JPS591688A - Method for reducing iron salt - Google Patents

Method for reducing iron salt

Info

Publication number
JPS591688A
JPS591688A JP57109830A JP10983082A JPS591688A JP S591688 A JPS591688 A JP S591688A JP 57109830 A JP57109830 A JP 57109830A JP 10983082 A JP10983082 A JP 10983082A JP S591688 A JPS591688 A JP S591688A
Authority
JP
Japan
Prior art keywords
exchange membrane
iron salt
membrane
anode
cathode chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57109830A
Other languages
Japanese (ja)
Other versions
JPH0124227B2 (en
Inventor
Takuo Kawahara
拓夫 川原
Toshikatsu Hamano
浜野 利勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP57109830A priority Critical patent/JPS591688A/en
Publication of JPS591688A publication Critical patent/JPS591688A/en
Publication of JPH0124227B2 publication Critical patent/JPH0124227B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To easily reduce a tervalent iron salt to an iron salt of lower valence without using additives, by dividing an electrolytic cell with an ion exchange membrane, introducing a mineral acid into the anode chamber and an aqueous soln. of the tervalent iron salt into the cathode chamber, and carrying out electrolysis. CONSTITUTION:An electrolytic cell is divided into anode and cathode chambers with a cation or anion exchange membrane. An about 1-30% aqueous soln. of a mineral acid such as hydrochloric acid is introduced into the anode chamber, and an aqueous soln. of a tervalent iron salt such as ferric chloride or ferric sulfate having about 1-200g/l concn. is introduced into the cathode chamber. Electrolysis is carried out at about 10-70 deg.C, about 0.1-30A/dm<2> current density and about 2-6V electrolytic voltage.

Description

【発明の詳細な説明】 本発明は鉄塩の還元方法、特に3価の鉄塩を電解還元せ
しめる方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for reducing iron salts, particularly a method for electrolytically reducing trivalent iron salts.

例えば、鋼板等に亜鉛と鉄の合金全メッキするよ、うな
場合、鉄は2価であると鋼板に対し、良好な付着力を示
すが、これが3価の鉄になると亜鉛と共に鋼板に対する
付着力が著しく低下し、工業的にメッキが実質的に不可
能となる。
For example, when fully plating a steel plate with an alloy of zinc and iron, divalent iron exhibits good adhesion to the steel plate, but trivalent iron exhibits adhesion to the steel plate along with zinc. is significantly reduced, making plating practically impossible industrially.

そして、一般に鉄は低位より高位の電荷の方が安定な為
、そちらへ転位する傾向が強い。又、上記メッキの場合
に限らず、2価の鉄塩として用いる種々の用途がある。
In general, iron is more stable at higher charges than at lower charges, so there is a strong tendency for iron to dislocate there. Moreover, it is not limited to the above-mentioned plating, and has various uses as a divalent iron salt.

勿論、この様な鉄塩に対して酸化防止剤を添加して3価
の鉄塩の生成を防止する手段もあるが、その様な添加剤
が被処理物或は反応系に対し、悪影響を及ぼす場合も多
々ある。
Of course, there is a way to prevent the formation of trivalent iron salts by adding antioxidants to such iron salts, but such additives may have an adverse effect on the material to be treated or the reaction system. There are many cases in which it is harmful.

不発明はこの様な場合に対処する為、−切の徐加物金用
いることなく、3価の鉄塩を容易に還元して低位の鉄塩
に転位せしめること全目的として種々研究、検討した結
果、イオン交換膜、金柑いて電解還元せしめることによ
り、容易に前記目的を達成し得ることが見出された。
In order to deal with such cases, Fuyu conducted various research and examinations with the aim of easily reducing trivalent iron salts and rearranging them to lower iron salts without using di-additive gold. As a result, it has been found that the above object can be easily achieved by electrolytically reducing kumquats using an ion exchange membrane.

かくして本発明は、イオン交換膜によって仕切られた陽
極室と陰極室とを有する電解槽を用い、該陽極室に鉱酸
全、陰極室に3価の鉄塩を夫々導入し、電解せしめるこ
とを特徴とする鉄塩の還元方法を提供するにある。
Thus, the present invention uses an electrolytic cell having an anode chamber and a cathode chamber separated by an ion exchange membrane, and introduces a mineral acid into the anode chamber and a trivalent iron salt into the cathode chamber for electrolysis. The object of the present invention is to provide a method for reducing iron salts.

