JPS5992028A - Ion exchange treatment - Google Patents

Ion exchange treatment

Info

Publication number
JPS5992028A
JPS5992028A JP57202434A JP20243482A JPS5992028A JP S5992028 A JPS5992028 A JP S5992028A JP 57202434 A JP57202434 A JP 57202434A JP 20243482 A JP20243482 A JP 20243482A JP S5992028 A JPS5992028 A JP S5992028A
Authority
JP
Japan
Prior art keywords
ion exchange
liquid
treated
exchange resin
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57202434A
Other languages
Japanese (ja)
Inventor
Masahiro Itai
板井 柾弘
Nobuo Furuno
伸夫 古野
Akio Tokuyama
徳山 昭男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP57202434A priority Critical patent/JPS5992028A/en
Publication of JPS5992028A publication Critical patent/JPS5992028A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/10Ion-exchange processes in general; Apparatus therefor with moving ion-exchange material; with ion-exchange material in suspension or in fluidised-bed form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/022Column or bed processes characterised by the construction of the column or container
    • B01J47/024Column or bed processes characterised by the construction of the column or container where the ion-exchangers are in a removable cartridge

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To enhance the contact efficiency of a liquid to be treated and a resin particle, by a method wherein ion exchange resin is held in a container for holding ion exchange resin while passing a liquid to be treated and said container is immersed in the liquid to be treated to repeatedly recirculate said liquid to be treated through said container. CONSTITUTION:A liquid to be treated is put in a treating tank 2 and a container 4 having a predetermined amount of ion exchange resin 3 held therein is immersed in said liquid 1 to be treated. A proper recirculation stream means, for example, a barrier plate 5 and a stirrer 6 are provided in a treating tank 2 to form a rising stream in the holding container and ion exchange resin particles are floated. The holding container is one comprising a reticulated or a porous material having a volume 1.5-1,000 times by volume of the ion exchange resin required in deionizing the ion in the liquid 1 to be treated and a basket comprising a material passing the liquid to be treated but capable of holding the ion exchange resin particle.

Description

【発明の詳細な説明】 本発明はイオン交換樹脂を用いたイオン交換処オン交換
処理法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ion exchange treatment method using an ion exchange resin.

イオン交換樹脂を用いたイオン交換法としては攪拌式、
流動層式、移動床式、固定床式等が知られている。
Ion exchange methods using ion exchange resins include stirring method,
Fluidized bed type, moving bed type, fixed bed type, etc. are known.

攪拌式は樹脂が処理液中に分散された状態で使用される
ため、樹脂粒子と処理液との接触効率は高いが、攪拌に
よる粒子の損傷が太きいため、現在工業的には殆んど実
用化されていない。次の流動層式もイオン交換樹脂が処
理液中で浮遊された状態で使用され、上記同様効率は高
いが、との帷勤層の厚みは小さくて、目的とするイオン
交換反−応が完了しない一!ま処理液が流出してしまい
、多段の流動層を必要として特定部門においてしか採用
されていない。これらは処理液中のイオンの一部分の処
理を目的とする場合には好都合ではあるが、処理液中の
イオンを完全((処理したい場合、できる限りの精製、
純度を目的とする処理においては1次のカラム法が適確
であるとされている。
Since the stirring type is used with the resin dispersed in the processing liquid, the contact efficiency between the resin particles and the processing liquid is high, but because the particles are seriously damaged by stirring, it is currently hardly used industrially. Not put into practical use. The next fluidized bed method is also used in which the ion exchange resin is suspended in the treatment solution, and the efficiency is similar to the above, but the thickness of the flowing layer is small and the desired ion exchange reaction is completed. No one! However, the treatment liquid flows out and requires a multi-stage fluidized bed, so it is only used in certain sectors. These methods are convenient when the purpose is to treat a portion of the ions in the processing solution, but if you want to completely process the ions in the processing solution, you need to purify as much as possible.
The first-order column method is considered to be appropriate in treatments aimed at purity.

即ち、カラム法は理論上、樹脂と処理液間のイオン交換
反応(平衡反応)を連続的に無限大の段数に設定するこ
とができ、しかも目的とするイオン交換、再生および洗
浄を同一のカラム中で実施し得ると云う利点があり、イ
オン交換樹脂による最も典型的な処理法として採用され
てきた。
In other words, the column method theoretically allows the ion exchange reaction (equilibrium reaction) between the resin and the treatment liquid to be continuously set to an infinite number of stages, and the desired ion exchange, regeneration, and cleaning can be performed in the same column. It has the advantage of being able to be carried out in a vacuum, and has been adopted as the most typical treatment method using ion exchange resins.

しかしながら近年、再生液および洗浄液の使い捨てによ
る公害の問題、その排水処理を含めた全体のコスト高、
精製の純度の限界において、近年種々の膜技術が発達す
るに従い、イオン交換法自体の精製技術としての競争力
が低下しつつある。
However, in recent years, there has been a problem of pollution due to the disposable use of regenerating and cleaning solutions, and the overall cost including wastewater treatment has increased.
With the recent development of various membrane technologies, the competitiveness of the ion exchange method itself as a purification technology is decreasing in terms of purity.

