JPS599184A - Manufacture of l-cysteine - Google Patents

Manufacture of l-cysteine

Info

Publication number
JPS599184A
JPS599184A JP57116292A JP11629282A JPS599184A JP S599184 A JPS599184 A JP S599184A JP 57116292 A JP57116292 A JP 57116292A JP 11629282 A JP11629282 A JP 11629282A JP S599184 A JPS599184 A JP S599184A
Authority
JP
Japan
Prior art keywords
chamber
cation exchange
exchange membrane
cysteine
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57116292A
Other languages
Japanese (ja)
Inventor
Takuo Kawahara
拓夫 川原
Toshikatsu Hamano
浜野 利勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP57116292A priority Critical patent/JPS599184A/en
Publication of JPS599184A publication Critical patent/JPS599184A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To manufacture L-cysteine contg. no impurities in a high yield when L-cysteine is manufactured by the electrolytic reduction of L-cystine, by using an electrolytic cell provided with a cation exchange membrane. CONSTITUTION:An electrolytic cell is divided into an anode chamber and a cathode chamber with a cation exchange membrane made of a polymer of tetrafluoroethylene or the like. The anode chamber is filled with 1-30% aqueous soln. of a mineral acid such as hydrochloric acid, sulfuric acid or phosphoric acid, and a noble metal such as platinum or its oxide is placed in the chamber. The cathode chamber is filled with an aqueous soln. contg. a mineral acid salt of L-cystine and a mineral acid such as hydrochloric acid added by about 0.1-2mol per 1mol salt, and a platelike or netlike cathode of lead, silver, carbon or the like is placed in the chamber. Electrolysis is carried out at 10-60 deg.C, 2.5-6V and 0.1-30A/dm<2> current density to manufacture high purity L-cysteine in a high yield.

Description

【発明の詳細な説明】 本発明はL−7ステインの製造方法、特にL−ンスチン
を陽イオン交換膜を用いた11−i Wf環元方法によ
ってL−システィンに転化せしめる方法に係るものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing L-7 stain, and in particular to a method for converting L-cysteine to L-cysteine by the 11-i Wf ring formation method using a cation exchange membrane. .

L−システィンは医薬品1食品添加物、化粕品等の用途
に用いられている。従来、L−システィンの合成力法と
しては、例えば素43+ξきのδ゛1隔胎゛を用いで■
・−7スヂンを電解せしめる方法が知られている。(特
公昭37−2022号公幸ド参照)この方法によると、
陽極液或は囲枠液中に併々の添加物を添加[7、又′P
11.伜宿もかなり特定化して実施することにより転化
イく及び純度を向上せしめようとしている。
L-cysteine is used in pharmaceutical products, food additives, chemical residue products, and the like. Conventionally, as a resultant force method for L-cysteine, for example, using δ゛1 septa゛ of prime 43 + ξ, ■
- A method of electrolyzing -7 suden is known. (Refer to Special Publication No. 37-2022) According to this method,
Adding additives to the anolyte or surrounding solution [7, also 'P
11. We are also trying to improve conversion and purity by implementing highly specific methods.

しか17ながら、陽極液やl異椋・・液中に神々な添加
物を添加せしめると一般にN Dp+゛′r[圧が上列
したり、添加物の一部が極付近に析出したりする虞れを
生じたり、得らt]るL−システィン中に添加物の一部
が不純物として混入し、これを除去する操作が必要とな
ったり、かir b JIY;作が炉全1・なものであ
った。
However, if a divine additive is added to the anolyte or other liquid, the pressure will generally rise or some of the additive will precipitate near the poles. There is a risk that some of the additives may be mixed in as impurities in the L-cysteine obtained, and an operation to remove them may be necessary. It was something.

本発明者はかかる点に鑑み、もつと単純な系を用いるこ
とにより高純」りなL−7ステインを電角;r法により
高収率てイHることを目的とし2て種々研究7検討した
結果、従来用いられでいた累月°、1、き舌の′j1μ
m猶月枦に代えてイオン交換力へを用いることにより前
記目的を達成し得ることを見出した。
In view of this, the present inventor has conducted various studies with the aim of producing highly pure L-7 stain in high yield by the electric angle method using a relatively simple system. As a result, the conventionally used cumulative moon °, 1,
It has been found that the above object can be achieved by using an ion exchange force instead of the ion exchange force.