本発明に用いられる鉱酸としては、塩酸、硫酸、燐酸で
あり、これらは単独若しくは混@I7て用いることが出
来る。用いられる鉱酸の濃度は一般に1〜30%程度全
採用するのが適当である。濃度が前記範囲に満たない場
合には工業的に適正な電流密度の電流を流すことが困難
となり、逆に前記範囲を超え・る場合には、陰極室中の
水が陽極室中に浸透したり、鉱酸が陰極室中に拡散した
りするので何れも好ましくない。
The mineral acids used in the present invention include hydrochloric acid, sulfuric acid, and phosphoric acid, and these can be used alone or in combination. The concentration of the mineral acid used is generally approximately 1 to 30%. If the concentration is less than the above range, it will be difficult to flow a current with an industrially appropriate current density; on the other hand, if the concentration exceeds the above range, water in the cathode chamber will penetrate into the anode chamber. Both are undesirable because they cause the mineral acid to diffuse into the cathode chamber.

又、陰極室に導入される3価の鉄塩としては、塩化第二
鉄、硫酸第二鉄が一般的であり、これらは単独若しくは
混合されていても差し支えない0 用いられるこれら3価の鉄塩の濃度は、一般に1〜20
0り/l程度を採用するのが適当である。濃度が前記範
囲に満たない場合には、電流効率が極端に低下したり、
逆に前記範囲を超える′場合には陰極に鉄が大量に析出
するので何れも好−ましくない。
In addition, as trivalent iron salts introduced into the cathode chamber, ferric chloride and ferric sulfate are generally used, and these may be used alone or in combination. The concentration of salt is generally between 1 and 20
It is appropriate to adopt a value of about 0/l. If the concentration is less than the above range, the current efficiency may drop drastically or
On the other hand, if it exceeds the above range, a large amount of iron will be deposited on the cathode, which is not preferable.

次に本発明に用いられる陽極としてはその材質及び形状
に特に制限はなく、材質としては例えば白金等の貴金属
あるいは貴金属酸化物等を基材にメッキ又はコーティン
グしたものを、又形状としては例えば平板状、網状、エ
キスパンテッドメタル状等適宜な形状を採用し得る。
Next, the material and shape of the anode used in the present invention are not particularly limited, and the material may be a base material plated or coated with a noble metal such as platinum or a noble metal oxide, and the shape may be, for example, a flat plate. Appropriate shapes such as a shape, a net shape, an expanded metal shape, etc. can be adopted.

又陰極としては、その材質として鉛、鉄、白金、カーボ
ン、チタン等を、又形状としては陽極のそれらと同様の
形状を採用することが出来る。又、材質としては、前記
のうち鉛又は白金を用いると鉄の電析が防げるので特に
好ましい。
The material of the cathode may be lead, iron, platinum, carbon, titanium, etc., and the shape may be similar to that of the anode. Further, as for the material, it is particularly preferable to use lead or platinum among the materials mentioned above, since this prevents the electrodeposition of iron.

次に不発明に用いられるイオン交換膜としては、陽イオ
ン交換膜、又は陰イオン交換膜の何れでも差し支えない
Next, the ion exchange membrane used in the invention may be either a cation exchange membrane or an anion exchange membrane.

陽イオン交換膜としては、例えばスルポン酸基、スルホ
ン酸基とカルボキシル基、燐酸基。
Examples of cation exchange membranes include sulfonic acid groups, sulfonic acid groups and carboxyl groups, and phosphoric acid groups.

フェノール性水酸基等の陽イオン交換基を混合して含有
する1合体から成り、かがる重合体としては、例えばテ
トラフルオロエチレン、クロロトリフルオロエチレン等
のビニルモノマーとスルホン酸、カルボン酸、燐酸基等
のイオン交換基、或はイオン交換基に転換し得る反応性
基ヲ有スるパーフルオロのビニルモノマーとの共重合体
が好ましい。
It consists of a single polymer containing a mixture of cation exchange groups such as phenolic hydroxyl groups, and examples of darkening polymers include vinyl monomers such as tetrafluoroethylene and chlorotrifluoroethylene and sulfonic acid, carboxylic acid, and phosphoric acid groups. Copolymers with perfluorinated vinyl monomers having ion exchange groups such as ion exchange groups or reactive groups convertible to ion exchange groups are preferred.