本発明者はカラム法によるイオン交換反応について鋭意
研究の結果、カラム法の本質的欠点が、イオン交換樹脂
粒子を固定するカラム構造そのものにあることを発見し
た。カラム内でのイオン交換樹脂粒子と被処理液との接
触効率は非常に悪く、これは主として積層した樹脂粒子
内に処理液の短絡回路を形成するためと思われ、これは
また必要量以上の樹脂を使用しなければならない原因と
なる。
As a result of extensive research into ion exchange reactions using the column method, the present inventor discovered that the essential drawback of the column method lies in the column structure itself that fixes the ion exchange resin particles. The contact efficiency between the ion exchange resin particles and the liquid to be treated in the column is very poor, and this is thought to be mainly due to the formation of a short circuit for the treated liquid within the laminated resin particles. This causes the need to use resin.

更にカラム法以外の方法、前述の攪拌方法、流動層式で
は、このイオン交換樹脂粒子と被処理液との接触効率は
良いものの、前述のごとく目的とするイオン交換反応が
完了しない捷ま処理液が流出してし甘い、これ捷だ必要
以上の樹脂を使用しなければならなくなっている。いず
れにおいても目的とするイオン交換反応を大量の樹脂、
大量の再生薬剤、大量の洗浄水をもってタレ流しをn1
1提として構策されたイオン交換処理方法であり、省資
源、省エネルギー、脱公害、高品質のニーズに(は完全
に立ち遅れ、イオン交換脱法に見劣りがするのは明白で
ある。
Furthermore, with methods other than the column method, the above-mentioned stirring method, and the fluidized bed method, although the contact efficiency between the ion exchange resin particles and the liquid to be treated is good, as mentioned above, the desired ion exchange reaction may not be completed in the strained liquid. It's a waste of water and I'm having to use more resin than necessary. In both cases, a large amount of resin is used to carry out the desired ion exchange reaction.
Wash away the drippings with a large amount of regenerating chemicals and large amounts of washing water.
It is an ion exchange treatment method that was developed as one of the first proposals, and it is clearly lagging behind the needs of resource conservation, energy conservation, pollution reduction, and high quality, and is inferior to ion exchange treatment methods.

本発明者は上記の欠点のない・rオン交換樹脂処理方法
を見出した。即ち、本発明はイオン交換樹脂は保持する
が、被処理液は通過するイオン交換樹脂保持容器中にイ
オン交換樹脂を保持し、これを被処理液中に浸漬し、イ
オン交換樹脂が保持容器中で浮遊するに十分な流れを被
処理液中に形成させ、かつ被処理液を繰り返し循環させ
てイオン交換反応を起させることを特徴とするイオン交
換処理法を提供する。
The inventors have discovered a method for treating .r-on exchange resins that does not have the above-mentioned drawbacks. That is, in the present invention, the ion exchange resin is held in an ion exchange resin holding container through which the liquid to be treated passes, and the ion exchange resin is immersed in the liquid to be treated, and the ion exchange resin is held in the holding container through which the liquid to be treated passes. An ion exchange treatment method is provided, which is characterized in that a sufficient flow is formed in a liquid to be treated so as to cause the ion exchange reaction to occur by repeatedly circulating the liquid to be treated.

以下、本発明を第1図および第2図を用いて説明する。The present invention will be explained below with reference to FIGS. 1 and 2.

第1図および第2図は本願発明を説明するための概要図
である。被処理液(1)を処理槽(2)に入れ、所定量
のイオン交換樹脂(3)を入れた保持容器(4)をこれ
に浸漬する。処理槽(2)に適当な循環流形成手段、例
えば衝立(5)と攪拌機(6)を設けて、保持容器内に
上昇流を形成させて、イオン交換樹脂粒子を浮遊させる
FIG. 1 and FIG. 2 are schematic diagrams for explaining the present invention. A liquid to be treated (1) is placed in a treatment tank (2), and a holding container (4) containing a predetermined amount of ion exchange resin (3) is immersed therein. The treatment tank (2) is provided with suitable circulation flow forming means, such as a screen (5) and a stirrer (6), to form an upward flow in the holding container and suspend the ion exchange resin particles.

保持容器(4)は被処理液(11中のイオンを脱イオン
するに必要なイオン交換樹脂容積の1,5〜1000倍
、好ましくは5〜50倍の容積を有する網状もしくは多
孔性の素材からなる容器であり、被処理液は通過するが
イオン交換樹脂粒子は保持することのできる素材で作ら
れたバスケット等である。保持容器は引き揚げまたは移
動等の手段により、使用ずみのイオン交換樹脂を処理槽
から除去する。本発明方法はカラム法と異なり、被処理
水と樹脂粒子の接触面積が広く、かつ樹脂表面の液の交
換がカラム法に比べて、著しく円滑であり、しかも被処
理液が伺回も循環させ、イオン交換反応の平衡に達する
まで接触が繰り返される。
The holding container (4) is made of a reticulated or porous material having a volume of 1.5 to 1000 times, preferably 5 to 50 times, the volume of the ion exchange resin required to deionize the ions in the liquid to be treated (11). It is a container such as a basket made of a material that allows the liquid to be processed to pass through but can retain the ion exchange resin particles. The method of the present invention differs from the column method in that the contact area between the water to be treated and the resin particles is wide, and the exchange of liquid on the resin surface is much smoother than in the column method. The contact is repeated until the equilibrium of the ion exchange reaction is reached.

