturing flat plate fall/winter crystalline silicon, (b) is the temperature distribution. Place the high-purity alumina substrate on it and move it in the direction of the arrow in the figure to install the movable groove plate (3, 1) 5). In the center of the movable plate, there are a crucible (3, 3>) for storing silicon melt/1g (32) and a heating device (34), and a heat shielding plate (35). The temperature distribution of the moving mechanism plate is maintained at 1450 t; A, (Number of lodging 11
! The upper part is held at 1300C. The present inventors placed a high-purity alumina substrate coated with a tin film of 500 μm thick and measuring 100 mm long x 100 mm wide x 5 mm thick in the area on the left side of FIG. 3. Since the temperature is above the melting point of tin, the tin film on the high-purity alumina substrate undergoes a phase change into a molten liquid. after that,
The silicon melt film is deposited on the upper surface of the tin melt film while being moved to the high temperature region using the movable keyaki structure plate. Since the tin and silicon melt get wet, the silicon melt spreads into the shape of the high-purity alumina substrate.

さらに移動機構板によシ第3図右側の13001rに保
持された領域へ高純度アルミナ基板を移動させると、ス
ズ融液膜上のシリコン融液は徐々に固体化。
When the high-purity alumina substrate was further moved by the moving mechanism plate to the area held at 13001r on the right side of Figure 3, the silicon melt on the tin melt film gradually solidified.

逐には全てのシリコン融液が固体化する。従って。All of the silicon melt becomes solid. Therefore.

上記、温度領域では、固体の高純度アルミナ基板(3,
7)とスズ融液膜(3,8)と平板状の多結晶シリコン
結晶(3,9)が形成される。この状況を維持しながら
例えば真空チャック(図示せず)等で平板状多結晶シリ
コンのみを取シ出し、その後また逆の操作を行うことに
よυ、連続的に平板状多結晶シリコンを製造することが
できる。
In the above temperature range, solid high-purity alumina substrate (3,
7), a tin melt film (3, 8), and a flat polycrystalline silicon crystal (3, 9) are formed. While maintaining this situation, take out only the flat polycrystalline silicon using a vacuum chuck (not shown), etc., and then repeat the reverse operation to continuously produce flat polycrystalline silicon. be able to.

以上、説明したように、本発明によれば、シリコン融液
に個れかつ融点がシリコンよシ低い材料で被覆された高
純度高融点基板上に平板状シリコン融液膜を作り、固体
化せしめることにより、簡単に大面積の平板状多結晶シ
リコンを製造することが可能である。さらに高純度アル
ミナ基板の温度分布、降温速度を最適な値に制御するこ
とにより、結晶粒界の大きな平板状多結晶シリコンを製
造することができ、結晶の品質を向上させることが可能
である。
As explained above, according to the present invention, a flat silicon melt film is formed on a high-purity, high-melting-point substrate coated with a material that is separate from the silicon melt and has a melting point lower than that of silicon, and is solidified. By doing so, it is possible to easily manufacture a large-area flat polycrystalline silicon. Furthermore, by controlling the temperature distribution and cooling rate of the high-purity alumina substrate to optimal values, it is possible to manufacture tabular polycrystalline silicon with large grain boundaries and improve crystal quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は本発
明の他の実施例を説明するだめの図である。 1.1・・・高純度アルミナ基板。 1.2・・・固体スズ膜、 1.3・・・固体原料シリコン、 1.4・・・るつぼ。 1.5・・・開閉機構、 2.2・・・スズ融液膜。 2.3・・・融液原料シリコン、 2.4・・・シリコン融液膜。
FIG. 1 is a sectional view showing one embodiment of the invention, and FIG. 2 is a diagram for explaining another embodiment of the invention. 1.1...High purity alumina substrate. 1.2... Solid tin film, 1.3... Solid raw material silicon, 1.4... Crucible. 1.5... Opening/closing mechanism, 2.2... Tin melt film. 2.3... Melt raw material silicon, 2.4... Silicon melt film.

