JPS5991330A - Insulating type ionization gage - Google Patents
Insulating type ionization gageInfo
- Publication number
- JPS5991330A JPS5991330A JP20029182A JP20029182A JPS5991330A JP S5991330 A JPS5991330 A JP S5991330A JP 20029182 A JP20029182 A JP 20029182A JP 20029182 A JP20029182 A JP 20029182A JP S5991330 A JPS5991330 A JP S5991330A
- Authority
- JP
- Japan
- Prior art keywords
- potential
- vacuum
- electrode
- service
- electrode assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L21/00—Vacuum gauges
- G01L21/30—Vacuum gauges by making use of ionisation effects
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、加速器、プラズマ装置またIti、スパッ
タリング装置などのような、荷電粒子または放電を扱う
装置の真空度を測定するのに用いられる電離真空計に関
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ionization vacuum gauge used to measure the degree of vacuum in devices that handle charged particles or discharge, such as accelerators, plasma devices, Iti, sputtering devices, and the like.
この種の電離真空計を上述のような装置の真空度測定に
用いた場合、放電の発生によ〕、真空容器の壁を経て大
地へ電流が流れるため真空容器の電位は瞬時的に上昇す
る。この電位浮上は真空容器の壁自体の電気抵抗による
電圧低下および例えば6リングから成るシール部などb
接触抵抗による電位差に起因している。真空容器におけ
る電位の浮上によシ真空計を構成する各電極間の電昇が
乱され、測定困難を招くことになる。When this type of ionization vacuum gauge is used to measure the degree of vacuum in the above-mentioned equipment, the electric potential of the vacuum vessel rises instantaneously due to the generation of electrical discharge, which causes a current to flow through the walls of the vacuum vessel to the ground. . This potential levitation is caused by a voltage drop due to the electrical resistance of the wall of the vacuum chamber itself, and by a seal part consisting of 6 rings, for example.
This is caused by a potential difference due to contact resistance. The rise in potential in the vacuum vessel disturbs the rise in potential between the electrodes that make up the vacuum gauge, making measurement difficult.
このような欠点を解決するための一つの方法として従来
では真空計を取付ける真空装置のサービス/−ト部の単
管をコバールから成るセラミックシールで絶縁する方法
が提案されてきた。しかしこの方法は磁場強度が微弱で
あるかまたはセラミックシール部に用いられるコバール
(強磁性体)が微量の場合には有効であるが、強磁場環
境の下では電磁力による劣化、破損を招く危険がある。As one method for solving these drawbacks, a method has been proposed in the past in which a single tube in the service/port section of a vacuum apparatus to which a vacuum gauge is attached is insulated with a ceramic seal made of Kovar. However, although this method is effective when the magnetic field strength is weak or the amount of Kovar (ferromagnetic material) used in the ceramic seal is small, there is a risk of deterioration or damage due to electromagnetic force in a strong magnetic field environment. There is.
そこで、この発明の目的は、この種の電離真空計におい
て真空容器の電位変動の影響を電気的に阻止して上述の
ような種々の欠点を解消することにある。SUMMARY OF THE INVENTION An object of the present invention is to eliminate the various drawbacks described above by electrically blocking the effects of potential fluctuations in the vacuum container in this type of ionization vacuum gauge.
従って、この発明による絶縁形電離真空計においては1
、真空装置のサービスyJe−トに取付けられる部分の
電位の変動に関係なく一定の電位をもつようにされた筒
状電極を真空計本体を成す電極組立体の周囲に設けられ
る。Therefore, in the insulated ionization vacuum gauge according to the present invention, 1
A cylindrical electrode is provided around the electrode assembly forming the vacuum gauge body, and is designed to have a constant potential regardless of fluctuations in the potential of the portion attached to the service seat of the vacuum device.