この為、用いたイオン交換樹脂粒子のすべての表面が短
時間のうちに有効利用できる大きな特徴を有する。イオ
ン交換樹脂は粒径0.1〜2胴、特に0、3〜0.7 
m、nのものが好ましく、0.1 mmより小さいと必
然的に保持容器の目の細かいものを使用せざるを得す、
循凛流の形成が妨げられるため好ましくない。2flよ
り大きいと、樹脂体積あたりの表面積が小さくなる事、
浮遊しにくくなる事で効率が低下する。現在の市販品で
はかかる結果であったが、本発明方法を規定する木質的
条件ではない。樹脂粒子はできるだけ均一に分散し、局
部的な集積を生じないよう保持容器全体から均一な液流
の放散を生ずる構造の処理槽および保持容器を設定する
のがよい。保持容器の底から上方に流れる循環流を形成
させて、イオン交換樹脂粒子の沈積を防ぐ方式が好捷し
い。循環流は第1図および第2図に示すごとく、回頓羽
根型攪拌機を用い処■槽内に適当に設定した衝立または
邪魔板等を介して形成させてもよく、またポンプ等を用
いて形成させてもよい。前述のごとく樹脂粒子の局部的
な集積を生ぜず、かつできるだけ小さいエネルギーで均
一な循環流を形成するためには、被処理液が同一水平面
下で循環するのがよい。即ち、第1図および第2図に示
すごとく、保持容器内の液面が他の部分の液面と実質上
同一水平面を形成するようにするのがよく、更にイオン
交換樹脂粒子に、上向きの流れを効果的に与えることの
できる第2図の方が好捷しく、これらが本発明の典型的
な態様である。イオン交換樹脂粒子が浮遊するに必要な
循環流の流速は、イオン交換樹脂の粒径と密度、処理液
の密度と粘度と温度、及び・rオン交換樹脂保持容器の
大きさと形状によって変化するが、通常0.1〜500
6n/秒の間にあり、10〜100m7秒が多い。流速
が小さいと粒子を浮遊させがたく、カラム法と同等の態
様に至る。流速が速いと攪拌流動のための消費動力費が
大きくなるので適値を決定すれば良く、本発明方法を規
定する本質的条件ではない。
Therefore, it has the great feature that all the surfaces of the ion exchange resin particles used can be effectively utilized in a short period of time. The ion exchange resin has a particle size of 0.1 to 2, especially 0.3 to 0.7.
m or n is preferable; if it is smaller than 0.1 mm, a fine-mesh holding container must be used.
This is not preferable because it hinders the formation of circulating flow. If it is larger than 2 fl, the surface area per resin volume will become smaller.
Efficiency decreases because it becomes difficult to float. Although such results were obtained with current commercially available products, these are not the woody conditions that define the method of the present invention. It is preferable to set the treatment tank and holding container so that the resin particles are dispersed as uniformly as possible and that a uniform liquid flow is dissipated from the entire holding container to prevent local accumulation. A preferred method is to form a circulating flow upward from the bottom of the holding container to prevent the ion exchange resin particles from depositing. As shown in Figures 1 and 2, the circulation flow may be formed using a recirculating blade type stirrer through a screen or baffle plate appropriately set in the treatment tank, or by using a pump or the like. It may be formed. As mentioned above, in order to prevent local accumulation of resin particles and to form a uniform circulating flow with as little energy as possible, it is preferable that the liquid to be treated be circulated under the same horizontal plane. That is, as shown in FIGS. 1 and 2, it is preferable that the liquid level in the holding container forms substantially the same horizontal plane as the liquid level in other parts, and that the ion exchange resin particles have an upwardly directed surface. FIG. 2 is preferable because it can effectively provide flow, and these are typical embodiments of the present invention. The flow rate of the circulating flow required for the ion exchange resin particles to float varies depending on the particle size and density of the ion exchange resin, the density, viscosity, and temperature of the processing liquid, and the size and shape of the ion exchange resin holding container. , usually 0.1-500
It is between 6n/sec and 10-100m7sec is common. If the flow rate is low, it is difficult to suspend particles, leading to an embodiment equivalent to the column method. If the flow rate is high, the power consumption for agitation flow increases, so it is sufficient to determine an appropriate value, and it is not an essential condition that defines the method of the present invention.

本発明方法は基本的にはバッチ式であるから系が平衡状
態に達したら被処理液を抜きとり、別の処理液で更に同
様のイオン交換処理を繰り返すか、使用済みのイオン交
換樹脂を取り換え、同一処理槽で二段以上のイオン交換
処理を繰り返し実施しなくてはならない本質的な欠点を
持つ。しかしながら従来の攪拌式ないしは流動層式にお
いては一段の処理が、イオン交換反応の反応平衡に達し
ない−1まに処理液が流出してしまう重大な欠点が、本
発明により解消された。
The method of the present invention is basically a batch process, so once the system reaches an equilibrium state, the liquid to be treated is removed and the same ion exchange treatment is repeated with another treatment liquid, or the used ion exchange resin is replaced. However, it has the essential drawback that two or more stages of ion exchange treatment must be repeated in the same treatment tank. However, in the conventional stirring type or fluidized bed type, the serious drawback that the treatment liquid flows out before the reaction equilibrium of the ion exchange reaction is reached in one stage of treatment has been solved by the present invention.