かくして本発明+d、陽イオン交捗膜によって仕切られ
た陽極室と陰柳室を翁する電解槽を用い、骸陽伜室に―
鉱酸を、陰極室にはb−シスチンの卸、酸l(kを夫々
導入し2て布1解せしめることを特徴と1゛る1・−7
ステインの製造方法を提供するにある。
Thus, the present invention +d uses an electrolytic cell that separates the anode chamber and the inryu chamber separated by a cation exchange membrane, and makes it possible to use the electrolytic cell to separate the anode chamber and the inryu chamber.
Mineral acid is introduced into the cathode chamber, b-cystine is introduced into the cathode chamber, and acid l (k) is introduced into the cathode chamber to dissolve the cloth.
To provide a method for producing a stain.

本発明において用いられる鉱[膣は、陰陽枠室何れに導
入されるものも塩酸、値酸、燐酸であり、これらは、単
独若しくは混合して用いるととかてきる。更に、陽極室
に用いた鉱酸と陰極率に用いるイれとか同−牙中類であ
る必要もない。
Hydrochloric acid, acid, and phosphoric acid are introduced into either the yin or yang frame chambers used in the present invention, and these can be used alone or in combination. Furthermore, the mineral acid used in the anode chamber and the acid used in the cathode chamber need not be of the same class.

陽彬室に導入さねる鉱酸の濃度は、一般に1+?す記範
囲にa〜だない坊“7合には、工梨的に道j正な電離密
度の’Fli、孤、を流1ことか困t(!′となり、)
ヴ(に^(1記軸四を超える場合にに]、し、(1〕に
宰中の水か陽(11μ室中に浸漬し7.1東佇r液7M
ルを一定にすることか困屑fとなるのでイ用ねもりj′
−ましくない。
The concentration of mineral acid introduced into the Yang Akira chamber is generally 1+? In the range from a to 7th, it is difficult to flow the ionization density 'Fli, arc' with a positive ionization density (!')
7.1 Higashitan r liquid 7M soaked in water or water (11μ chamber) in (1).
It is difficult to keep the value constant, so it is difficult to keep it constant.
- Not good.

又、[X、を徐室に導入さt)るJ、−シスチン鉱酬の
70 ry−u一般にL −シスチンの鉱j−d i、
i / molに9・]しV、門・201〜2 mol
稈Iリ−を冷力(ヒ4るのか女イ唄しいか、イオン交換
膜のl’l ;Ii’l捷りを起1さ)rO限り■・−
一電スヂンの−7<、Bかi”;’遊陶°濁した状態で
のイ・ノ・月1 i、 ’1]]能テ!、イ)0、(1
・−システィンに中r、化さ′11ると竹屑してし−f
う。) il:’i Iいか前h1シ鞄囲よりII、に
い場合にO」、L−ンスチ/のt谷)す′[亀か極端に
低く 7:i:す7”ダ几−4′か低くなるのでII捷
し7くない。
Also, [X, is introduced into the slow room 70 ry-u of J,-cystine ore, generally L-cystine ore j-d i,
i/mol to 9・]V, gate・201~2 mol
As long as the culm is cooled, the ion-exchange membrane's l'l;
Ichiden Sujin's -7 <, Bkai'';'I・No・月1 i, '1]] Note!, I) 0, (1
・-When Sistine became a middle-aged man, he turned into bamboo shavings.
cormorant. ) il:'i I Ikamae h1 shi from the bag enclosure II, in case of O', L-insti/'s t valley) su' Since the value will be low, there will be no 7 in II.

木兄「!J」K 用イラft ル陽1ij< )11”
/J、形状VC;l;i l!+(’r:rなく、14
11乏ば4・イ容−1’l+の陽4年となりうる白金雪
冑金屈或いにt1金鴇IP化物ヤjをオ)(7キ1一体
、糸1’44Je体、エキスパンテソ)・メタル状体に
メッキ又い、コープインクし7たもの等適論な月T]と
形状各採用し得る。
Illustration for Ki-ni “!J”K ft Ruyo 1ij< )11”
/J, shape VC;l;i l! +('r: without r, 14
11 If there is 4・Iyong-1'l+ Yang 4 years can be platinum snow-covered metal flex or t1 kintoki IP monster yaj o) (7ki 1 unit, thread 1'44Je body, expandanteso)・Any suitable shape and shape can be adopted, such as a metal body plated or coated with cope ink.

