JPS5992111A - Controlling method for cooling thick steel plate - Google Patents

Controlling method for cooling thick steel plate

Info

Publication number
JPS5992111A
JPS5992111A JP57201841A JP20184182A JPS5992111A JP S5992111 A JPS5992111 A JP S5992111A JP 57201841 A JP57201841 A JP 57201841A JP 20184182 A JP20184182 A JP 20184182A JP S5992111 A JPS5992111 A JP S5992111A
Authority
JP
Japan
Prior art keywords
cooling
steel plate
thick steel
time
accelerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57201841A
Other languages
Japanese (ja)
Inventor
Kyoichi Yoshikiyo
吉清 恭一
Ryo Tarui
垂井 稜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57201841A priority Critical patent/JPS5992111A/en
Publication of JPS5992111A publication Critical patent/JPS5992111A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To perform uniform cooling of a thick steel plate with good accuracy in the stage of accelerated on-line cooling of the thick steel plate by determining the remaining cooling time for the thick steel plate in a cooling zone and correcting the succeeding travel speed of the plate from said time and the distance for accelerated cooling. CONSTITUTION:A fix point P is provided in the position of a distance L1 from the end at the inlet of a cooling zone in the stage of cooling a thick steel plate 1 with an accelerated on-line cooling device 2. The movement of the plate 1 from the start of cooling up to the point P is traced by a pulse generator (PLG) attached to a table motor M, and the arrival of the plate 1 at the point P is detected from the number N of pulses. The time t1 elapsed from the start of cooling till the arrival at the point P is determined by the product of the time DELTAt in one pulse of PLG and N. If there is a change in the actual speed from the start of cooling up to the point P, the residual cooling time is determined by subtracting t1 from the cooling time (t), and the succeeding travel speed is corrected to a specified speed V, whereby the accuracy in the position of the steel plate is considerably improved and the cooling of the steel plate is uniformly accomplished.

Description

【発明の詳細な説明】 本発明は厚鋼板のオンライン加速冷却力υ:における、
厚鋼板の冷却制御方法に関し、さらに詳しくは、雰囲気
が悪く、光″? (r’Jセンサーによるドラッギング
か不能であるかまたはトラッキング精度が悪いラインで
あって、パルスジェネレータによるトラッキングを行っ
ている場合において、トランキングが高精度を要求され
る場合の冷却制御方法に関する。
[Detailed Description of the Invention] The present invention provides an online accelerated cooling force υ of a thick steel plate.
Regarding the cooling control method for thick steel plates, please refer to the following for more details. The present invention relates to a cooling control method when high precision trunking is required.

ノゾ鋼板のオンライン加速冷却方法において/13も重
要な制御ポイントの一つである厚鋼板の均一な冷却に関
し、本発明者らは厚鋼板走行方向温度分ijを均一・に
するために被玲〕41厚鋼板の走行方向先端および尾端
のそれぞれ所定の長さを冷却装置からオフセットする冷
却方7ノ;をLk ’Mしている。その概要を第1図に
よって説明すると。
Regarding the uniform cooling of thick steel plates, which is one of the important control points in the online accelerated cooling method for steel plates, the present inventors have developed a method for uniform cooling of thick steel plates in the running direction. A cooling method 7 in which the leading end and tail end of the No. 41 thick steel plate in the running direction are offset by predetermined lengths from the cooling device is Lk'M. The outline will be explained with reference to Figure 1.

(a)ます厚鋼板1の尾端5をオレ・ライン加速冷却装
置2の人1」端7に合致Sせて冷却を開始し、(b)次
いで厚鋼板1をΔL8だけ後退させてオフセットシた後
、丙び厚鋼板1を前進ネせて加速冷却装置2内を通過し
て移送し、 (c ) I’、’銅板lの光端6かオンライン加速冷
lJ+装置2の出1′:J端8よりΔΣτだけ突出して
オフセンi・させ。
(a) Start cooling by aligning the tail end 5 of the thick steel plate 1 with the end 7 of the Ore Line accelerated cooling device 2, (b) Next, move the thick steel plate 1 back by ΔL8 to offset the After that, the thick steel plate 1 is moved forward and transferred through the accelerated cooling device 2. Protrude from J end 8 by ΔΣτ and offset i・.