本発明方法を実姉するに当り、循環流路の途中に雷、導
計を設置して被処理液の比電導度の変化を検出し、その
便化がなくなった点で、イオン交換反応の平衡に達した
事を正確に検出できる。これはバッチ式の」二連欠点を
補うに足りる重要な本質的長所である。
In implementing the method of the present invention, a lightning meter was installed in the middle of the circulation flow path to detect changes in the specific electrical conductivity of the liquid to be treated. It is possible to accurately detect when the target has been reached. This is an important essential advantage that can compensate for the two drawbacks of the batch method.

カラム法でも貫流点と呼ばれる交換吸着されるべきイオ
ンが流出液中に一定濃度以上漏れ初める点を電導度のチ
ェック、自記録で決定する事が実施されている。このカ
ラム法の終点と本発明の終点とはその意味が本質的に異
なる。即ち、カラム法において貫流点を越えて流した処
理液が精製の純度を損う原因となる為、純度の高いもの
を要求すればするほどこの質流の決定を厳密に実施しな
ければならないし、この検出においては漏れを検出する
方式である限り、完全な精製はありえない。
In the column method, the point called the flow-through point, where the ions to be exchanged and adsorbed begin to leak into the effluent at a certain concentration or higher, is determined by checking the conductivity and by self-recording. The end point of this column method and the end point of the present invention are essentially different in meaning. In other words, in the column method, processing liquid flowing beyond the flow-through point causes a loss of purity in purification, so the higher the purity required, the more rigorously this quality flow must be determined. In this detection, as long as the method detects leakage, complete purification is impossible.

この為、かなり余裕をもって事前に通液を停止せねばな
らない。即ち、実質的には終点は試行錯誤の結果でしか
決められないわけで失敗、事故を完全に防ぐことはでき
ないし、事故の修正はやり直ししかない点でも極めて能
率が悪い。−力木発明でVま、処理液の循環は交換反応
の平衡を越えて実施しても何ら支障はなく、能率向上の
関点で終点を決定するものである。
For this reason, it is necessary to stop the flow of liquid well in advance. In other words, in reality, the end point can only be determined through trial and error, so failures and accidents cannot be completely prevented, and the only way to correct an accident is to start over, which is extremely inefficient. - According to the Rikiki invention, there is no problem in circulating the treatment solution beyond the equilibrium of the exchange reaction, and the end point is determined based on efficiency improvement.

本発明方法は温度を高めて行なってもよい。イオン交換
樹脂粒子表面でのイオン交換反応は固相−液相界面反応
であり、通常の均一反応のごとく瞬時に反応を完了させ
ることはできない。しかし反応は明らかに化学反応であ
るから、温度を高めると促進できることは明白である。
The method of the invention may also be carried out at elevated temperatures. The ion exchange reaction on the surface of the ion exchange resin particles is a solid phase-liquid phase interfacial reaction, and the reaction cannot be completed instantaneously like a normal homogeneous reaction. However, since the reaction is clearly a chemical reaction, it is obvious that it can be accelerated by increasing the temperature.

従来のカラム法ではカラム自体とその中のイオン交換樹
脂そのものの保温は実質的に不可能であり、採用されて
いなかった。本発明方法では被処理1夜の加温および一
定温度の維持は極めて容易であり、イオン交換樹脂の最
適使用温度での使用が可能である。また冬場でも安定し
て実施し得る。年間を通じて安定して実姉できることは
工業的には極めて有意義なことである。
In the conventional column method, it is virtually impossible to keep the column itself and the ion exchange resin inside it warm, so it has not been used. In the method of the present invention, it is extremely easy to heat the treated material overnight and maintain a constant temperature, and it is possible to use the ion exchange resin at the optimum operating temperature. Moreover, it can be carried out stably even in winter. From an industrial perspective, being able to have a stable sister-in-law throughout the year is extremely meaningful.

使用済の樹脂の再生処理は、本発明イオン交換処理と同
様の方法で実施すればよい。即ち、使用ずみのイオン交
換樹脂を酸捷たはアルカリの濃厚液で■1−またはOH
−に交換させるイオン交換反応であり、前述手法と全く
変らない。しかし、本発明方法はこの再生処理にて次の
様な特長を示す。
The regeneration treatment of the used resin may be carried out in the same manner as the ion exchange treatment of the present invention. That is, the used ion exchange resin is treated with a concentrated acidic or alkali solution.
This is an ion exchange reaction in which - is exchanged, and it is no different from the method described above. However, the method of the present invention exhibits the following features in this regeneration process.

当初数段にわたって再生液を必要とするけれども、順次
、次回からの再生に際し2段目以後の再生液を使用する
為、実質的には最初の一段の再生液のみの消耗にすき′
ない。必要に応じて第1段の再生液もその内容を点検し
ておけば再使用可能であり、結局イオン交換樹脂の交換
容量に等しい薬剤のみの消費に近づけられ、薬剤の浪費
を極めて少くすることができた。この分排水処理コスト
も低減し、コスト減に大きく寄与した。
Initially, regenerating liquid is required for several stages, but since the regenerating liquid from the second and subsequent stages is used sequentially for the next regeneration, it is practically possible to consume only the regenerating liquid from the first stage.
do not have. If the content of the regenerated liquid in the first stage is inspected as necessary, it can be reused, and in the end, only the chemical equivalent to the exchange capacity of the ion exchange resin can be consumed, thereby extremely minimizing wastage of the chemical. was completed. This also reduced wastewater treatment costs, contributing significantly to cost reduction.