又、陰極としては、L−シスチンがL−システィンに転
化される酸化還元電位の理論値が−0,27Vである処
から、例えば鉛、銀、炭素。
Further, as the cathode, since the theoretical value of the redox potential at which L-cystine is converted to L-cystine is -0.27V, for example, lead, silver, or carbon can be used.

水銀等を採用するのが適肖であり、これらの形状につい
では、II極と同様の態様全採用し得る。
It is appropriate to use mercury or the like, and for these shapes, all the same aspects as for the II pole can be adopted.

次に本発明に用いられる陶イ刈ン父換膜としでは、例え
ばスルホン酸基、スルホン酸基とカルボキ/ル基、燐酸
基、フェノール性水酸基等の陽イオン交換基全混合した
ものを含櫓する重合1イ・から成り、かかる車台体とし
ては、例えはテトラフルオ口エチレノ、クロロトリフル
オロエチレン等のビニルモノマーとスルホン配、カルボ
ン酸、燐酸基等のイオン交換基、或はイオン交換基に転
換しイ号る反応・にに基を有するパーフルオロのビニル
モノマーとの共重合体が好ましい0 又、トリフルオロエチレンの膜状重合体にスルホン酸基
等のイオン交換基を導入したものや、スチレン/ビニル
ベンゼンにスルホン?lli人したもの等も使用しイ4
する。
Next, the ceramic carbonaceous membrane used in the present invention contains, for example, a mixture of cation exchange groups such as sulfonic acid groups, sulfonic acid groups and carboxyl groups, phosphoric acid groups, and phenolic hydroxyl groups. The vehicle body is made of, for example, a vinyl monomer such as tetrafluoroethylene or chlorotrifluoroethylene and an ion exchange group such as a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, or an ion exchange group converted to an ion exchange group. Copolymers with perfluorinated vinyl monomers having Ni groups are preferred.Also, membrane polymers of trifluoroethylene with ion exchange groups such as sulfonic acid groups, and styrene /Sulfone in vinylbenzene? I also use things made by other people.4
do.

尚、炭化水素系陽イオン交換膜を用いる際には、ポリテ
トラフルオロエチレンやテ[・フンルオロエチレンー六
弗化プロピレン共1(合体の様な含弗素樹脂の多孔質膜
と前記イオン交換膜と全複合せしめることにより、陽イ
オン交換膜全高温2強酸性雰囲気から保護することが出
来る。
In addition, when using a hydrocarbon-based cation exchange membrane, it is necessary to use a porous membrane of a fluorine-containing resin such as polytetrafluoroethylene or tetrafluoroethylene-hexafluoropropylene (combination) and the ion exchange membrane. By combining the entire cation exchange membrane with the membrane, the entire cation exchange membrane can be protected from high temperature and strongly acidic atmospheres.

又、スルホン酸基を有する上記含弗素樹脂陽イオン交換
膜は、耐熱性、耐酸性が高く、本発明にそのまま用い得
るので特に好ましい。
Further, the above-mentioned fluorine-containing resin cation exchange membrane having a sulfonic acid group is particularly preferred since it has high heat resistance and acid resistance and can be used as is in the present invention.

更に本発明においては、これらイオン交換膜に対し、液
及びガス透過性の陽極を直接密着せしめたり、或は電極
作用を有しない液及びガス透過性の例えば金属酸化物の
多孔質薄層を介し、陽極と陽イオン交換膜とヲ蓋治せし
めて使用することにより、電解電圧全低減せしめ、省エ
ネルギーの目的をコ卒成し得る工為会がある。
Furthermore, in the present invention, a liquid- and gas-permeable anode is directly attached to these ion-exchange membranes, or a liquid- and gas-permeable anode that has no electrode function is inserted through a porous thin layer of, for example, a metal oxide. There is a technology that can completely reduce the electrolysis voltage and achieve the purpose of energy saving by using an anode and a cation exchange membrane in combination.

かくして本発明方法全実施するに当シ、液温は10〜6
0℃程度を採用するのが:lpす当である。
Thus, when carrying out the entire method of the present invention, the liquid temperature was between 10 and 6.
A temperature of about 0°C is used in the lp test.

液温か前記範囲より低い場合には、電圧が高くなり経杭
的な運転が困難となり、逆に高い場合には、還元された
システィンが分解したりして消耗し収率の低下となるの
て何れも好ましくない。
If the liquid temperature is lower than the above range, the voltage will be high and it will be difficult to perform pile-up operation, whereas if it is high, the reduced cysteine will be decomposed and consumed, leading to a decrease in yield. I don't like either of them.