(d)次いで厚鋼板lの光端6かオンライン加速冷却装
置2の出口端8と合致するまで厚鋼板lを後退させて冷
却を終了する。
(d) Next, the thick steel plate 1 is retreated until the light end 6 of the thick steel plate 1 coincides with the outlet end 8 of the online accelerated cooling device 2, and the cooling is completed.

以上の冷却ツノ法の場合、オフセントの長さΔjeとΔ
にとを正確に制御することか心安である。1;記冷却方
法を具現化する最も簡単な方法として厚≦11板の搬送
距陣Aを加速冷却装置の長jk L、圧延厚鋼板の長さ
文、厚鋼板の先後端オフセット長さΔlB、Δχ丁から
次式により求め、 A=L−(交−2(Δb+Δ尤s) )・・・(1)次
に心霊な冷却11.’p 1lil tから・■・°均
通板速瓜V = A /1(rn/5ec)を求め、こ
の一定の通板速度でテーブルを速度制御することにより
、上記冷却力/、I:を具現することかできる。しかし
、このような制御では通板速1政制御の精度が低い分だ
けノブ鋼板の冷却終了時における61丁の精度が悪くな
り、厚鋼板の走行方向1.5 Hi分4iの均一・化を
妨げる外乱となっていた。
In the case of the above cooling horn method, the offset length Δje and Δ
You can rest assured that you can control the particles accurately. 1; The simplest way to implement the above cooling method is to set the conveyance distance A of the thickness≦11 plate by accelerating the cooling device length jk L, the length of the rolled thick steel plate, the offset length ΔlB of the front and rear ends of the thick steel plate, Obtained from Δχ by the following formula, A=L−(cross−2(Δb+Δlikes))...(1) Next, phantom cooling 11. 'p 1lil t・■・°Level threading speed V = A /1 (rn/5ec) is calculated, and by controlling the speed of the table at this constant threading speed, the above cooling power /, I: It can be realized. However, with this kind of control, the accuracy of the knob at the end of cooling of the steel plate deteriorates due to the low precision of the control of the threading speed, and it is difficult to uniformize the 1.5 Hi min 4i in the running direction of the thick steel plate. It was a disturbance that hindered this.

本発明は厚鋼板のオンライン加速冷却力υ、における−
1−記均一・冷却方法を精度よく実現することを目的と
し、鋼板位置制御精度を大幅に向、]−し、均一・なる
却をイする冷却制御方法を提供するものである。
The present invention provides a method for the online accelerated cooling power υ of thick steel plates,
Aiming at realizing the uniform cooling method mentioned above with high accuracy, the present invention provides a cooling control method that significantly improves the steel plate position control accuracy and achieves uniform cooling.

前記へχTl7)精度向−1−を達成するための本発明
の詳細を図面によって説明する。まず第1図(a)に示
すように厚鋼板1の尾端を加速冷却装置の人11端に合
致させて冷却を開始する。なお冷却前の銅板のトラッキ
ンクはレーザーTで補正しておく。
The details of the present invention for achieving the above-mentioned χTl7) accuracy improvement -1- will be explained with reference to the drawings. First, as shown in FIG. 1(a), cooling is started by aligning the tail end of the thick steel plate 1 with the end 11 of the accelerated cooling device. Note that the tracking of the copper plate before cooling is corrected using a laser T.