更に再生後の洗浄工程にかいて、本発明方法は更に大き
々効果を発揮する。即ち再生液、薬剤が樹脂粒子(て4
1着していた為、これが被処理液の汚染源になったりす
る事故が多い。致命的な損害を起す事があり特に注意を
必要とする。カラム法での洗浄は極めて効率が悪く、大
量の洗浄水とともにこれをゆつ〈Oと通過せねばならな
い関係から長時間の作業を必要とする。しかし本発明方
法によると、当初、数段にわたって洗浄水の建浴を必要
とするけれども1次回からの洗浄は順次ぐり返ば、再生
処理と実質的に同じになり、前段の再生処理段数を減ら
すことが可能になる。即ち洗浄工程のクローズド化が0
T能であり、これも本発明方法の大きな特長である。こ
うした設備に当初かなりの膜質を必便とする。大規模な
再生装置にするほどに本発明効果が顕著に発揮されるの
で、使用済のイオン交換樹脂を1ケ所に集めて一括して
再生処理する方が好ましく、集める為のコストは本発明
効果で十分補われ、大きな付加価値を発生する。排水処
理設備がない為にイオン交換反応が採用され難かった分
野で、手1経にイオン交換反応が実施できる様になった
利点も大きい。
Furthermore, the method of the present invention exhibits even greater effects in the cleaning step after regeneration. That is, the regenerating liquid and the drug are resin particles (Te4
There are many accidents where this happens to be the source of contamination of the liquid to be treated. Special care must be taken as it may cause fatal damage. Washing by the column method is extremely inefficient and requires a long work time because a large amount of washing water must be passed through it together with O. However, according to the method of the present invention, although it is necessary to prepare the washing water in several stages at the beginning, if the washing from the first time is repeated sequentially, it becomes substantially the same as the regeneration treatment, and the number of stages of the previous regeneration treatment is reduced. becomes possible. In other words, the cleaning process is closed.
This is also a major feature of the method of the present invention. Initially, such equipment requires a considerable amount of membrane quality. The effects of the present invention will be more pronounced as the regeneration equipment is larger, so it is preferable to collect the used ion exchange resins in one place and recycle them all at once. This is fully compensated for by this, generating significant added value. This is a field where ion exchange reactions have been difficult to adopt due to the lack of wastewater treatment equipment, and the advantage of being able to carry out ion exchange reactions directly is also significant.

本発明方法は、医薬、食品、工業を始めとし、従来イオ
ン交換反応が実施されでいるすべての分野に適用されう
るが、本発明効果を最も明白に示す例として次の実砲例
で詳述する。
The method of the present invention can be applied to all fields in which ion exchange reactions have conventionally been carried out, including medicine, food, and industry; do.

〔実施例1] 、t’J 塩基アニオン交換樹脂(アンバーライトIR
A−400)をNaOHを用いて再生する反応を例示す
る。本発明方法を実施する第1図の装置では、水平向を
カラム内と同一になる様に上部は十分な還流通路を設け
る。イオン交換反応樹脂の保持槽(4)が5t、循環系
に21.計7tの容量を持つ。ここに純水を満たし循環
させ、上記樹脂(粒径0.38〜0.45#でCt−型
の未再生)1t(湿潤)を保持槽内に入7″した。樹脂
粒子は保持槽の中で浮遊し、互いに接したり、固着した
りすることがなく、自由に動きまわった。処理液が循環
し、くり返し効率よく粒子表面と接触することがよくわ
かった。以上のことが円滑に進むよう装置、条件を調整
し、用いた水を抜きとった。
[Example 1], t'J base anion exchange resin (Amberlite IR
A reaction for regenerating A-400) using NaOH is illustrated. In the apparatus shown in FIG. 1 for carrying out the method of the present invention, a sufficient reflux passage is provided in the upper part so that the horizontal direction is the same as the inside of the column. The holding tank (4) for ion exchange reaction resin is 5 tons, and the circulation system is 21. It has a total capacity of 7 tons. This was filled with pure water and circulated, and 1 ton (wet) of the above resin (Ct-type, unregenerated with a particle size of 0.38 to 0.45#) was placed in the holding tank for 7''. They floated in the particles and moved around freely without touching or sticking to each other. It was clear that the processing liquid circulated and repeatedly and efficiently contacted the particle surfaces. The above process proceeded smoothly. The equipment and conditions were adjusted, and the water used was drained.

〔再生反応〕[Regeneration reaction]

I N −NaOHの7tを充填し、上記循環を行なっ
た。上記樹脂粒子1tは1.4当量の交換容量を持つの
で、必要数の5倍のアルカリを供給した事になる。第1
図に示す比電導度計(7)により液比電。
7t of IN-NaOH was charged and the above circulation was carried out. Since 1 ton of the resin particles has an exchange capacity of 1.4 equivalents, this means that 5 times the required number of alkalis was supplied. 1st
Measure the liquid specific electricity using the specific conductivity meter (7) shown in the figure.

導度を記録測定した結果を第4図のAに示す。The results of recording and measuring the conductivity are shown in A of FIG.

