JPS5991328A - Method and apparatus for measuring stress of continuously cast piece - Google Patents

Method and apparatus for measuring stress of continuously cast piece

Info

Publication number
JPS5991328A
JPS5991328A JP20120482A JP20120482A JPS5991328A JP S5991328 A JPS5991328 A JP S5991328A JP 20120482 A JP20120482 A JP 20120482A JP 20120482 A JP20120482 A JP 20120482A JP S5991328 A JPS5991328 A JP S5991328A
Authority
JP
Japan
Prior art keywords
stress
slab
detection element
cast piece
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20120482A
Other languages
Japanese (ja)
Inventor
Yukio Nakamori
中森 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20120482A priority Critical patent/JPS5991328A/en
Publication of JPS5991328A publication Critical patent/JPS5991328A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0061Force sensors associated with industrial machines or actuators
    • G01L5/0076Force sensors associated with manufacturing machines
    • G01L5/008Force sensors integrated in an article or a dummy workpiece

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To grasp the behavior of the cast piece in casting processes accurately, by bonding one or more stress detecting element to the side end surface of the continuously cast piece, and detecting one or more stresses in the thickness direction and the longitudinal direction of the cast piece. CONSTITUTION:A stress detecting element 1 is bonded to the side and surface of a cast piece 10. The output signal from said stress detecting element 1 is amplified by an amplifier 2. Based on the output, at least one of the stress data in the thickness direction and the longitudinal direction of the cast piece 10 is analyzed and computed in a signal processing device 3. The result is displayed on a display device 4.

Description

【発明の詳細な説明】 この発明は、たとえば溶鋼を連続鋳造して連続的に鋳片
を得る連続鋳造プロセスにおいて、鋳片に発生する、鋳
片厚さ方向および長手方向における応力を測定するため
の方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is for measuring stress in the thickness direction and longitudinal direction of a slab, which occurs in a slab during a continuous casting process, for example, in which molten steel is continuously cast to continuously obtain slabs. METHODS AND APPARATUS.

最近の連続鋳造操業(以下CC操業という)は。What is the latest continuous casting operation (hereinafter referred to as CC operation)?

鋳片が保有する顕熱を放散してしまうことなく、圧延工
程における加熱エネルギーを節減或は省略するために有
効に活用するために、CCI:程とjl:延工程を直結
することが行なわれ、従って高温の鋳片を圧延工程に供
給すべく、高速鋳造を行なう趨勢にある。
In order to effectively utilize the sensible heat possessed by the slab to save or omit the heating energy in the rolling process, direct connection between the CCI and the rolling processes is carried out. Therefore, there is a trend toward high-speed casting in order to supply hot slabs to the rolling process.

CC操業を、高速で行なうときに派生する問題の1つに
品質の問題がある。
One of the problems that arise when CC operation is performed at high speed is quality.

鋳片の品質を損なうものとして、表面横割れ。Horizontal cracks on the surface impair the quality of slabs.

内部割れ等がある。There are internal cracks, etc.

鋳片の表面横割れは、鋳型内における鋳型内壁面と鋳片
間の潤滑状態、弯曲型CC機にあっては。
Horizontal cracks on the surface of the slab are caused by the lubrication condition between the mold inner wall surface and the slab in the mold, and in curved CC machines.

鋳片を真直に曲げ戻すときの張力レベルによって決まる
と言われている。鋳片の内部割れは、 i!l!鋳機の
ロール整合状態、CC操業における引抜ゆ度条件、冷却
条件によって決まると言われている。
It is said to be determined by the tension level when bending the slab back straight. Internal cracks in slabs are caused by i! l! It is said that it is determined by the roll alignment state of the casting machine, the drawing tolerance conditions in CC operation, and the cooling conditions.

従来、鋳片の内部割れを減少させる手段として、pf造
前にロール整合性(ロール間隔)を調整し、CC操業条
件を安定させている。
Conventionally, as a means to reduce internal cracks in slabs, roll consistency (roll spacing) has been adjusted before PF forming to stabilize CC operating conditions.