又、電流密度としてはO】〜30 A /d、、、z 
 全採用するのが適当である。電流密1焦が前記範囲に
満たない場合には工業的な装置を考えた場合H[装膜面
積が犬となり経済的でない。逆に^1■記範囲を超える
場合には電流効率の低下や、温度上列全列き起すので何
れも好1しくない。
In addition, the current density is O]~30 A/d,,,z
It is appropriate to adopt all of them. If the current density is less than the above-mentioned range, the coating area will be too large when considering an industrial device, which is not economical. On the other hand, if it exceeds the range described in 1), the current efficiency decreases and the temperature rises, which is not desirable.

又、電解室H−は25〜6Vi−採用するのが適当であ
る。電解電圧が前記範囲に満たない場合には還元率が極
端に低下し、逆に前記範囲を超える場合に―、電流効率
の低下や温度士昇を″まねくので倒れも奸才しくない。
Moreover, it is appropriate to employ 25 to 6 Vi- for the electrolytic chamber H-. If the electrolytic voltage is less than the above range, the reduction rate will be extremely reduced, and if it exceeds the above range, this will lead to a decrease in current efficiency and an increase in temperature, which is not trivial.

本発明方法を採用する場合には、陰、陽極室共に導入さ
れる液系が実Ti的に反応に必要な物質だけでよく、他
の添加物は一切必要ないので高純度の製品がイ!tられ
ると共に、不必要な物質の電析もなく、高収率て目的物
を容易な操作でイ月られる利点がある。
When the method of the present invention is adopted, the liquid system introduced into both the anode and anode chambers only needs to contain the substances necessary for the actual Ti reaction, and no other additives are required, resulting in high-purity products! This method has the advantage of being able to produce the target product in high yield and with easy operations without unnecessary electrodeposition of substances.

次に不発明を実施例により続開する一 実施例J 有効電極面積6 dm”の白金製陽俊と、同面積の鉛製
陰極間に、平均細孔径01μ、多孔率10〜40係、厚
さ100μのホリテトラフルオロエチレン多孔膜ニ対シ
、スチレン7ヒニルベンセンにスルホン酸基全導入した
陽イオン交換膜(旭硝子社製セレミオンCMV )を抜
合せしめ、陰、陽極間隔35Mで膜を配置して電槽を構
成した。かかる電槽の陽極室には、濃度15%の塩酸を
0.661.7時の割合で導入し、−・方陰極室にはL
−/メチン0.85 mol、 f含有した濃度085
Nの塩酸溶液を0.6617時の割合で導入し、電流密
度10 A / 6m2、摺電圧4.OVで電Mを実施
した処、陰極室から0.6Gl/時の割合で生成物が取
り出された。かかる生成物を分析した処、L−ンステイ
ン濃度f/i]、 61m+)し′4であり、転化率は
95%であった。又支障となる4t、Rな不純物は検出
されなかった。
Next, an example J in which the non-invention is continued with an example: between a platinum-made Yoshun with an effective electrode area of 6 dm'' and a lead-made cathode with the same area, an average pore diameter of 01μ, a porosity of 10 to 40, and a thickness of A cation exchange membrane (Celemion CMV manufactured by Asahi Glass Co., Ltd.) made of styrene 7-hinylbenzene with all sulfonic acid groups introduced was put together between two porous membranes of 100 μm of polytetrafluoroethylene. A tank was constructed. Hydrochloric acid with a concentration of 15% was introduced into the anode chamber of the tank at a rate of 0.661.7 hours, and L was introduced into the cathode chamber of the tank.
-/Methine 0.85 mol, f concentration 085
A hydrochloric acid solution of N was introduced at a rate of 0.6617 h, a current density of 10 A/6 m2, and a sliding voltage of 4. When electromagnetization was carried out in the OV, product was removed from the cathode chamber at a rate of 0.6 Gl/h. Analysis of the product revealed that the L-instein concentration f/i] was 61m+) and the conversion rate was 95%. Also, no 4t, R impurities were detected, which would be a problem.

実施例2 実施例1と同様な陽極及び陰極ケ用い、陰。Example 2 The same anode and cathode as in Example 1 were used.