R−C1+ Na+0’FI−、! R−OH+ Na
+C1−上記の交換反応が進むにつれて、処理液中には
0「が減ってCt−が増えてぐる。Ct−は0Ff−の
当量型導度の1/8程度しかない為、この交換反応の推
移が電導度の変化で検出される。即ち第4図Aに示すご
とく、この変化がなくなった時点を上H−交交換平衡に
達したものとした。この時間は、処理液の循環速度が多
少変っても、大きく斐らなかったが、粒子が浮遊しない
遅い循環では大巾に長くなつ九粒子が固定し、従来技術
のカラム法に相当する場合は5時間後でもわずかな変化
が残り、平衡に至らなかった。液温を40°Cに加温す
ると30分で完結し、本発明効果が著しくあられ力、た
R-C1+ Na+0'FI-,! R-OH+ Na
+C1- As the above exchange reaction progresses, 0" decreases and Ct- increases in the treatment solution. Since Ct- has only about 1/8 of the equivalent type conductivity of 0Ff-, this exchange reaction The transition is detected by the change in conductivity. That is, as shown in Figure 4A, the time when this change disappears is considered to have reached the upper H-exchange equilibrium. During this time, the circulation speed of the processing liquid is Even if there was a slight change, it was not a big difference, but in slow circulation where particles do not float, nine long particles are fixed, and in the case of the conventional column method, a slight change remains even after 5 hours. Equilibrium was not reached. When the liquid temperature was raised to 40° C., the reaction was completed in 30 minutes, and the effect of the present invention was remarkable.

再生液を更新し同様操作をした結果を第4図IS、第3
回目の結果を第4図Cに示す。3回目は電導度の変化を
ほとんど検出しなかった。このことによりこれ以上繰り
返してもI N −NaO,I−1を用いる再生は限界
にある事を的確に把握できた。
The results of renewing the regeneration liquid and performing the same operation are shown in Figure 4 IS and Figure 3.
The results of the first test are shown in Figure 4C. At the third time, almost no change in conductivity was detected. This made it possible to accurately grasp that the regeneration using I N -NaO, I-1 is at its limit even if the process is repeated any further.

は 上記再生?%、、21 Lを必要とし、これは従来のカ
ラム法に比較し大きい。しかし、この再生液は別途区別
して保存し、NaOHを補給1−2で再使用に供した。
Does the above play? %, 21 L, which is larger than the conventional column method. However, this regeneration solution was stored separately and reused with NaOH replenishment 1-2.

汚染が著しくなる初段の再生液を適時廃却するが、アル
カリの無駄に廃却されなくなった事は明白であり、省資
源、公害防止の効果は絶大である。
Although the first-stage regenerating liquid, which becomes extremely contaminated, is disposed of in a timely manner, it is clear that the alkali is no longer wasted, and the effects of resource conservation and pollution prevention are enormous.

〔洗浄工程〕[Washing process]

次にlμS / cmの純水7tを満たし、上記循環を
行ない、内液の比電導度の変化を記録測定した結果を第
5図のAに示す。洗浄液を更新し同様操作をした結果を
13、C,Dに示す。第4回目では電導塵の斐化全全く
検出し7なかった。それぞれに用いた再生液は別途それ
ぞれ区別して保存し再利用にiJl: した。このとき
液のアルカリ度を測定し、著しくアルカリ度の増加した
初段の腋から、廃却した。但しこれを前記アルカリ再生
液の建浴に用い実質的廃却を防止しえた。洗浄液は当初
281とかなりの量を必要としたが、合理的必要量であ
り無駄になっていない。しかも、この水は再利用され、
実質的には7を程度の補給で、完全な洗浄ができること
になる。
Next, 7 tons of pure water of lμS/cm was filled, the above circulation was performed, and changes in the specific conductivity of the internal liquid were recorded and measured. The results are shown in A of FIG. The results of updating the cleaning solution and performing the same operation are shown in 13, C, and D. In the fourth test, no conductive dust was detected at all. The regenerating solutions used for each were stored separately and reused. At this time, the alkalinity of the liquid was measured, and the first stage armpit where the alkalinity significantly increased was discarded. However, this was used to prepare the alkaline regenerating solution, and was able to substantially prevent its disposal. Although a considerable amount of cleaning liquid was initially required, 281 liters, it was a reasonably necessary amount and was not wasted. Moreover, this water is reused,
Substantially, complete cleaning can be achieved by replenishing about 7 parts.

実施例 実症例1と同様にして、強酸性カチオン交換樹脂(アン
バーライトIR−120B)1 tを塩酸を用いて再生
した。
In the same manner as Example Case 1, 1 t of strongly acidic cation exchange resin (Amberlite IR-120B) was regenerated using hydrochloric acid.

RNa +)l+CZ  ? RH+ Na+C1−上
記の交換反応が進むにつれ、処理液中にはJ−[−が減
ってNa″−が増えてくる。Na(−は11モの当量電
導塵の115程度しかない為、この交換反応の推移は実
施例1に示したアニオン交換反応より明瞭に電導塵の変
化で検知でき   −“−゛−−七神鍮湿潤樹脂llt
で1.9eq の交換容量を有する両生樹脂が得られた
RNa+)l+CZ? RH + Na + C1 - As the above exchange reaction progresses, J- [- decreases and Na''- increases in the treatment solution. Since Na (- is only about 115 of the equivalent conductive dust of 11 mo), this exchange The progress of the reaction can be detected more clearly from the change in conductive dust than in the anion exchange reaction shown in Example 1.
An amphoteric resin with an exchange capacity of 1.9 eq was obtained.