ん即時間t(sec)は、材質要求からくる冷ノ41速
度と冷却停止1一温度から決定される。この冷却時間E
内に搬送される厚鋼板lの金言1搬送距離Aは、前記(
1)式から決まり、一定速度v (m/5ec)を求め
ると(2)式の如くなる。
The immediate time t (sec) is determined from the cooling rate and the cooling stop temperature, which are determined by material requirements. This cooling time E
The conveyance distance A of the thick steel plate l conveyed within the above-mentioned (
It is determined from equation 1), and when the constant speed v (m/5ec) is determined, it becomes as shown in equation (2).

v −A / L・・・・・・(2) ここでは、説明を簡単にするためJ’X 1ili板走
行方向の方向変換に要する時間を無視しておく。
v - A / L (2) Here, for the sake of simplicity, the time required to change the running direction of the J'X 1ili board will be ignored.

厚鋼板1をv(m/5ee)で搬送すれば第1図(a)
の状態から冷却を開始し、第1図(d)の状態に厚鋼板
が到達したどき、r度冷却峙間が完rすることになる。
If the thick steel plate 1 is conveyed at v (m/5ee), as shown in Fig. 1 (a)
Cooling is started from the state shown in FIG. 1(d), and when the thick steel plate reaches the state shown in FIG. 1(d), the cooling period of r degrees is completed.

この厚鋼板位置制御のタイミングと冷却完了タイミング
が一致することが要求yれる。しかし現実的には、厚鋼
板通板速度か冷却中1オどく厚鋼板とテーブルとのスリ
ツプはないとしても、テーブル速度の制御系には、±1
0・〜30%の1t°1差があるため、第1図(d)の
状態における冷却室r時の厚鋼板位置精度かその分だけ
悪くなり、−均一・冷却を目的として、先端をオフセン
トする近味が失なわれ、厚鋼板走行方向温度分布の不均
一部分が先端に現われ、材質むらを牛し1歩1−ノ1低
ドを生しる。1−記厚鋼板の搬送が雰囲気の劣悪な冷却
ゾーン内でなければ、光学センサーによる!・ラッキン
グ修IFを行うことか可能であるが、冷却装置の中では
無理である。
It is required that the timing of this thick steel plate position control and the timing of completion of cooling coincide. However, in reality, even if there is no slip between the thick steel plate and the table during cooling, the table speed control system has a
Since there is a 1t°1 difference of 0.~30%, the positional accuracy of the thick steel plate in the cooling chamber r in the state shown in Fig. 1(d) deteriorates by that much, and for the purpose of uniform cooling, the tip is offset The approximation of the thick steel plate is lost, and an uneven part of the temperature distribution in the running direction of the thick steel plate appears at the tip. 1-If the steel plate is not transported in a cooling zone with a poor atmosphere, use optical sensors!・It is possible to perform racking repair IF, but it is impossible in a cooling system.

そこで本発明では第2図にポすように冷却ゾーン内の所
定の位置、例えば冷却ゾーン人口端からし、の距離の所
に定点Pを設け、搬送開始(冷却開始)から定点Pまで
の厚鋼板の移動をテーブルモータ(M)に取りつけたパ
ルスジェネレータ(PLO)にて追いかけ、冷却開始か
らLl までlワ鋼板か移動したときのパルス数Nによ
って厚鋼板がPに到達したことを検出する。冷却開始か
らp 1H,< +こ到達するまでの経過時間1.は、
パルスジェオレータの1パルスの時間をΔt(see)
とすればt+  =NXΔtによって求めることがでさ
る。
Therefore, in the present invention, a fixed point P is provided at a predetermined position in the cooling zone, for example, at a distance from the population end of the cooling zone, as shown in FIG. The movement of the steel plate is followed by a pulse generator (PLO) attached to a table motor (M), and it is detected that the thick steel plate has reached P based on the number of pulses N when the steel plate moves from the start of cooling to Ll. Elapsed time from the start of cooling until reaching p 1H, < + 1. teeth,
The time of one pulse of the pulse georator is Δt(see)
Then, it can be found by t+ = NXΔt.