陽極間隔35 mrnにして陽イオン交換基としてスル
ホン酸基を含有する含弗素樹脂膜を配して電解槽を組み
、核種の陽極至に濃度30%の硫酸2 (1,6617
時の割合て、又陰極室にはL−/スチン硫酸塩0.85
 molを含有した濃度l 1,1の硫酸溶液を0.6
6 l 7時の割合で導入し、電流Wr I’ll 1
0 A/d+t+2、僧%圧35Vで電解に夷Muした
処、陰極室から0.661/時の割合で生成物が取り出
された。かがる生成物ケ分析した処、L−ノステイン]
、 58mol/ lバ寸れており、転化率は93%で
あった。
An electrolytic cell was assembled with a fluorine-containing resin membrane containing sulfonic acid groups as cation exchange groups with an anode spacing of 35 mrn, and 30% sulfuric acid 2 (1,6617
At the same time, the cathode chamber contains L-/stin sulfate 0.85
A sulfuric acid solution with a concentration of 1,1 containing mol is 0.6
6 l Introduced at a rate of 7 o'clock, current Wr I'll 1
When electrolysis was carried out at 0 A/d+t+2 and % pressure of 35 V, a product was taken out from the cathode chamber at a rate of 0.661/hour. L-nostein was analyzed as a product of darkening.
, 58 mol/l, and the conversion rate was 93%.

Claims (1)

【特許請求の範囲】 ■ 陽イオン交換膜によって伺しIJられた陽極室と陰
極Yを有する電解槽を用い、該陽極室にd、鉱酸を、1
鑑極室ににl: T、 −ンスチンの盆、酸液を夫々舎
人して?+1、解せしめることを和゛徽とするT、+−
iiスティンの製j告力θ、。 2 陽イオン交換膜は、炭化水素光陽イオン交換+1j
=4 、炭化水素光陽イオン父J昇j換と含弗素多孔な
!1刀1:iとの複合j換、含弗素陽イオン交換膜であ
る粘求の軸回(1)の方法。 3 鉱1!I¥に、]11M1股、硫i啜、1簀である
結氷の範囲(1)の方法。 4、 陽極室に力人される鉱酸の濃度は1〜30係であ
る粕求の範囲(1)の方法。 5、  Th、 解は電流笛を隻o1〜30 A/am
′で実施される計、求の範囲(1)の方法。
[Claims] ■ An electrolytic cell having an anode chamber and a cathode Y separated by a cation exchange membrane is used, and the anode chamber contains d, mineral acid,
In the examination room: T. - Did you pour some acid solution into each tray of Nustin? +1, T who enjoys understanding, +-
ii Stin's force θ,. 2 Cation exchange membrane is hydrocarbon photocation exchange +1j
= 4, hydrocarbon photocation father J elevation J conversion and fluorine-containing porous! 1 sword 1: compound j exchange with i, fluorine-containing cation exchange membrane method of axis rotation (1) of viscometry. 3 Mine 1! Method of freezing range (1), which is 11M, 1 sip, and 1 tank. 4. Method (1) in which the concentration of mineral acid added to the anode chamber is in the range of 1 to 30. 5, Th, the solution is a current whistle o1~30 A/am
' Method of calculation and calculation range (1) carried out in '.
JP57116292A 1982-07-06 1982-07-06 Manufacture of l-cysteine Pending JPS599184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57116292A JPS599184A (en) 1982-07-06 1982-07-06 Manufacture of l-cysteine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57116292A JPS599184A (en) 1982-07-06 1982-07-06 Manufacture of l-cysteine

Publications (1)

Publication Number Publication Date
JPS599184A true JPS599184A (en) 1984-01-18

Family

ID=14683425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57116292A Pending JPS599184A (en) 1982-07-06 1982-07-06 Manufacture of l-cysteine

Country Status (1)

Country Link
JP (1) JPS599184A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0235908A2 (en) * 1986-01-23 1987-09-09 The Electricity Council Method for the production of L-cysteine
EP0436055A1 (en) * 1990-01-04 1991-07-10 The Electrosynthesis Company, Inc. High yield methods for electrochemical preparation of cysteine and analogues
US20100009035A1 (en) * 2002-08-16 2010-01-14 Degussa Ag Sulfur-containing animal-feed additives
WO2010140625A1 (en) 2009-06-03 2010-12-09 協和発酵バイオ株式会社 Process for production of reduced glutathione
WO2012137824A1 (en) 2011-04-06 2012-10-11 協和発酵バイオ株式会社 Process for producing reduced glutathione
CN105401166A (en) * 2015-11-19 2016-03-16 宁波市远发生物工程有限公司 Method for preparing L-cysteine hydrochloride anhydrous substances

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136620A (en) * 1975-05-19 1976-11-26 Nippon Rikagaku Yakuhin Kk Process for preparing inorganic salts of cysteine of high purity.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136620A (en) * 1975-05-19 1976-11-26 Nippon Rikagaku Yakuhin Kk Process for preparing inorganic salts of cysteine of high purity.