上記2種類の再生筒のイオン交換樹脂を500dずつを
混合し、第1図に示す装置の保持槽に入れた。ここに比
電導度250μS/αの水道水を満たし、循環させると
、おおよそ20分後には0.2μS/crr+の値にな
った。この様な比抵抗の高い水は従来のイオン交換法で
はこんな短時間で得られない水準であり、本発明の大き
な特徴である。品質の保証された脱イオン水がバッチ式
で得られる点で、工業上の品質管理上極めて好都合であ
り、不良、失敗の入り込む事が全くなくなシ、極めて安
定して高純度の脱イオン水が入手できた。純水の製造で
連続式に製造できる事は必ずしも利点ではなく、使用す
る単位毎のバッチ式の方が品質管理」二好ましい。
500 d each of the ion exchange resins from the two types of regeneration tubes were mixed and placed in a holding tank of the apparatus shown in FIG. When this was filled with tap water having a specific conductivity of 250 μS/α and circulated, the value reached 0.2 μS/crr+ after approximately 20 minutes. Water with such high specific resistance is at a level that cannot be obtained in such a short time using conventional ion exchange methods, and is a major feature of the present invention. Deionized water with guaranteed quality can be obtained batchwise, which is extremely convenient for industrial quality control, and there is no chance of defects or failures, resulting in extremely stable and highly purified deionized water. was available. It is not necessarily an advantage to be able to produce pure water in a continuous manner, but a batch method for each unit used is preferable for quality control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明方法を実施するだめの装置
の概要図、第3図はカラムの概要図、第4図は本発明方
法でイオン交換樹脂を再生したときの導電度の変化、第
5図は実施例1の洗浄工程における比電導度の変化を示
す図である。 図中、(11)は被処理液、(2)は処理槽、(3)は
イオン交換樹脂、(4)は保持容器、(5)は衝立、(
6)は攪拌機、(7)は電導度肝、(8)はカラムおよ
び(9)はブイ/レターを示す。第4図中、(A)、(
B)および(C)は本発明方法を用いてOr、型イオン
交換樹脂を再生したときの一段再生、二段再生および三
段再生時の経時的型導度変化をそれぞれ示す。
Figures 1 and 2 are schematic diagrams of the apparatus for carrying out the method of the present invention, Figure 3 is a schematic diagram of the column, and Figure 4 is the change in conductivity when the ion exchange resin is regenerated by the method of the present invention. , and FIG. 5 are diagrams showing changes in specific electrical conductivity during the cleaning process of Example 1. In the figure, (11) is the liquid to be treated, (2) is the treatment tank, (3) is the ion exchange resin, (4) is the holding container, (5) is the screen, (
6) is a stirrer, (7) is a conductivity gauge, (8) is a column, and (9) is a buoy/letter. In Figure 4, (A), (
B) and (C) show the change in type conductivity over time during one-stage regeneration, two-stage regeneration, and three-stage regeneration, respectively, when the Or type ion exchange resin was regenerated using the method of the present invention.

Claims (1)

【特許請求の範囲】 ■、イオン交換樹脂は保持するが、被処理液は通過する
イオン交換樹脂保持容器中にイオン交換樹脂を保持し、
これを被処理液中((浸漬し、イオン交換樹脂が保持容
器中で浮遊するに十分な流れを被処理液中に形成させ、
かつ被処理液を繰り返し循環させてイオン交換反応を起
させることを特徴とするイオン交換処理法。 2、保持容器と他の部分の被処理液の液面を実質上同一
水平面で行なう第1項記載の方法。 3、イオン交換反応の反応平衡に達した事を、電導度の
変化がなくなった事で検知する第1項記載の方法。 4、被処理液を加塩して行なう第1項記載の方法。 5、イオン交換反応の反応平衡に達したら、被処理液を
抜きとり、別の処理液で更に同様のイオン交換反応を繰
り返すか、イオン交換樹脂を取り出して別途処理液を満
たした同様の処理槽でイオン交換反応の繰り返しを多段
にわたって実施する第1項記載の方法。 6、イオン交換反応が再生と洗浄工程を含む第1項記載
の方法。
[Claims] (1) Holding the ion exchange resin in an ion exchange resin holding container through which the liquid to be treated passes through which the ion exchange resin is held;
The ion exchange resin is immersed in the liquid to be treated, and a sufficient flow is formed in the liquid to cause the ion exchange resin to float in the holding container.
An ion exchange treatment method characterized in that the liquid to be treated is repeatedly circulated to cause an ion exchange reaction. 2. The method according to item 1, wherein the liquid level of the liquid to be treated in the holding container and other parts are substantially the same horizontal plane. 3. The method according to item 1, wherein reaching the reaction equilibrium of the ion exchange reaction is detected by no longer changing the electrical conductivity. 4. The method according to item 1, which is carried out by adding salt to the liquid to be treated. 5. When the reaction equilibrium of the ion exchange reaction is reached, either remove the liquid to be treated and repeat the same ion exchange reaction with another treatment liquid, or take out the ion exchange resin and use a similar treatment tank filled with a separate treatment liquid. 2. The method according to item 1, wherein the ion exchange reaction is repeated in multiple stages. 6. The method according to item 1, wherein the ion exchange reaction includes a regeneration and washing step.
JP57202434A 1982-11-18 1982-11-18 Ion exchange treatment Pending JPS5992028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57202434A JPS5992028A (en) 1982-11-18 1982-11-18 Ion exchange treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57202434A JPS5992028A (en) 1982-11-18 1982-11-18 Ion exchange treatment