冷却開始からP点までの実際の速度が(V−ΔV)にな
った時、次の(3)式より残冷却時間(1−1+)での
必要速度Vを求めてそれ以後の通板速度をVに補正する
ことにより、t(see)後、冷却停止1−シた時の厚
鋼板先☆1ンイ1“f置の精度を向」;させることがで
きる。
When the actual speed from the start of cooling to point P becomes (V-ΔV), calculate the required speed V for the remaining cooling time (1-1+) from the following equation (3) and calculate the subsequent threading speed. By correcting to V, it is possible to improve the accuracy of the thick steel plate tip when the cooling is stopped after t(see).

・・・・・・・・・(3) 、nこり、:(v−ΔV)は(T、+ + 2f、s 
 、Q) / t +で求めることかできる。
・・・・・・・・・(3) , n stiffness: (v-ΔV) is (T, + + 2f, s
, Q) / t +.

なお、パルスジェネレータは厚鋼板の尾端のある前方の
テーブルのものを通常使用し、テーブル長さより短い短
尺材の厚鋼板の場合のみ尾端のあるテーブルのものを使
用する。
Note that the pulse generator is usually a thick steel plate with a tail end on the front table, and only in the case of a short thick steel plate shorter than the table length, a table with a tail end is used.

本発明方法は第1因に示す場合ばかりでなく、−どのよ
うな冷却力法をとる場合においても、冷却ゾーンの中の
厚鋼板の位置制御に適用することかできる。
The method of the present invention can be applied not only to the case shown in the first factor, but also to the position control of a thick steel plate in a cooling zone in any cooling power method.

本発明方法により、厚鋼板の加速冷却における1′/:
+i板の自−冷却を実現することができ、材質むらを防
11゛二しル留を向上することができ、すぐれた効果を
奏する。
According to the method of the present invention, 1'/:
Self-cooling of the +i plate can be realized, material unevenness can be prevented, and the two-layer retention can be improved, resulting in excellent effects.

実施例 板厚20nam、板幅3500mm、長さ20mの鋼板
を第1図に示す冷却方法により、冷却時間26sec 
とし、Δ尤B = 2 m 、Δ17 = 1 mとし
て操業した。加速冷却装用の長さは40mである。
Example A steel plate with a thickness of 20 nm, a width of 3500 mm, and a length of 20 m was cooled for 26 seconds by the cooling method shown in Fig. 1.
The operation was carried out with ΔB = 2 m and Δ17 = 1 m. The length of the accelerated cooling equipment is 40 m.

従来方法では鋼板搬送圧# A = 26 mであり速
度設定はv= 26m726sec=l m/seeと
なり、これで4S業した所、速度が一10%ずれ0.9
m/sec となった。この時26 sec後に厚鋼板
が搬jxされた音1;1距離は23.4 mとなり、第
3図に示す位置で冷却停市となったので、厚鋼板の先端
部か過冷却となった。この時の冷却温度分布と引張強度
分41を第412に示すが、冷却むらによる材質むらか
大きく、先端部に不良部分0.9 mが発生した。材質
むらは引張強度において7〜8kg101 m’の差が
でている。
In the conventional method, the steel plate conveying pressure #A = 26 m and the speed setting was v = 26 m726 sec = l m/see, and when 4S was performed with this, the speed was deviated by 110% by 0.9
m/sec. At this time, 26 seconds later, the sound of the thick steel plate being transported was heard, and the distance became 23.4 m, and the cooling stop occurred at the position shown in Figure 3, so the tip of the thick steel plate became supercooled. . The cooling temperature distribution and tensile strength 41 at this time are shown in No. 412. The material was uneven due to uneven cooling, and a defective portion of 0.9 m was generated at the tip. The material unevenness shows a difference of 7 to 8 kg101 m' in tensile strength.