又、トリフルオロエチレンの膜状重合体にスルホン酸基
等のイオン交換基全尋人したものや、スチレンジビニル
ベンゼンにスルホン酸基ヲ導大したもの等も使用し得石
・。
In addition, membrane polymers of trifluoroethylene with ion exchange groups such as sulfonic acid groups, and styrene divinylbenzene with sulfonic acid groups can also be used.

尚、炭化水素系陽イオン交換膜を用いる際には、ポリテ
トラフルオロエチレンやテトラフルオロエチレン−六弗
化プロピレン共重合体の様な含弗素樹脂の多孔質膜と前
記イオン交換膜とを複合せしめ、かかる含弗素樹脂多孔
質膜全陽極面に向けて用いることにより、陽イオン交換
膜全高温、強酸化性強酸性芥囲気がら保護することが出
来る。この事轄炭化水素系の陰イオン交換膜にも同様に
適用される。
In addition, when using a hydrocarbon-based cation exchange membrane, the ion exchange membrane is composited with a porous membrane of a fluorine-containing resin such as polytetrafluoroethylene or tetrafluoroethylene-hexafluoropropylene copolymer. By using such a fluororesin porous membrane toward the entire anode surface, the entire cation exchange membrane can be protected from high temperature, strongly oxidizing and strongly acidic air. The same applies to this hydrocarbon-based anion exchange membrane.

又、スルホン酸基を有する上記含弗素衝脂陽イオ′ン交
換膜は、耐熱性、耐酸性が高く、本発明にそのまま用い
得るので特に好ましい。
Further, the above-mentioned fluorine-containing fat cation exchange membrane having a sulfonic acid group is particularly preferred since it has high heat resistance and acid resistance and can be used as is in the present invention.

又、陰イオン交換膜としては、例えば第4級アンモニウ
ム塩基、第1.第2.第3級アミン基、第4級アンモニ
ウム塩基と第1第2第3級アミノ基との混合物等が挙げ
られる。
Further, as the anion exchange membrane, for example, quaternary ammonium base, primary. Second. Examples include a tertiary amine group, a mixture of a quaternary ammonium base and a primary, secondary, and tertiary amino group.

イオン交換膜として陽イオン交換膜が用いられる場合に
は、電解により陽極室から膜を通して水素が陰極室に移
動し、これが文字通り還元効果全示し、又陰イオン交換
膜を用いて電解を行なうと、陰極室中の鉄塩を構成して
いた陰イオンの一部が陰極室へ移動することにより、−
見掛は上陰極罠で還元が起ったと同じ状態が埃出し、不
発明に謂う還元とはかかる状態をも包含するものである
When a cation exchange membrane is used as the ion exchange membrane, hydrogen moves from the anode chamber through the membrane to the cathode chamber due to electrolysis, and this literally exhibits the full reduction effect, and when electrolysis is performed using an anion exchange membrane, Some of the anions that made up the iron salt in the cathode chamber move to the cathode chamber, causing −
The appearance is that dust is produced in the same state as if reduction had occurred in the upper cathode trap, and the term "reduction" that is uninvented includes such a state.

更に不発明においては、これらイオン交換膜に対し、液
及びガス透過性の陽極全直接密層せしめたり、或は電極
作用を有しない液及びガス透過性の、例えば金属酸化物
の多孔質薄Nを介し、陽極と陽イオン交換膜と全密着せ
しめて使用することにより、電解電圧全低減せしめ、劣
エネルギーの目的全達成し得る場合がある。
Furthermore, in the present invention, a liquid- and gas-permeable anode is completely directly densely layered on these ion exchange membranes, or a liquid- and gas-permeable, for example, a porous thin N of metal oxide, which has no electrode function, is formed. By using the anode and the cation exchange membrane in close contact with each other via the anode, the electrolytic voltage can be completely reduced, and the purpose of lower energy can sometimes be achieved.

