JPS599278B2 - Manufacturing method for high temperature brazing materials - Google Patents

Manufacturing method for high temperature brazing materials

Info

Publication number
JPS599278B2
JPS599278B2 JP12033576A JP12033576A JPS599278B2 JP S599278 B2 JPS599278 B2 JP S599278B2 JP 12033576 A JP12033576 A JP 12033576A JP 12033576 A JP12033576 A JP 12033576A JP S599278 B2 JPS599278 B2 JP S599278B2
Authority
JP
Japan
Prior art keywords
powder
high temperature
brazing
manufacturing
temperature brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12033576A
Other languages
Japanese (ja)
Other versions
JPS5345647A (en
Inventor
「よし」章 宮本
覚 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12033576A priority Critical patent/JPS599278B2/en
Publication of JPS5345647A publication Critical patent/JPS5345647A/en
Publication of JPS599278B2 publication Critical patent/JPS599278B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 本発明は耐火金属のろう付材料に関し、さらに詳しくは
マグネトロン陰極構体の接合に用いるろう付合金の製法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a brazing material for refractory metals, and more particularly to a method for producing a brazing alloy used for joining magnetron cathode structures.

耐火金属の中で、タングステン、モリブデンおよびこれ
らの合金は高温の用途に有用である。
Among refractory metals, tungsten, molybdenum and their alloys are useful in high temperature applications.

この一例として電子管工業では陰極、グリッドおよびそ
れらの支持体に多く用いられている。タングステン、モ
リブデンは融液、拡散接合ならびにろう付等により接合
されてきたが、実際にはろう付法しか使えないような多
数のジョイント構造およびきびしい公差に遭遇する。低
温および中程度の場合には満足できるろう付合金が入手
できるが、ある種の高温動作下用として、特に関係のあ
る温度範囲、すなわち、1700〜2200℃の場合は
そうでない。
For example, in the electron tube industry, it is widely used for cathodes, grids, and their supports. Tungsten and molybdenum have been joined by melt bonding, diffusion bonding, brazing, etc., but in practice many joint structures and tight tolerances are encountered where only brazing can be used. Satisfactory braze alloys are available for low and moderate temperatures, but not for certain high temperature operations, particularly in the relevant temperature range, ie, 1700-2200°C.

これらの温度において、入手できるろう付合金は基体金
属を腐食するか、またはろう付中合金成分の揮発により
貧弱な流動特性を示す傾向がある。この温度範囲におけ
る一定温度について特定の組成の選択を可能にするろう
付合金系について望ましい他の特色は高温作動能力を与
えるための再融解温度の急速な上昇と作動の際の拡散中
に脆化相の生成をさける必要がある。したがつて、本発
明の目的はタングステン、モリブデンおよびその合金を
接合するためのろう付材料を提供するにある。
At these temperatures, available braze alloys tend to corrode the base metal or exhibit poor flow properties due to volatilization of alloy components during brazing. Other features desirable in braze alloy systems that allow for the selection of specific compositions for a given temperature in this temperature range are a rapid increase in remelting temperature to provide high temperature operation capability and embrittlement during diffusion during operation. It is necessary to avoid phase formation. It is therefore an object of the present invention to provide a brazing material for joining tungsten, molybdenum and their alloys.

従来、電子管工業において送信管および工業用送信管、
マグネトロンの陰極組立等においては、この動作温度が
高いこと、またこれら管内の真空度が高いことなどから
、陰極構成材料となるタングステン、モリブデン等の接
合にはPt、Ru−Mo等のろう材が用いられている。
Conventionally, in the electron tube industry, transmitting tubes and industrial transmitting tubes,
In magnetron cathode assembly, etc., due to the high operating temperature and high degree of vacuum inside these tubes, brazing materials such as Pt and Ru-Mo are used to bond the tungsten, molybdenum, etc. that make up the cathode. It is used.

このろう材には一長一短があり、pt線が取扱形態上の
点から特別なプロセスを経ることなく、部品組立の段階
で、その接合部に供給することが容易にできることから
高コストという障害を除けば歓迎されている。
This brazing filler metal has both advantages and disadvantages, but from the point of view of the way PT wire is handled, it can be easily supplied to the joint at the component assembly stage without going through any special processes, which eliminates the obstacle of high cost. You are welcome.

これに対し、Ru−Moろうはptろうに比べれば、低
コストであるが、通常1ミクロン前後の微細粉末をバイ
ンダーにて粘り合わせ、ペースト状にしたろう材をはけ
などにより塗布供給している。例えば第1図のフィラメ
ント2と上下エンドシールド1a、lbとの間での接合
ではあらかじめ、サイドサポート4に下部エンドシール
ドIbをろう付したものにフィラメント2を接続する場
合、フィラメント2の両端部にはけにて、前記粉末ペー
ストを所定量塗布して、センターサポート3に挿入する
On the other hand, Ru-Mo soldering is lower in cost than PT soldering, but it is usually made by binding fine powder of around 1 micron with a binder and applying the paste-like soldering material with a brush. There is. For example, in the case of joining the filament 2 and the upper and lower end shields 1a and 1b in FIG. Then, apply a predetermined amount of the powder paste and insert it into the center support 3.