また、へ曲型連鋳機による操業にあっては、第1図に示
すように、弯曲した鋳片(lO)をアンベン1部(弯曲
した鋳片を真直に曲げ戻す過程)で曲げ戻し真直にする
。このとき、鋳片の−1−血(12)側(以F、L面と
いう)には、引張応力(矢印Aで示す)、下面(13)
側(以下、F面という)には、圧縮応力(矢印Bで示す
)が生じ、内部割れの原因となる。鋳片の内部割れを防
止するために、また表面横割れを防止するために、たと
えば鋳片の断面形状が逆台形となるように溶融金属を鋳
造しておき、鋳片の両側端面からロールによって鋳J(
幅方向に圧下し鋳片のL面側に圧縮力を発生させ、引張
応力を減殺するコンブレッジせンコントロール或はコン
プレッションキャスティング(以下、CPCという)が
行なわれている。
In addition, in the operation using a bent type continuous casting machine, as shown in Fig. 1, the curved slab (lO) is bent back and straightened in the first part of amben (the process of bending the curved slab back to straight). Make it. At this time, the -1-blood (12) side (hereinafter referred to as F, L side) of the slab has tensile stress (indicated by arrow A), and the lower surface (13)
Compressive stress (indicated by arrow B) is generated on the side (hereinafter referred to as F-plane), causing internal cracks. In order to prevent internal cracks in the slab and horizontal cracks on the surface, the molten metal is cast so that the cross-sectional shape of the slab is, for example, an inverted trapezoid, and then rolled from both end faces of the slab. Cast J (
Combination control or compression casting (hereinafter referred to as CPC) is performed in which compressive force is generated on the L side of the slab by reducing it in the width direction to reduce tensile stress.

しかしながら、現状のCC操業技術において、内部割れ
、表面横割れ等の防止は完全ではなく、高速鋳造化によ
って多発する傾向さえある。
However, with the current CC operation technology, it is not possible to completely prevent internal cracks, surface horizontal cracks, etc., and they even tend to occur frequently due to high-speed casting.

内部割れ、表面横割れ等を防止し、鋳片の品質を向上せ
しめるためには、鋳片に発生する応力の状態を正確に把
握することが重要である。
In order to prevent internal cracks, surface horizontal cracks, etc., and improve the quality of slabs, it is important to accurately understand the state of stress generated in slabs.

しかしながら、従来バルジングによる応力状態や、連続
鋳造鋳片を弯曲部で曲げ戻す(unbend ing)
際、鋳片の1面(上面)及びF面(下面)の応力状態を
直接的、連続的に検出する手段は見出されていなかった
However, conventional stress conditions due to bulging and unbending of continuously cast slabs at curved parts
At the time, no means had been found to directly and continuously detect the stress state on one side (upper surface) and F side (lower surface) of a slab.

木発明者は、連続鋳造過程における鋳片に作用する応力
は、弯曲状態から真直にアンベ〉′ドされるときの鋳片
り面及びF面に発生する応力と、バルジングによる鋳片
厚さ方向に発生する応力の複合されたものとなり、その
結果として14の表面割れ、凝固界面における内部割れ
を惹起することを見出し、鋳片の品質向上のために、高
温での使用に酎えるひずみ計(strain−gage
)を利用して・連続鋳造過程における鋳片のり、F両面
における応力状態を直接的に検出する方法及び装置を発
明したものである。すなわち、本発明は、(1)溶融金
属を連続鋳造して鋳片を連続的に得るプロセスにおいて
、鋳片の側端面に1以上の応力検出素子を接着せしめ鋳
片の厚さ方向および長さ方向における応力の何れか1以
上を検出するようにしたことを特徴とする連鋳片の応力
測定方法、及び(2)溶融金属を連続鋳造して鋳片を連
続的に得るプロセスにおいて、鋳片の厚さ方向および長
さ方向における応力の何れかtubを検出するための装
置であって、鋳片側端面に接着された応力検出素子と、
該応力検出素子からの出力信号を増幅する増幅器と、該
増幅器からの信号に基づいて、鋳片の厚さ方向および長
さ方向における応力のうちの少なくとも1つを演算算出
する信号処理装置とよりなることを特徴とする連鋳片の
応力測定装置にある。
The inventor of the book believes that the stress that acts on the slab during the continuous casting process is the stress that occurs on the slab surface and F side when it is unbent straight from a curved state, and the stress that occurs in the thickness direction of the slab due to bulging. It was discovered that the stresses generated in the slab are combined, resulting in surface cracks and internal cracks at the solidification interface.In order to improve the quality of slabs, we developed a strain gauge that can be used at high temperatures. strain-gage
), we have invented a method and device for directly detecting the stress state on both sides of slab glue and F during the continuous casting process. That is, the present invention provides (1) a process in which molten metal is continuously cast to continuously obtain slabs, in which one or more stress detection elements are bonded to the side end surfaces of the slab, and the stress detection elements are bonded to the side end surfaces of the slab to determine the length and thickness of the slab; A method for measuring stress in a continuous cast slab characterized by detecting stress in any one or more of directions, and (2) a process for continuously obtaining slabs by continuously casting molten metal. A device for detecting stress in either the thickness direction or the length direction of the tube, comprising: a stress detection element bonded to the end face of the casting side;
an amplifier that amplifies the output signal from the stress detection element; and a signal processing device that calculates at least one of stress in the thickness direction and length direction of the slab based on the signal from the amplifier. There is a stress measuring device for a continuous slab, characterized in that:

以下この発明の詳細な説明する。This invention will be described in detail below.

第1図は上述の如く、弯曲型連鋳機におけるアンベンド
部の状態を説明するものである。鋳片(tO)は速度V
cチロール(11)間を引抜かれ、1面(12)側には
矢印Aの如く引張応力か、F面(13)側には矢印Bの
如く圧縮応力が生じ、内部割れの原因となる。
As mentioned above, FIG. 1 explains the state of the unbend portion in a curved continuous casting machine. The slab (tO) is the velocity V
C is pulled out between the Tyrol (11), and tensile stress is generated on the first surface (12) side as shown by arrow A, and compressive stress is generated on the F side (13) side as shown by arrow B, causing internal cracks.

第2図は、ロール(11)間でバルジングが発生してい
る状態を説明するものである。バルジングが発生すると
、鋳片厚さ方向において、ロール(11)間では、矢印
Cの如く引張応力、ロール(11)ドでは矢印りの如く
圧縮応力が生じ、従って鋳片は引張応力と圧縮応力を交
互に繰返し受けることになる。
FIG. 2 illustrates a state in which bulging occurs between the rolls (11). When bulging occurs, in the thickness direction of the slab, tensile stress occurs between the rolls (11) as shown by arrow C, and compressive stress occurs between rolls (11) as shown by the arrow. Therefore, the slab experiences both tensile stress and compressive stress. will be repeated alternately.

第3図は、この発明の鋳片の応力計測システムの1実施
例を示す。第3図において、鋳片(lO)の側端面には
、応力検出素子(υを接着させる。応力検出素子(1)
からの出力信号は増幅器(2)に人力して増幅され、増
幅器(2)からの出力信号に基づいて、信号処理装置(
3)において、鋳片の厚さ方向及び長さ方向における応
力のうちの少なくとも1つのデーターを解析し演算算出
する。結果は表示装置(4)に表示される。
FIG. 3 shows an embodiment of the slab stress measurement system of the present invention. In Fig. 3, a stress detection element (υ) is glued to the side end surface of the slab (lO). Stress detection element (1)
The output signal from the amplifier (2) is manually amplified, and based on the output signal from the amplifier (2), the signal processing device (
In 3), data on at least one of stress in the thickness direction and length direction of the slab is analyzed and calculated. The results are displayed on the display device (4).

第4図に検出素子U)の細部構成の一実施例を示す、す
なわち検出素子■)は、種々方向に配列された応力検出
素子(1−2) 、 (1−3) 、 (1−4)がポ
ル) (1−1)七に接着され構成されている。(a)
は)′J、面図、(b)は平面図である。
FIG. 4 shows an example of the detailed configuration of the detection element U), that is, the detection element (U) consists of stress detection elements (1-2), (1-3), (1-4) arranged in various directions. ) is glued to Pol) (1-1)7. (a)
)'J is a top view, and (b) is a plan view.