かくして本発明方法を実施するに当り、液温は10〜7
0℃程度を採用するのが適当である。
Thus, in carrying out the method of the present invention, the liquid temperature is between 10 and 7
It is appropriate to adopt a temperature of about 0°C.

液温か前記φ]L囲より低い場合には、電圧が高くなり
経済的な運転が困難となり、逆に高い場合にはガス発生
敞が多くなり運転が不安定となるので何れも好ましくな
い。又、電流密度としては0.1〜30 A/ddを採
用するのが適当である。
If the liquid temperature is lower than the above-mentioned φ]L range, the voltage will become high and economical operation will be difficult.If it is higher, on the other hand, gas generation will increase and the operation will become unstable, which is not preferable. Further, it is appropriate to adopt a current density of 0.1 to 30 A/dd.

′嵯流警度が前記範囲に満たない揚台には、工業的な装
置を考えた場合、r9T要膜面積が大とな・シ経済的で
ない。逆に前記範囲を超える場合には、効率が低下し鉄
の析出が起りやすくなるので何れも好ましくない。又、
電解電圧は2〜6v2採用するのが適当である。電解電
圧が前記範囲に満たない場合には還元率が極端に低Fし
、逆に前記範囲を超える場合には温度上昇全まねき、又
鉄の析出が起りやすくなるので何れも好ましくない。
'A lifting platform with a flow rate less than the above range requires a large r9T membrane area and is not economical when considering industrial equipment. On the other hand, if it exceeds the above range, the efficiency decreases and iron precipitation tends to occur, which is not preferable. or,
It is appropriate to adopt an electrolytic voltage of 2 to 6v2. If the electrolytic voltage is less than the above range, the reduction rate will be extremely low, whereas if it exceeds the above range, the temperature will rise completely and iron precipitation will occur more easily, both of which are not preferred.

次に本発明を実施例により説明する。Next, the present invention will be explained by examples.

実施例1 有効電極面積6 atti”の白金製陽極と、同面積の
鉛製陰極間に、平均細孔径0.1μ、多孔率10〜40
%、厚さ100μのポリテトラフルオロエチレン膜に対
シ、スチレンジビニルベンゼンにスルホン酸基全導入し
た陽イオン交換膜(旭硝子社製セレミオンcMv)?I
N合せしめ、ポリテトラフルオロエチレン[ffi前記
陽極と対置する様に陰・陽極間隔35rIunで膜を配
置して電槽を構成した。かかる電槽の陽極室には、濃度
15%の塩酸’io、661/時の割合で導入し、一方
陰極室には第二塩化鉄2(Jf//lf含有したpH1
,2の塩酸浴液を1101/時の割付で導入し、電流密
度7.3 A/am”、摺電圧6■で電解を実施した処
、陰極室からll0A!/時の割合で生成物が取り出さ
れた。かかる牟成物全分析した処、第一塩化鉄1963
2)l含まれており、転化率は45%であった。
Example 1 Between a platinum anode with an effective electrode area of 6 atti" and a lead cathode with the same area, an average pore diameter of 0.1μ and a porosity of 10 to 40
%, a cation exchange membrane (Celemion cMv manufactured by Asahi Glass Co., Ltd.) in which all sulfonic acid groups are introduced into styrene divinylbenzene on a polytetrafluoroethylene membrane with a thickness of 100μ? I
A battery case was constructed by arranging a membrane of polytetrafluoroethylene [ffi] with a cathode-anode spacing of 35 rIun so as to be opposite to the anode. Hydrochloric acid 'io with a concentration of 15% was introduced into the anode chamber of the cell at a rate of 661/hour, while into the cathode chamber ferric chloride 2 (Jf//lf containing pH 1
, 2 hydrochloric acid bath solution was introduced at a rate of 1101/hour, and electrolysis was carried out at a current density of 7.3 A/am" and a sliding voltage of 6 cm, and products were released from the cathode chamber at a rate of 10 A!/hour. All such substances were analyzed and found to be ferrous chloride (1963).
2) l was contained, and the conversion rate was 45%.

実施例2 実施例1と同様な陽極及び陰極を用い、陰。Example 2 The same anode and cathode as in Example 1 were used.