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0235908A2 (en) * 1986-01-23 1987-09-09 The Electricity Council Method for the production of L-cysteine
EP0235908A3 (en) * 1986-01-23 1987-12-02 The Electricity Council Method for the production of l-cysteine
EP0436055A1 (en) * 1990-01-04 1991-07-10 The Electrosynthesis Company, Inc. High yield methods for electrochemical preparation of cysteine and analogues
US20100009035A1 (en) * 2002-08-16 2010-01-14 Degussa Ag Sulfur-containing animal-feed additives
CN102803567A (en) * 2009-06-03 2012-11-28 协和发酵生化株式会社 Process for production of reduced glutathione
WO2010140625A1 (en) 2009-06-03 2010-12-09 協和発酵バイオ株式会社 Process for production of reduced glutathione
JP5654457B2 (en) * 2009-06-03 2015-01-14 協和発酵バイオ株式会社 Method for producing reduced glutathione
US9249517B2 (en) 2009-06-03 2016-02-02 Kyowa Hakko Bio Co., Ltd. Process for production of reduced glutathione
WO2012137824A1 (en) 2011-04-06 2012-10-11 協和発酵バイオ株式会社 Process for producing reduced glutathione
CN103459409A (en) * 2011-04-06 2013-12-18 协和发酵生化株式会社 Process for producing reduced glutathione
US9028669B2 (en) 2011-04-06 2015-05-12 Kyowa Hakko Bio Co., Ltd. Process for producing reduced glutathione
CN103459409B (en) * 2011-04-06 2015-11-25 协和发酵生化株式会社 Manufacture the method for reduced glutathion
CN105401166A (en) * 2015-11-19 2016-03-16 宁波市远发生物工程有限公司 Method for preparing L-cysteine hydrochloride anhydrous substances

Similar Documents

Publication Publication Date Title
CN105821436B (en) A kind of double electrolytic cell two-step method chloric alkali electrolysis method and devices based on three-electrode system
CN106801233B (en) A kind of electrolysis method prepares the system and method for high-purity tetrapropylammonium hydroxide
PH12015502813B1 (en) Electrolytic enrichment method for heavy water
CN103938219B (en) Excess microbubble hydrogen device for making
JPH04191387A (en) Electrolytic ozone generating method and device
CN102839389B (en) Novel production method of electro-depositing and refining metal chloride by membrane process
CN203834031U (en) Excess microbubble hydrogen preparation device
US3650925A (en) Recovery of metals from solution
JPS599184A (en) Manufacture of l-cysteine
KR950000713B1 (en) Method of producing alkali metal hydroxide
FR2466436A1 (en) PROCESS FOR PREPARING GEL AND SILICA XEROGEL AND SILICA XEROGEL OBTAINED
US4295951A (en) Film-coated cathodes for halate cells
JPS60255989A (en) Terminal cell connector for multi-polar electrolytic cell
EP0139382B1 (en) Production of cathode for use in electrolytic cell
Felix-Navarro et al. Cyanide degradation by direct and indirect electrochemical oxidation in electro-active support electrolyte aqueous solutions
CN110205651A (en) A kind of method that low temperature electrochemical reduction barium oxide prepares vanadium metal
US4269675A (en) Electrolyte series flow in electrolytic chlor-alkali cells
JP3406390B2 (en) Deuterium enrichment method and apparatus
JPS591688A (en) Method for reducing iron salt
US4273626A (en) Electrolyte series flow in electrolytic chlor-alkali cells
JPS6270203A (en) Removal of hydrogen gas
JPS5942753B2 (en) Membranes for electrochemical cells and electrolytic cells using the same
EP0170632A2 (en) Process for the cathodic electrowinning of metals, with the corresponding acid generation, from their salt solutions
JPS58181879A (en) Halogen electrolysis manufacture
JPH08323154A (en) Method for concentrating deuterium and device therefor