この検出素子U)は第5図に示すように、瞬時溶接銃(
5)の先端に簡単に取付けられ、瞬時溶接銃(5)によ
って、鋳片(lO)の側端面に押付けられ瞬時溶接銃(
5)に連接された溶接器(6)によって瞬時に溶接され
る。鋳片(lO)に溶接された検出素子口)は、信号線
(7)によって増幅器(2)と接続される。
This detection element U) is connected to the instantaneous welding gun (
It is easily attached to the tip of the instant welding gun (5), and is pressed against the side end surface of the slab (lO) by the instant welding gun (5).
Welding is instantaneously performed by a welder (6) connected to 5). The detection element port welded to the slab (lO) is connected to the amplifier (2) by a signal line (7).

第6図は、検出素子Ω)によって鋳片における諸種の応
力を測定しているときの状況を称す。応力検出素子(1
−4)によって、鋳片の1面側の引張応力を、応力検出
素子(1−2)によって鋳片のF面側の圧縮応力を、ま
た応力検出素子(1−3)によって鋳片厚さ方向におけ
る引張り或は圧縮応力を検出し、これらの検出信号は、
信号線(7)によって増幅器(2)に人力される。増幅
された信号は、信号処理装置(3)に入力され、それぞ
れの圧縮応力或は引張応力が演算算出される。
FIG. 6 shows the situation when various stresses in the slab are being measured by the detection element Ω). Stress detection element (1
-4), the stress detection element (1-2) measures the tensile stress on the first side of the slab, the stress detection element (1-2) measures the compressive stress on the F side of the slab, and the stress detection element (1-3) measures the thickness of the slab. Detects tensile or compressive stress in the direction, and these detection signals are
A signal line (7) powers the amplifier (2). The amplified signals are input to a signal processing device (3), and the respective compressive stress or tensile stress is calculated.

また、鋳片(lO)の表面温度を測定し、信号処理装置
(3)に人力すれば、精度レベルを高くすることができ
る。
Furthermore, the accuracy level can be increased by measuring the surface temperature of the slab (lO) and inputting it manually to the signal processing device (3).

信号処理装置(3)によって演算算出された諸種の応力
値は、表示装置(4)によって表示記録されると同時に
、図外のプロセス計算機に入力され、ロール間隔、ロー
ル曲がり量の制御、冷却制御、CPCの最適制御等のた
めの基礎情報として使用される。
The various stress values calculated by the signal processing device (3) are displayed and recorded by the display device (4), and at the same time are input into a process calculator (not shown) to control roll spacing, roll bending amount, and cooling control. , used as basic information for optimal control of CPC, etc.

以上詳述したように、この発明は、 1)鋳造過程における鋳片の挙動を正確に把握できる。As detailed above, this invention 1) It is possible to accurately understand the behavior of slabs during the casting process.

2)鋳片の応力状態の正確な把握により、内部割れ等の
メカニズムの解明が可能になる。
2) Accurately understanding the stress state of slabs makes it possible to elucidate the mechanisms of internal cracks, etc.