陽極間隔35Mにして陽イオン交換基としてスルホン酸
基を含有する含弗素樹脂膜を設けて電解槽を組み、核種
の陰極室に製置10係の硫酸ケ0.661/時の割付で
、又陰極室には第二値岐鉄107/l′ft:含有した
pH1,2硫酸浴液τ1101/時の割合で大々尋人し
、電流密度zoA/an12摺電圧6Vで電解全実施し
た処、陰極室から1101/時の割合で生成物が取り出
された。かかる生成物を分析1〜た処、第−慨酸鉄9.
329/l 含まれており、転化率は30%であった。
An electrolytic cell was assembled with an anode spacing of 35 M and a fluorine-containing resin membrane containing sulfonic acid groups as cation exchange groups, and 10 units of sulfuric acid was placed in the nuclide cathode chamber at a rate of 0.661/hour. The cathode chamber was filled with a second value iron 107/l'ft: containing a pH 1,2 sulfuric acid bath solution at a rate of τ1101/hour, and the entire electrolysis was carried out at a current density of zoA/an12 and a sliding voltage of 6V. Product was removed from the cathode chamber at a rate of 1101/hr. Such products were analyzed 1 to 9.
The conversion rate was 30%.

Claims (1)

【特許請求の範囲】 1、 イオン交換膜によって仕切られた陽極室と陰極室
とを有する電解槽を用い、該陽極室に鉱酸を、陰極室に
3価の鉄塩水溶液を夫゛々導入し、電解せしめることを
特徴とする鉄塩の還元方法。 2 イオン交換膜は陽イオン交換膜又は陰イオン交換膜
である請求の範囲(1)の方法。 3、陽イオン交換膜は炭化水素系陰イオン交換膜、炭化
水素系陽イオン交換膜と含弗素多孔質膜との複合膜、含
弗素陽イオン交換膜である請求の範囲(2)の方法。 4 隘イオン交換膜は炭化水素系陰イオン交換膜、炭化
水素系陰イオン交換膜と含弗素多孔性膜との複合膜であ
る請求の範囲(2)の方法。 5、 鉱酸は、塩酸、硫酸、燐酸である請求の範囲(1
)の方法。 6、 鉱酸の濃度は、1〜30%である請求の範囲(1
)の方法。 7.3価の鉄塩水溶液は、塩化第二鉄、硫酸第二鉄であ
る請求の範囲(1)の方法。 8.3価の鉄塩水溶液の濃度は、1〜2’00f/1で
ある請求の範囲(1)又は(7)の方法。
[Claims] 1. Using an electrolytic cell having an anode chamber and a cathode chamber separated by an ion exchange membrane, a mineral acid is introduced into the anode chamber, and a trivalent iron salt aqueous solution is introduced into the cathode chamber. A method for reducing iron salts, which is characterized by electrolyzing the iron salts. 2. The method according to claim (1), wherein the ion exchange membrane is a cation exchange membrane or an anion exchange membrane. 3. The method according to claim (2), wherein the cation exchange membrane is a hydrocarbon-based anion exchange membrane, a composite membrane of a hydrocarbon-based cation exchange membrane and a fluorine-containing porous membrane, or a fluorine-containing cation exchange membrane. 4. The method according to claim (2), wherein the ion exchange membrane is a hydrocarbon anion exchange membrane or a composite membrane of a hydrocarbon anion exchange membrane and a fluorine-containing porous membrane. 5. The mineral acid is hydrochloric acid, sulfuric acid, or phosphoric acid (claim 1).
)the method of. 6. The concentration of the mineral acid is 1 to 30% (1)
)the method of. 7. The method according to claim (1), wherein the trivalent iron salt aqueous solution is ferric chloride or ferric sulfate. 8. The method according to claim (1) or (7), wherein the concentration of the trivalent iron salt aqueous solution is 1 to 2'00 f/1.
JP57109830A 1982-06-28 1982-06-28 Method for reducing iron salt Granted JPS591688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57109830A JPS591688A (en) 1982-06-28 1982-06-28 Method for reducing iron salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57109830A JPS591688A (en) 1982-06-28 1982-06-28 Method for reducing iron salt