このようにこの発明によれば電位の変動防止用の筒状電
極を設けることによって取付け7ランジおよび従って真
空装置のサービスポートの電位から独立して真空計の電
極組立体の電位を所望のレベルに維持できるので真空容
器の電位変動による測定ノイズの混入やサージによる破
損を防止することができる。Thus, according to the present invention, by providing a cylindrical electrode for preventing fluctuations in potential, the potential of the electrode assembly of the vacuum gauge can be brought to a desired level independently of the potential of the mounting flange and therefore the service port of the vacuum device. Since the voltage can be maintained, it is possible to prevent measurement noise caused by fluctuations in the potential of the vacuum container and damage caused by surges.
以下この発明を、添附図面を参照してさらに説明する。The present invention will be further described below with reference to the accompanying drawings.
第1図にはこの発明を実施している五極管型の電離真空
計を示し、1は取付はフランジで、取付ケ穴1 aを介
して図示していない真空容器のサービスポートに取付け
られるようにされる。2は電子源を成すフィラメントで
取付はフランジ1に挿設した端子2aで接続され支持さ
れておシ、このフィラメント2は真空計のほぼ中心軸線
上に位置している。このフィラメント2の周囲には同心
的にグリッド3、グリッド4、グリッド5およびグリッ
ド6が配置されておシ、グリッド3.4.6はそれぞれ
取付はフランジ1に挿設された組合さった絶縁端子(第
1図にはグリッド3に対する絶縁端子3aのみを示す)
に接続され支持されている。グリッド5は真空計の先端
における環状の機械的保護枠7に取付けられている。ま
たグリッド6の外側には生成イオンを集める円筒状の集
イオン電極すなわちコレクタ8が同心状に配置され、こ
のコレクタ8は絶縁端子8aに接続され支持されている
。′このコレクタ8の外側において取付フランジ1と環
状の機械的保護枠7との間にはフィラメント2、グリッ
ド3〜6およびコレクタ8から成る電極組立体における
電位の変動防止用の円筒状電極9が配置されておシ、こ
の電極9は板状体または網状体から成ることができ、そ
して非磁性の絶縁材10を介して適当な緊締具11によ
って取付け7ランジ1に取付けられている。またこの電
極9の先端は環状の機械的保護枠7に当接して係止して
いる。上記機械的保護枠7の内部には直径の異なる多数
の円筒状体を同心状に配置して構成したブラインド12
が止めロッド16によって取付けられている。このブラ
インド12は荷電粒子または熱線が真空計内に直接入射
するのを防止する。上記構成においてグリッド5、環状
の機械的保護枠7、円筒状電、極9およびブラインド1
2は電気的には第2図の等価回路に示すように同電位に
あシ、そしてフィラメント2の一方の端子と共に電源側
アースE2に接続されている。またフィラメント2、グ
リッド3〜6およびコレクタ8にはそれぞれ第2図に示
すような電位が印加され得る。第2図においてElは取
付け7ランジ1および従ってサービス+1−)(図示し
てない)の電位を表わす。Fig. 1 shows a pentode-type ionization vacuum gauge embodying the present invention, and 1 is a flange that is attached to a service port of a vacuum vessel (not shown) through a mounting hole 1a. It will be done like this. Reference numeral 2 denotes a filament constituting an electron source, which is connected and supported by a terminal 2a inserted into the flange 1, and this filament 2 is located approximately on the central axis of the vacuum gauge. A grid 3, a grid 4, a grid 5, and a grid 6 are arranged concentrically around the filament 2, and each of the grids 3, 4, and 6 is attached to a combined insulating terminal ( (Figure 1 only shows the insulated terminal 3a for the grid 3)
connected and supported. The grid 5 is attached to an annular mechanical protection frame 7 at the tip of the vacuum gauge. Further, a cylindrical ion collecting electrode, that is, a collector 8 that collects generated ions is arranged concentrically outside the grid 6, and the collector 8 is connected to and supported by an insulated terminal 8a. 'On the outside of this collector 8, between the mounting flange 1 and the annular mechanical protection frame 7, there is a cylindrical electrode 9 for preventing potential fluctuations in the electrode assembly consisting of the filament 2, the grids 3 to 6, and the collector 8. As arranged, this electrode 9 can consist of a plate or a mesh and is attached to the mounting 7 flange 1 via a non-magnetic insulating material 10 by means of suitable fasteners 11. Further, the tip of this electrode 9 is in contact with and locked in an annular mechanical protection frame 7. Inside the mechanical protection frame 7, a blind 12 is constructed by concentrically arranging a number of cylindrical bodies having different diameters.