引続きフィラメント3、上部エンドシールド1aも同様
ペーストを塗布、挿入し、組立られた陰極構体の各接合
部をまとめて、ろう付装置に入れ、ろう付する。場合に
よつては、個々に組立、ろう付を行なつて最終的に第1
図に示した構体を形成することもある。従来、このろう
材はMO粉末とRU2O3粉末を均一に混合したのち、
水素炉の中で950〜1100℃の温度で1時間前後還
元し、篩別、混合して造る。
Subsequently, the paste is similarly applied to the filament 3 and the upper end shield 1a, and the paste is inserted, and the joints of the assembled cathode structure are put together into a brazing device and brazed. In some cases, the first assembly may be assembled and brazed individually.
The structure shown in the figure may also be formed. Conventionally, this brazing filler metal is made by uniformly mixing MO powder and RU2O3 powder, and then
It is produced by reducing in a hydrogen furnace at a temperature of 950 to 1100°C for about 1 hour, sieving, and mixing.

しかしながら、この方法はマクロ的にみても偏析がさけ
がたく、またX線回析による拡散の調査結果からも、M
O,Ruが単体にてかなり残留しており、最低ろう付温
度となるMOとRuの共晶点(1945ろC)における
43%−MOの共晶合金を得るには不十分な製作法であ
る。これに対し、本発明の主目的は前記手法の欠陥を減
するものにあり、その方法は、先ずパラモリブデン酸ア
ンモンを焙焼して得られた微粒のMOO3粉末に塩化ル
テニウム酸アンモン〔(NH4)RuCl6〕水溶液を
所定の割合で添加し、混合しながら乾燥させ、これを前
記と同様、水素還元し、篩別、混合してRu−MOろう
合金粉末とする。
However, with this method, segregation is unavoidable from a macroscopic perspective, and the results of diffusion studies using X-ray diffraction also indicate that M
A considerable amount of O and Ru remained alone, and the manufacturing method was insufficient to obtain a 43%-MO eutectic alloy at the eutectic point of MO and Ru (1945 C), which is the lowest brazing temperature. be. In contrast, the main purpose of the present invention is to reduce the defects of the above-mentioned method, and the method first involves roasting ammonium paramolybdate and adding fine grained MOO3 powder to ammonium chloride ruthenate [(NH4 ) RuCl6] aqueous solution is added at a predetermined ratio, dried while mixing, hydrogen-reduced in the same manner as above, sieved, and mixed to obtain Ru-MO brazing alloy powder.

これにより得られた粉末をX線回析にかけ、前記手法と
比較の結果、単独元素の残留はほとんど認められなかつ
た。これは、MOO3母塩の分解還元過程にて、前記M
Oメタル粉末よりPOrOusになるため、置換、拡散
がし易くなつたと考えられる。また、Ruを水溶液のイ
オン状態で添加するため、母材表面に均一に被覆するこ
とができることから、偏析も減することができる。次に
実施例を示す。
The powder thus obtained was subjected to X-ray diffraction, and as a result of comparison with the above method, almost no single element remained. In the decomposition and reduction process of the MOO3 mother salt, the M
It is thought that since it is POrOus rather than O metal powder, it is easier to substitute and diffuse. Furthermore, since Ru is added in the ionic state of an aqueous solution, it can be uniformly coated on the surface of the base material, and segregation can also be reduced. Next, examples will be shown.

塩化ルテニウム酸アンモンの無水結晶塩15.6tをメ
トラ直視天秤で精秤し、10CTnφ磁性皿に入れる蒸
留水150CCを加え、さらに溶解性を上げるためPH
を1−2に調整するため塩酸を添加し、加温、攪拌して
溶解する。
Precisely weigh 15.6 tons of anhydrous crystalline salt of ammonium ruthenate chloride using a Metra direct-view balance, add 150 cc of distilled water in a 10 CTnφ magnetic dish, and adjust the pH to further increase solubility.
To adjust the ratio to 1-2, add hydrochloric acid and dissolve by heating and stirring.

平均粒径1μ以下の高純度MOO7粉末8.49fを精
秤し500CCビーカ一に入れ、上記のルテニウム塩溶
解液を加え、湯浴上で攪拌しながら蒸発乾燥する。(こ
の間約2.5h必要:)。10CTnφメノウ揺鉢に得
られた灰褐色の粉末を移し、粉砕し、120メ篩を通す
Precisely weigh 8.49 f of high purity MOO7 powder with an average particle size of 1 μm or less, put it in a 500 CC beaker, add the above ruthenium salt solution, and evaporate to dryness while stirring on a hot water bath. (This requires about 2.5 hours:). The obtained gray-brown powder was transferred to a 10CTnφ agate mortar, ground, and passed through a 120-meter sieve.