Publications (2)

Publication Number Publication Date
JPS591688A true JPS591688A (en) 1984-01-07
JPH0124227B2 JPH0124227B2 (en) 1989-05-10

Family

ID=14520284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57109830A Granted JPS591688A (en) 1982-06-28 1982-06-28 Method for reducing iron salt

Country Status (1)

Country Link
JP (1) JPS591688A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153762A (en) * 1984-01-24 1985-08-13 Nippon Nousan Kogyo Kk Feed for domestic animal and fowl
JPS61282319A (en) * 1985-06-07 1986-12-12 Tsumura Juntendo Inc Production of chinese herb extract
EP0265887A2 (en) * 1986-10-31 1988-05-04 Asahi Glass Company Ltd. Method for treating a plating solution
FR2615204A1 (en) * 1987-05-15 1988-11-18 Rhone Poulenc Chimie ELECTROLYSIS CELL AND METHOD FOR REDUCING SOLUTION COMPRISING TITANIUM AND IRON
JP2001293485A (en) * 2000-04-12 2001-10-23 Kurita Water Ind Ltd Method and device for treating hexavalent chromium- containing waste water
JP2014234521A (en) * 2013-05-30 2014-12-15 住友電気工業株式会社 Production method of titanium trichloride solution and titanium trichloride solution

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153762A (en) * 1984-01-24 1985-08-13 Nippon Nousan Kogyo Kk Feed for domestic animal and fowl
JPH0476650B2 (en) * 1984-01-24 1992-12-04 Nippon Nosan Kogyo Kk
JPS61282319A (en) * 1985-06-07 1986-12-12 Tsumura Juntendo Inc Production of chinese herb extract
EP0265887A2 (en) * 1986-10-31 1988-05-04 Asahi Glass Company Ltd. Method for treating a plating solution
FR2615204A1 (en) * 1987-05-15 1988-11-18 Rhone Poulenc Chimie ELECTROLYSIS CELL AND METHOD FOR REDUCING SOLUTION COMPRISING TITANIUM AND IRON
US4919772A (en) * 1987-05-15 1990-04-24 Rhone-Poulenc Chimie Electrolytic cell/process for the reduction of titanium/iron solutions
JP2001293485A (en) * 2000-04-12 2001-10-23 Kurita Water Ind Ltd Method and device for treating hexavalent chromium- containing waste water
JP2014234521A (en) * 2013-05-30 2014-12-15 住友電気工業株式会社 Production method of titanium trichloride solution and titanium trichloride solution

Also Published As

Publication number Publication date
JPH0124227B2 (en) 1989-05-10

Similar Documents

Publication Publication Date Title
US4212713A (en) Electrolysis of aqueous solution of alkali metal chloride
US4100050A (en) Coating metal anodes to decrease consumption rates
US5082543A (en) Filter press electrolysis cell
CA1185558A (en) Process for electrolyzing water
JPH04224689A (en) Electrolytic method of alkali metal sulfate
JPS5831090A (en) Electrochemical electrolytic cell and method of carrying out electrochemical reaction
US4615784A (en) Narrow gap reticulate electrode electrolysis cell
JPS591688A (en) Method for reducing iron salt
US4144146A (en) Continuous manufacture of sodium dithionite solutions by cathodic reduction
JPS59133384A (en) Electrolytic cell
JPS5867882A (en) Electrode
JPH05238736A (en) Method for electrochemically regenerating chromosulfuric acid
CA1205419A (en) Electrode with rough surface of electrochemically active particles and polymeric coating
JPH08269761A (en) Water electrolytic cell and its production
JPS599184A (en) Manufacture of l-cysteine
EP0136794A2 (en) Treatment of cathodes for use in electrolytic cell
JPH08503739A (en) Electrolyzer and its electrode
US4367126A (en) Process for producing alkali metal hydroxide
CA1262534A (en) Narrow gap reticulate electrode electrolysis cell
JPS6120634B2 (en)
JPS58181879A (en) Halogen electrolysis manufacture
JPS6147230B2 (en)
JPS63223189A (en) Production of ceric nitrate solution
JPH0633474B2 (en) Water electrolysis method
JPS58171588A (en) Structure of joined body