第5図にパルスジェネレータによるトランキングを利用
した本発明の実施例の制御を行った結果を示す。冷却ゾ
ーン人[J端から30mの位置でパルスジェネレータに
よるトランキングf+li +にを行った。ここまでの
冷却経過時1111は15.4secであった。そこで
残加速冷却距離における搬送速度を前記(3)式を使用
して求め、1.13 m / secで走行させた結果
冷却終了時において第5図に示すように厚鋼板先端が冷
却ゾーン出[1端と0.1mずれただけの品枯IWの鋼
板搬送精度が得られた。このときの鋼板温度分布と引張
強度分布を第6図に示したが、鋼板走行方向温度むらも
少なく引張強度も2kg/mm’の差におさまり厚鋼板
端まで製品として採取することができた。
FIG. 5 shows the results of controlling an embodiment of the present invention using trunking by a pulse generator. Cooling zone person [Trunking f + li + was performed using a pulse generator at a position 30 m from the J end. The cooling elapsed time 1111 up to this point was 15.4 seconds. Therefore, the conveyance speed for the remaining accelerated cooling distance was determined using the above equation (3), and the result was that the tip of the thick steel plate came out of the cooling zone at the end of cooling, as shown in Fig. 5. A steel plate conveyance accuracy of 0.1 m deviation from one end was obtained. The temperature distribution and tensile strength distribution of the steel plate at this time are shown in FIG. 6, and there was little temperature unevenness in the running direction of the steel plate, and the tensile strength was within a difference of 2 kg/mm', and it was possible to collect products up to the ends of the thick steel plate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、厚鋼板のオンライン加速冷却力法において厚
鋼板先後端をオフセントさせるテーブル制御冷却方法の
一例を示す工程図、第2図は本発明方法の説明図、第3
図は従来のテーブル速度−ル゛制御における冷却停J1
イΔシ置を例示する説明図、第4図は第3図の厚鋼板の
冷却終了温度分布と引張強度分Iljをif<すグラフ
、第5図は本発明の実施例における冷却外(1召)゛を
置を示す説明図、第6図は+発明による厚鋼板の冷却終
r温度分A】と引張強度分布を示すグラフである。 1・・・被冷却厚鋼板、2・・・オンライン加速冷却袋
7i’i、3・・・パスライン、4・・・厚鋼板走行方
向、5・・・厚鋼板尾端、6・・・厚鋼板先端、7・・
・冷却装置のλ「1端、8・・・冷却装置の出1夏端、
ΔPa +ΔIT・・・オフセット長、P・・・定点、
L・・・冷却装置の全長、】71 ・・・冷却装置の入
[1端から定点才での距M、M・・・テーブルモータ、
PLO・・・パルスジェネレータ 特肋出願人  Jl+崎製鉄株式会社 代理人 弁理1−  小杉什男 第1図 第2図 第3図 第4図 尾J唱  (4岡本反長与方市) 充鳩樗    頌
Fig. 1 is a process diagram showing an example of a table-controlled cooling method for offsetting the leading and trailing ends of a thick steel plate in the online accelerated cooling force method for thick steel plates; Fig. 2 is an explanatory diagram of the method of the present invention;
The figure shows cooling stop J1 in conventional table speed-loop control.
Fig. 4 is a graph showing the end-of-cooling temperature distribution and tensile strength Ilj of the thick steel plate in Fig. FIG. 6 is a graph showing the final cooling temperature (A) and tensile strength distribution of the thick steel plate according to the invention. DESCRIPTION OF SYMBOLS 1... Thick steel plate to be cooled, 2... Online acceleration cooling bag 7i'i, 3... Pass line, 4... Thick steel plate running direction, 5... Thick steel plate tail end, 6... Thick steel plate tip, 7...
・λ of the cooling device 1 end, 8... Output 1 summer end of the cooling device,
ΔPa +ΔIT...offset length, P...fixed point,
L...Full length of the cooling device, ]71...Distance M from the first end of the cooling device at a fixed point, M...Table motor,
PLO...Pulse Generator Special Applicant Jl + Saki Steel Co., Ltd. Agent Patent Attorney 1- Yosuo Kosugi Figure 1 Figure 2 Figure 3 Figure 4 Obi J Sho (4 Okamoto Anti-Nagayokata City) Mitsubato Hiroshi ode