is attached by a stop rod 16. This blind 12 prevents charged particles or heat rays from directly entering the vacuum gauge. In the above configuration, a grid 5, an annular mechanical protection frame 7, a cylindrical electrode, a pole 9 and a blind 1
2 is electrically at the same potential as shown in the equivalent circuit of FIG. 2, and is connected to the power source ground E2 together with one terminal of the filament 2. Furthermore, potentials as shown in FIG. 2 can be applied to the filament 2, the grids 3 to 6, and the collector 8, respectively. In FIG. 2, El represents the potential of the attachment 7 flange 1 and therefore the service +1-) (not shown).
従来の構造では第2図の等価回路においてグリッド5の
電位(アースとなる)を7′ランジ1および従って取付
けられる真空容器のサービスホードと同電位としていた
ため、サービス諭−トに誘起する電圧によって常にグリ
ッド電位が変動し、電極間電位が乱されることになる。In the conventional structure, in the equivalent circuit shown in Fig. 2, the potential of the grid 5 (which serves as the ground) is set to the same potential as the 7' flange 1 and the service hoard of the vacuum vessel to which it is attached. The grid potential constantly fluctuates and the potential between the electrodes is disturbed.
これに対してこの発明では第2図に示すように取付はフ
ランジ1および従ってサービスホードの電位E1とは独
立した電源側アース電位E2に接続された電極組立体に
対する包囲電極9を設けているのでサービスホードおよ
び従って取付はフランジ1の電位E1が変動しても、各
電極間電位は不変のままに保つことができ、外乱の影響
を防止することができる。また電位変動の影響を避ける
ためセンサ全体をセラミックシールで絶縁する従来の方
式の場合のように電磁力による劣化や破損の危険がない
。従ってこの発明による真空計は電位の変動にかかわシ
なく加速器、プラスマ装置やスノ臂ツタリング装置など
のような装置の真空度を正確に測定することができる。In contrast, in the present invention, as shown in FIG. 2, the surrounding electrode 9 is provided for the electrode assembly connected to the flange 1 and therefore to the power supply side ground potential E2 independent of the service hoard potential E1. Even if the potential E1 of the flange 1 fluctuates, the service hoard and therefore the mounting can maintain the potential between each electrode unchanged, thereby preventing the influence of disturbances. Furthermore, there is no risk of deterioration or damage due to electromagnetic force, unlike in the case of the conventional method in which the entire sensor is insulated with a ceramic seal to avoid the effects of potential fluctuations. Therefore, the vacuum gauge according to the present invention can accurately measure the degree of vacuum in devices such as accelerators, plasma devices, and snow-capped devices, regardless of potential fluctuations.
図示実施例では三極管形について説明してきたが、三極
管形の場合にも同様に実施でき、すなわちフィラメント
と電子を加速し捕捉する集電子電極と集イオン電極(コ
レクタ)とから成る電極組立体の包囲して電源側アース
電位に接続される包囲電極を設けることによって上述の
場合と同じ作用、効果を得ることができる。またこの発
明は三極管形または三極管形を問わず、その電極組立体
の構造に関係なく等しく適用できる。Although the illustrated embodiment has been described in terms of a triode type, it can equally be implemented in a triode type, i.e. surrounding an electrode assembly consisting of a filament, a current collecting electrode for accelerating and trapping the electrons, and an ion collecting electrode (collector). By providing an encircling electrode connected to the ground potential on the power supply side, the same functions and effects as in the above case can be obtained. Furthermore, the present invention is equally applicable regardless of the structure of the electrode assembly, whether triode or triode.