篩別粉末を磁性ボートに入れ、Dp−45℃以下のドラ
イ水素雰囲気下で950℃、1.5h還元する。
The sieved powder is placed in a magnetic boat and reduced at 950°C for 1.5 hours in a dry hydrogen atmosphere at Dp-45°C or lower.

炉中冷却後、灰黒色の粉末を粉砕し、200メツシユ篩
いを通す。こうして得られたRu−MO合金ろう材は、
偏析もなく、十分に拡散し合つた粉末ろうとなる。
After cooling in the furnace, the gray-black powder is ground and passed through a 200 mesh sieve. The Ru-MO alloy brazing material thus obtained is
There is no segregation and the wax powder is sufficiently diffused.

そして、このろう材はアクリル系樹脂と練り合わしてペ
ースト状にしたり、ペレツト等の形で接合体に供給する
Then, this brazing material is kneaded with an acrylic resin to form a paste, or is supplied to the joined body in the form of pellets or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のマグネトロン用トリウム、タングステン
陰極の一部断面図、第2図は本発明の高温ろう接材料の
製造概略工程図である。 1・・・・・・エンドシールド、3,4・・・・・・サ
ポート。
FIG. 1 is a partial cross-sectional view of a conventional thorium and tungsten cathode for magnetrons, and FIG. 2 is a schematic manufacturing process diagram of the high-temperature brazing material of the present invention. 1... End shield, 3, 4... Support.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%40〜45%Bu−Mo粉末ろうの製造にお
いて、微粒MoO_3粉末に塩化ルテニウム酸アンモン
水溶液をドーピングし、混合乾燥した粉末を水素気流中
にて高温還元して得られた粉末を細粉、篩別することを
特徴とする高温ろう接用材料の製法。
1 In the production of 40-45% by weight Bu-Mo powder solder, fine grain MoO_3 powder is doped with an aqueous ammonium chloride ruthenate solution, the mixed and dried powder is reduced at high temperature in a hydrogen stream, and the resulting powder is made into a fine powder. , a method for producing a high-temperature brazing material, which is characterized by sieving.
JP12033576A 1976-10-08 1976-10-08 Manufacturing method for high temperature brazing materials Expired JPS599278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12033576A JPS599278B2 (en) 1976-10-08 1976-10-08 Manufacturing method for high temperature brazing materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12033576A JPS599278B2 (en) 1976-10-08 1976-10-08 Manufacturing method for high temperature brazing materials

Publications (2)

Publication Number Publication Date
JPS5345647A JPS5345647A (en) 1978-04-24
JPS599278B2 true JPS599278B2 (en) 1984-03-01

Family

ID=14783706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12033576A Expired JPS599278B2 (en) 1976-10-08 1976-10-08 Manufacturing method for high temperature brazing materials

Country Status (1)

Country Link
JP (1) JPS599278B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100991A (en) * 1981-12-08 1983-06-15 Toho Kinzoku Kk Joining method for high melting point metal
CN101890503B (en) * 2010-06-25 2012-05-30 贵研铂业股份有限公司 Method for preparing fine Mo-Ru solder powder
CN113025839B (en) * 2021-03-03 2021-11-26 西北有色金属研究院 Preparation method of microalloyed molybdenum-ruthenium alloy

Also Published As

Publication number Publication date
JPS5345647A (en) 1978-04-24

Similar Documents

Publication Publication Date Title
US4670067A (en) Brazing flux
DE965988C (en) Process for applying a vacuum-tight, solderable metal layer to ceramic bodies
JPS61162295A (en) Flux for soldering
CN101890591B (en) Nickel-based high temperature solder and preparation method thereof
US2859512A (en) Method of bonding a titanium member to a ceramic surface
JPS597763B2 (en) Method for forming porous aluminum layer
JP2014180690A (en) Sheet-like high-temperature solder joint material, and die bonding method using the same
JPH05508113A (en) Solder for oxide layer forming metals and alloys
JPS599278B2 (en) Manufacturing method for high temperature brazing materials
JP6744972B1 (en) Joining structure
JPS60121063A (en) Production of lead pin with spherical brazing filler metal
JPS5816795A (en) Brazing material
JPH0215619B2 (en)
JPH10202391A (en) Method for brazing copper or copper alloy
JPS59319B2 (en) Brazing method
JPS6035780B2 (en) End hat for magnetron
CN106312369A (en) Solder for connecting ceramics with kovar alloys
JP3309309B2 (en) Brazing electrode parts and brazing electrodes for discharge lamps
DE1029945B (en) Soldering material made of a copper-titanium alloy for the vacuum-tight connection of ceramic parts with parts made of ceramic or metal
JPS601720A (en) Manufacture of electron tube cathode structure
SU509373A1 (en) Flux for brazing copper and its alloys
JPS5816118Y2 (en) Denshikan ink yokukoutai
JP3302807B2 (en) Joining method of ceramics and silicon
JPS5846549A (en) Manufacture of cathode structural body for magnetron
DE2757986A1 (en) NICKEL-MANGANE SOLDERING ALLOY