Publications (1)

Publication Number Publication Date
JPS5992028A true JPS5992028A (en) 1984-05-28

Family

ID=16457451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57202434A Pending JPS5992028A (en) 1982-11-18 1982-11-18 Ion exchange treatment

Country Status (1)

Country Link
JP (1) JPS5992028A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005871A1 (en) * 1990-10-05 1992-04-16 Schering Aktiengesellschaft Process for ion exchange in aqueous solutions by means of ion exchange resins and installation for implementing the process
US5164080A (en) * 1990-06-28 1992-11-17 Fine Clay Co., Ltd. Ion-exchange treatment apparatus for dispersions
WO2005052214A3 (en) * 2003-11-28 2005-09-15 Franz Roiner Method and device for producing one or several gases
WO2011070798A1 (en) * 2009-12-08 2011-06-16 株式会社日立製作所 Metal recovery method for recovering metal from wastewater, metal-separating substance for use in recovery of metal from wastewater, and water purification device utilizing the substance
JP2014167047A (en) * 2013-02-28 2014-09-11 Kake Educational Institute Method and apparatus for producing nanocrystalline cellulose
JP2017029913A (en) * 2015-07-31 2017-02-09 前澤工業株式会社 Method for regenerating ion-exchange resin

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164080A (en) * 1990-06-28 1992-11-17 Fine Clay Co., Ltd. Ion-exchange treatment apparatus for dispersions
WO1992005871A1 (en) * 1990-10-05 1992-04-16 Schering Aktiengesellschaft Process for ion exchange in aqueous solutions by means of ion exchange resins and installation for implementing the process
WO2005052214A3 (en) * 2003-11-28 2005-09-15 Franz Roiner Method and device for producing one or several gases
JP2007512435A (en) * 2003-11-28 2007-05-17 ロイナー フランツ Method and apparatus for generating one or more gases
AU2004293566B2 (en) * 2003-11-28 2011-04-21 Gensch, Barbara Method and device for producing one or several gases
US8197666B2 (en) 2003-11-28 2012-06-12 Maria Roiner Method and apparatus for the manufacture of one or more gases
WO2011070798A1 (en) * 2009-12-08 2011-06-16 株式会社日立製作所 Metal recovery method for recovering metal from wastewater, metal-separating substance for use in recovery of metal from wastewater, and water purification device utilizing the substance
JP2011120961A (en) * 2009-12-08 2011-06-23 Hitachi Ltd Metal recovery method for recovering metal in sewage, metal separating agent for recovering metal in sewage, and water purifying apparatus using the agent
JP2014167047A (en) * 2013-02-28 2014-09-11 Kake Educational Institute Method and apparatus for producing nanocrystalline cellulose
JP2017029913A (en) * 2015-07-31 2017-02-09 前澤工業株式会社 Method for regenerating ion-exchange resin

Similar Documents

Publication Publication Date Title
TW200307647A (en) Ion exchange regeneration system for UPW treatment
WO2001092607A1 (en) Regeneration of plating baths
JPS5992028A (en) Ion exchange treatment
JPH0694895A (en) Method for removing radioactive material from used nuclear-reactor decontamination liquid using electrochemical ion exchange method
EP0775524B1 (en) Ion exchange resin particle separation system
US4336140A (en) Water purification process
CN107555654A (en) A kind of Treated sewage reusing technique for metal industry cooling system
JPS5815016B2 (en) How to clean ion exchange resin
KR20120103633A (en) Method for reusing waste liquid from which tetraalkylammonium ions have been removed
CN209178103U (en) A kind of aparatus for purification of sewage in life
CN110862143A (en) Automatic oxygen-deficient expansion bed device for high-concentration nitrate-nitrogen wastewater treatment
JPS62121691A (en) Method for removing arsenic and silicic acid from geothermal water
CN209210562U (en) Pretreatment system applied to pure water equipment
JP2000061322A (en) Apparatus for regenerating used ion exchange resin
JP4023834B2 (en) Storage method and operation preparation method of ion exchange resin in hotbed desalination equipment
CN107459109A (en) The devices and methods therefor of removing heavy metals and hardly degraded organic substance is synchronously removed in a kind of air water anisotropic flow three-dimensional electro-catalysis
JP2002018433A (en) Ion exchanger
JPH03154642A (en) Regeneration method of ion-exchange resin
RU6469U1 (en) INSTALLATION FOR CONTINUOUS CHEMICAL CLEANING OF THE SURFACE OF PRODUCTS, PREFERREDLY, SEMICONDUCTOR PLATES
JPS59154398A (en) Method of recovering radioactive deconamination liquid waste
JPH0771669B2 (en) Ultrapure water production method
JPH0531482A (en) Condensed water demineralizing method
JPS59162493A (en) Method of removing iron oxide adhering to ion exchange resin
WO2000003398A1 (en) Method for treating waste containing technetium
JPS62193652A (en) Ion-exchange treatment for electrodeposition paint bath