3)ロール間隔制御、ロール曲り制御、2次冷却制御、
最適CPCにより内部割れ、表面横割れ等を防止できる
等の優れた効果を発揮する。
3) Roll interval control, roll bending control, secondary cooling control,
Optimal CPC provides excellent effects such as preventing internal cracks, surface horizontal cracks, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、アンベンド部における詩片応カ状態を説明す
る立面図、第2図は、パルジンクによる鋳片応力状態を
説明する立面図、83図は、本発明の応力晶1測システ
ムを説明する説明図、第4図は、検出素子の細部構成の
説明図、第5図は、検出素子の鋳片への溶接方法の説明
図、第6図は。 検出素子への応力状況の説明図である。 l11.検出素子、208.増幅器、311.信号処理
装置、4069表示装置、580.瞬時溶接銃、600
.溶接器、794.信号線、 10.、、鋳片、11.
、 、ロール。 特許出願人  新11木製鐵株式会社
Fig. 1 is an elevational view illustrating the stress state of the slab in the unbend section, Fig. 2 is an elevational view illustrating the stress state of the slab due to palzinc, and Fig. 83 is the stress crystal measurement system of the present invention. FIG. 4 is an explanatory diagram of the detailed configuration of the detection element, FIG. 5 is an explanatory diagram of the method of welding the detection element to the slab, and FIG. 6 is an explanatory diagram of the method of welding the detection element to the slab. FIG. 3 is an explanatory diagram of stress conditions on a detection element. l11. detection element, 208. amplifier, 311. signal processing device, 4069 display device, 580. Instant welding gun, 600
.. welder, 794. Signal line, 10. ,, slab, 11.
, , roll. Patent applicant Shin 11 Wooden Iron Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)溶融金属を連続鋳造して鋳片を連続的に得るプロ
セスにおいて、鋳片の側端面に1以−Lの応力検出素!
−を接着せしめ鋳片の厚さ方向および長さ方向における
応力の倒れか1以上を検出するようにしたことを特徴と
する連鋳片の応力測定方法。
(1) In the process of continuous casting of molten metal to continuously obtain slabs, a stress detection element of 1 or more -L is applied to the side end face of the slab!
- A method for measuring stress in a continuous slab, characterized in that at least one of the stress collapses in the thickness direction and the length direction of the slab is detected.
(2)溶融金属を連続鋳造して鋳片を連続的に得るプロ
セスにおいて、鋳片の厚さ方向および長さ方向における
応力の何れかl以4−を検出するための装置であって、
鋳片側端面に接着された応力検出素子と、該応力検出素
子からの出力信号を増幅する増幅器と、該増幅器からの
信号に基すいて、鋳片の厚さ方向および長さ方向におけ
る応力のうちの少なくとも1つを演算々出する信号処理
装置とよりなることを特徴とする連鋳片の応力測定装置
(2) A device for detecting stress in either the thickness direction or the length direction of a slab in the process of continuously obtaining slabs by continuously casting molten metal,
A stress detection element bonded to the end face of the casting side, an amplifier that amplifies the output signal from the stress detection element, and a stress detection element in the thickness direction and length direction of the slab based on the signal from the amplifier. 1. A stress measuring device for a continuous slab, comprising: a signal processing device that calculates at least one of the following:
JP20120482A 1982-11-18 1982-11-18 Method and apparatus for measuring stress of continuously cast piece Pending JPS5991328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20120482A JPS5991328A (en) 1982-11-18 1982-11-18 Method and apparatus for measuring stress of continuously cast piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20120482A JPS5991328A (en) 1982-11-18 1982-11-18 Method and apparatus for measuring stress of continuously cast piece

Publications (1)

Publication Number Publication Date
JPS5991328A true JPS5991328A (en) 1984-05-26

Family

ID=16437069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20120482A Pending JPS5991328A (en) 1982-11-18 1982-11-18 Method and apparatus for measuring stress of continuously cast piece

Country Status (1)

Country Link
JP (1) JPS5991328A (en)

Similar Documents

Publication Publication Date Title
JP7158489B2 (en) Apparatus and method for avoiding interruptions in the welding process during friction stir welding, in particular breakage of friction pins
JPS5991328A (en) Method and apparatus for measuring stress of continuously cast piece
JP3015877B2 (en) Dynamic strain measurement method for welds
JPS5813454A (en) Method and device for controlling thickness of ingot in continuous casting
JP2018196893A (en) Crater end position detection method and detection device for continuously casting slab
JPS58184053A (en) Method for controlling bending of roll of continuous casting machine
JPH0894309A (en) Method and device for detection of connection point of cast in continuous casting
JPH0592248A (en) Diagnostic device for continuous casting equipment
JPH11183449A (en) Method and apparatus for measurement of center solid-phase rate of cast piece
JPS6127122B2 (en)
JPH1183814A (en) Solidification state detecting method for cast piece device therefor
JPS62192204A (en) Method for measuring roll crown
JP2007021522A (en) Continuous casting method
JPS606260A (en) Device for measuring bulging of continuous casting billet
JP7250136B2 (en) Method for determining crater end position of cast metal product
JPH01254360A (en) Apparatus and method for measuring roll alignment and roll interval
JPS62207550A (en) Abnormality detector for roll alignment of continuous casting installation
JPS63220958A (en) Apparatus for controlling cast slab weight in continuous casting
KR20120001237A (en) Measuring apparatus for transformation of rolling material and control method thereof
JPH01178357A (en) Method for controlling cutting of steel slab
JPS6239886Y2 (en)
Gancarz et al. Mechanical behaviour of the slab during continuous casting
JPS6083712A (en) Camber controlling method when rolling thick plate
JPS6037218A (en) Production of wound seam pipe
JPS619917A (en) Removal of skid mark of rolling stock