Claims (3)

【特許請求の範囲】[Claims] (1)シリコン融液に濡れ、かつ融点がシリコンよシ低
い材料で被覆された高融点基板上に平板状シリコン融液
膜を作り、固体化せしめることを特徴とする平板状多結
晶シリコンの製造方法。
(1) Production of flat polycrystalline silicon, characterized by forming a flat silicon melt film on a high melting point substrate that is wetted with silicon melt and coated with a material whose melting point is lower than that of silicon, and solidifying it. Method.
(2)前記、シリコン融液に濡れ、かつ融点がシリコン
よシ低い材料としてスズを用いたことを特徴とする特許
請求の範囲第1項記載の平板状多結晶シリコンの製造方
法。
(2) The method for producing flat polycrystalline silicon according to claim 1, characterized in that tin is used as the material that is wetted by the silicon melt and has a melting point lower than that of silicon.
(3)前記、高融点基板として高純度アルミナを用いた
ことを特徴とする特許請求の範囲第1項記載の平板状多
結晶シリコンの製造方法。
(3) The method for manufacturing flat polycrystalline silicon according to claim 1, characterized in that high-purity alumina is used as the high-melting point substrate.
JP20042382A 1982-11-17 1982-11-17 Preparation of flat plate of polycrystalline silicon Pending JPS5992909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20042382A JPS5992909A (en) 1982-11-17 1982-11-17 Preparation of flat plate of polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20042382A JPS5992909A (en) 1982-11-17 1982-11-17 Preparation of flat plate of polycrystalline silicon

Publications (1)

Publication Number Publication Date
JPS5992909A true JPS5992909A (en) 1984-05-29

Family

ID=16424053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20042382A Pending JPS5992909A (en) 1982-11-17 1982-11-17 Preparation of flat plate of polycrystalline silicon

Country Status (1)

Country Link
JP (1) JPS5992909A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033404A1 (en) * 2001-10-18 2003-04-24 Sharp Kabushiki Kaisha Silicon plate, method for producing silicon plate, and solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033404A1 (en) * 2001-10-18 2003-04-24 Sharp Kabushiki Kaisha Silicon plate, method for producing silicon plate, and solar cell
US7071489B2 (en) 2001-10-18 2006-07-04 Sharp Kabushiki Kaisha Silicon plate and solar cell
CN100444409C (en) * 2001-10-18 2008-12-17 夏普株式会社 Silicon plate, method for producing silicon plate and solar cell
US7659542B2 (en) 2001-10-18 2010-02-09 Sharp Kabushiki Kaisha Silicon plate, producing method thereof, and solar cell

Similar Documents

Publication Publication Date Title
CA1255191A (en) Process and apparatus for producing semi-conductor foils
US4329195A (en) Lateral pulling growth of crystal ribbons
US4447289A (en) Process for the manufacture of coarsely crystalline to monocrystalline sheets of semiconductor material
US4075055A (en) Method and apparatus for forming an elongated silicon crystalline body using a <110>{211}orientated seed crystal
US7601618B2 (en) Method for producing semi-conditioning material wafers by moulding and directional crystallization
US4116641A (en) Apparatus for pulling crystal ribbons from a truncated wedge shaped die
US5114528A (en) Edge-defined contact heater apparatus and method for floating zone crystal growth
US4461671A (en) Process for the manufacture of semiconductor wafers
JPS5992909A (en) Preparation of flat plate of polycrystalline silicon
KR101287525B1 (en) Method for preparing a self-supporting crystallized silicon thin film
US4239734A (en) Method and apparatus for forming silicon crystalline bodies
KR20140006940A (en) Article and method for forming large grain polycrystalline silicon films
JPH04342496A (en) Production of polycrystal silicon cast mass for solar cell
US4304623A (en) Method for forming silicon crystalline bodies
JP2004284892A (en) Method of producing polycrystal silicon
US4125425A (en) Method of manufacturing flat tapes of crystalline silicon from a silicon melt by drawing a seed crystal of silicon from the melt flowing down the faces of a knife shaped heated element
JP3087186B2 (en) Method for producing polycrystalline silicon sheet
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
KR20140033411A (en) Composite active molds and methods of making articles of semiconducting material
JP3851416B2 (en) Production method of crystalline silicon film
JPH0920596A (en) Device for producing lithium tetraborate single crystal
JP3647964B2 (en) Single crystal substrate manufacturing method and apparatus
JP2599306B2 (en) Crystal manufacturing method and manufacturing equipment
JPH08183691A (en) Crucible for producing fine wire-shaped silicon and wire-shaped silicon
JPH05319973A (en) Single crystal production unit