第1図はこの発明の一実施例による電離真空計の縦断面
図、第2図は第1図に示す電離真空計の等何回路である
。
図中、1:取付フランジ、 2:フィラメント、3〜
6:グリッド、 7:環状の機械的保護枠、8:コレク
タ、 9二円筒状電極。FIG. 1 is a longitudinal sectional view of an ionization vacuum gauge according to an embodiment of the present invention, and FIG. 2 is a circuit diagram of the ionization vacuum gauge shown in FIG. In the figure, 1: Mounting flange, 2: Filament, 3~
6: grid, 7: annular mechanical protection frame, 8: collector, 9 two cylindrical electrodes.
Claims (1)
ような荷電粒子または放電を扱う装置の真空度を測定す
るのに用いられる電離真空計において、真空装置のサー
ビスホードに取付けられる部分の電位から絶縁された電
位をもつ電位の変動防止用の筒状電極を電極組立体の周
囲に設けたことを特徴とする絶縁形電離真空計。In ionization vacuum gauges used to measure the degree of vacuum in equipment that handles charged particles or discharges, such as accelerators, plasma equipment, or sputtering equipment, the potential is isolated from the potential of the part attached to the service hoard of the vacuum equipment. An insulated ionization vacuum gauge characterized by having a cylindrical electrode around an electrode assembly to prevent fluctuations in potential.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20029182A JPS5991330A (en) | 1982-11-17 | 1982-11-17 | Insulating type ionization gage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20029182A JPS5991330A (en) | 1982-11-17 | 1982-11-17 | Insulating type ionization gage |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5991330A true JPS5991330A (en) | 1984-05-26 |
Family
ID=16421867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20029182A Pending JPS5991330A (en) | 1982-11-17 | 1982-11-17 | Insulating type ionization gage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5991330A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5073684A (en) * | 1973-08-24 | 1975-06-17 | ||
JPS55156825A (en) * | 1979-05-24 | 1980-12-06 | Shinku Denshi:Kk | Measuring method for vacuum degree |
-
1982
- 1982-11-17 JP JP20029182A patent/JPS5991330A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5073684A (en) * | 1973-08-24 | 1975-06-17 | ||
JPS55156825A (en) * | 1979-05-24 | 1980-12-06 | Shinku Denshi:Kk | Measuring method for vacuum degree |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4493139B2 (en) | Ionization gauge | |
US7456634B2 (en) | Method and apparatus for shielding feedthrough pin insulators in an ionization gauge operating in harsh environments | |
US2454564A (en) | Ionization-type vacuum gauge | |
JPS5853470B2 (en) | Ionization chamber with grid | |
US2499830A (en) | Air proportional counter | |
JPS5856956B2 (en) | Ionization chamber x-ray detector | |
KR960009353B1 (en) | Vacuum gauge | |
US2820142A (en) | Charged-particle accelerator | |
US4672323A (en) | Device for measuring the internal pressure of an operationally built built-in vacuum switch | |
US2479271A (en) | Ionization chamber circuit | |
US4467197A (en) | Apparatus for monitoring the acceleration energy of an electron accelerator | |
US2756348A (en) | Radiation counter | |
JPH05264389A (en) | Cold cathode ionization vacuum gauge | |
US4833921A (en) | Gas pressure measurement device | |
US2436084A (en) | Ionization chamber | |
JPS5991330A (en) | Insulating type ionization gage | |
KR20140127859A (en) | Ionization gauge for high pressure operation | |
US2835839A (en) | Wide range proportional counter tube | |
JP2654841B2 (en) | Vacuum gauge | |
US3387175A (en) | Vacuum gauge having separate electron collecting and electron accelerating electrodes | |
US3283241A (en) | Apparatus for field strength measurement of a space vehicle | |
US3320455A (en) | Ionization vacuum gauge having x-ray shielding means | |
US3126512A (en) | Ion air density sensor including dark | |
JPH1019711A (en) | Cold cathode ionization gauge | |
KR101135127B1 (en) | A wide range radiation detector system using secondary electron monitor |