Claims (1)

【特許請求の範囲】[Claims] 1 厚11椴のオンライン加速冷却方法におい−(、加
速冷却装置の冷却ゾーン内に定点を設け、厚鋼板の加速
冷2J1開始後、前記厚鋼板i端か前記定点を通過する
までの経過時間から残冷却時間を求め、該歿冷却時間と
残加速冷却距離とからその後の通板速度を補正すること
を特徴とする厚鋼板の冷却制御方法。
1. In the online accelerated cooling method for 11-thick steel sheets, a fixed point is provided in the cooling zone of the accelerated cooling device, and from the elapsed time from the start of accelerated cooling 2J1 of the thick steel plate until the i-end of the thick steel plate passes the fixed point. A method for controlling the cooling of a thick steel plate, characterized in that the remaining cooling time is determined, and the subsequent threading speed is corrected based on the remaining cooling time and the remaining accelerated cooling distance.
JP57201841A 1982-11-19 1982-11-19 Controlling method for cooling thick steel plate Pending JPS5992111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57201841A JPS5992111A (en) 1982-11-19 1982-11-19 Controlling method for cooling thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57201841A JPS5992111A (en) 1982-11-19 1982-11-19 Controlling method for cooling thick steel plate

Publications (1)

Publication Number Publication Date
JPS5992111A true JPS5992111A (en) 1984-05-28

Family

ID=16447776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57201841A Pending JPS5992111A (en) 1982-11-19 1982-11-19 Controlling method for cooling thick steel plate

Country Status (1)

Country Link
JP (1) JPS5992111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103302110A (en) * 2013-06-20 2013-09-18 济钢集团有限公司 Feedforward control method for laminar flow cooling edge part shielding device of wide and thick plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103302110A (en) * 2013-06-20 2013-09-18 济钢集团有限公司 Feedforward control method for laminar flow cooling edge part shielding device of wide and thick plate

Similar Documents

Publication Publication Date Title
JPS5992111A (en) Controlling method for cooling thick steel plate
JP3117919B2 (en) Method for controlling finish-out temperature of hot-rolled metal plate and control device for finish-out temperature of hot-rolled metal plate
JP3709071B2 (en) Sheet bar joining device for continuous rolling equipment
JP2997003B2 (en) Non-contact support control method for continuously running metal strips of different sizes at the connection
JPH10272510A (en) Method for cooling joined part of sheet bar in hot rolling and device therefor
JPH1034207A (en) Method for controlling feeding billet for flying welding and device therefor
KR101999021B1 (en) Method of apparatus for fabricating steel plate
JP3694966B2 (en) Mill Pacing Method for Hot Continuous Rolling
JPS59150651A (en) Automatic positioning method of billet cutter
JP3247830B2 (en) Table roll control method and apparatus for continuous hot rolling equipment
JP2783083B2 (en) Loop car control method
JPH07328718A (en) Method for detecting speed of steel sheet in coiling equipment
JP2001334304A (en) Device for controlling temperature on outlet side of hot finishing rolling mill
JP2002126805A (en) Method for rolling and cutting endless hot rolled steel strip
JPH07164048A (en) Method for rolling and cutting hot rolled endless steel strip
JPS61267654A (en) Time pitch control in continuous manufacturing line
JP3533080B2 (en) Travel control device for welding bogie
JP3503623B2 (en) Tracking method of joining point of endless hot-rolled steel strip and tracking method of cutting target point
JPH0687012A (en) Speed controller for continuous rolling mill
JPH08168804A (en) Device for controlling coiling temperature of hot rolled stock
JPH11278643A (en) Carrying object position tracking method and its device, moving speed detection method and its device, and position control method and its device
JP2921420B2 (en) Combustion control method in continuous annealing furnace
JPS61286021A (en) Process control device
JPH07171607A (en) Mill pacing method
JP2002113505A (en) Method for rolling and cutting endless hot-rolled steel strip