JPS5990714A - Wall type catalyst in heat exchangeable reaction device - Google Patents

Wall type catalyst in heat exchangeable reaction device

Info

Publication number
JPS5990714A
JPS5990714A JP57199757A JP19975782A JPS5990714A JP S5990714 A JPS5990714 A JP S5990714A JP 57199757 A JP57199757 A JP 57199757A JP 19975782 A JP19975782 A JP 19975782A JP S5990714 A JPS5990714 A JP S5990714A
Authority
JP
Japan
Prior art keywords
heat
wall
catalyst
reaction
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57199757A
Other languages
Japanese (ja)
Inventor
Shigeo Hagino
萩野 茂雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57199757A priority Critical patent/JPS5990714A/en
Publication of JPS5990714A publication Critical patent/JPS5990714A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B51/00Other methods of operating engines involving pretreating of, or adding substances to, combustion air, fuel, or fuel-air mixture of the engines
    • F02B51/02Other methods of operating engines involving pretreating of, or adding substances to, combustion air, fuel, or fuel-air mixture of the engines involving catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a complete combustion reaction while material quality of a reaction device wall is protected by a method wherein a catalyst layer for removing accumulated heat is arranged in a reaction device wall surface of an internal-combustion engine in which a heat circulation is performed through the reaction device wall. CONSTITUTION:An internal-combustion engine 1 is a kind of reaction device in which an oxidation reaction is performed with hydrocarbon and oxygen in air while the engine is kept at its compressed condition and a cylinder wall acting as a reaction device wall 2 and a piston wall are properly cooled to protect material quality. With the foregoing, a flame extinguishing layer is produced on the device wall 2 under a cooled condition and a catalyst layer 3 is formed on the device wall 2 in order to eliminate disadvantage in which a combustion reaction is not completely performed when the engine is started to operate in particular. In the catalyst layer 3, a low temperature contact reaction is performed to provide a complete combustion reaction. With the foregoing, material quality can be protected without destroying thermal circulation on the wall surface and temperature of the catalyst itself can be kept at its proper value.

Description

【発明の詳細な説明】 この発明は、低温接触燃焼のような触媒で使用されて行
われる反応速度が大なる化学反応において、比較的反応
の進み難い器壁に密接する部分の反応速度を促進する一
方反応熱の過不足を反応器壁を利用して補うことによシ
、その反応を熱的に安定した状態で行わせると共に、過
不足の熱量を効率良く、反応系外の熱媒体と交換して熱
エネルギーの有効化を図シ、また、触媒層の温度を固有
の適温に保ち、更に、反応器壁の材質を保獲することを
目的とし、反応器壁を通しての熱貫流によって、または
反応器壁に蓄熱した熱を間けつ的に取去ることによって
その目的を達成する熱交換が可能な反応器における器壁
型触媒体に係シ、(1)、反応器壁を通して熱貫流が行
われる往復動内燃機関の反応器壁内面に、蓄熱した熱を
取去る触媒層を設け、+21、下側壁の導入孔を通して
被反応物質が導入され、上側壁の排出孔を経てプロダク
トが導出されるように構成した竪形シェルの内側に、熱
媒体を下側から導入させて上部に排出させる複数の熱媒
体管を樹立させてシェルアンドチューブ型の反応容器が
構成されているものであって、その複数の熱媒体管の外
周壁に蓄熱した熱を取去る触媒が設けられ、または、(
3)、−側から可燃稀薄ガスを装入し、他側から排出さ
せる式の燃焼器匣内に、熱交換器胴が回転自在に懸架さ
れ、その熱交換器胴内に一側から尋人した低温空気を他
側から排出し、その際に熱交換器胴壁の蓄熱によって内
部を流れる低温空気を高温空気に熱交換させるようにし
て熱交換が可能な反応器の熱交換胴の蓄熱壁の外面に、
その可燃稀薄ガスの燃焼によって蓄熱した熱を取去る力
虫媒層を設けていることを%faとし、その実施態様と
して、前記触媒層は反応器壁の一部または全部に直接形
成するか或は固着し、前記竪形シェルは、上下開口を側
板にて封塞されていて、その上下封板の上下側に、上部
に排出管を連通した排出室と、下部に熱媒体導入管を連
通させた熱媒体導入室とが封塞して設けられ、または、
前記触媒層は熱媒体管の外周壁に直接形成するか、また
は、固着するかして形成しているものである。
DETAILED DESCRIPTION OF THE INVENTION This invention promotes the reaction rate of the part close to the vessel wall where the reaction is relatively slow in chemical reactions such as low-temperature catalytic combustion in which the reaction rate is high using a catalyst. On the other hand, by using the reactor wall to compensate for the excess or deficiency of reaction heat, the reaction can be carried out in a thermally stable state, and the excess or deficiency of heat can be efficiently transferred to the heat medium outside the reaction system. The purpose is to exchange heat energy, maintain the temperature of the catalyst layer at a proper temperature, and preserve the material of the reactor wall, by heat exchange through the reactor wall. or relating to a vessel wall-type catalyst in a reactor capable of heat exchange, which achieves its purpose by intermittently removing heat stored in the reactor wall; (1) heat flow through the reactor wall; A catalyst layer is provided on the inner surface of the reactor wall of the reciprocating internal combustion engine to remove the accumulated heat, and the reactant is introduced through the inlet hole in the lower wall, and the product is led out through the exhaust hole in the upper wall. A shell-and-tube type reaction vessel is constructed by establishing a plurality of heat medium pipes inside a vertical shell configured to introduce a heat medium from the bottom and discharge it to the top. , a catalyst is provided on the outer circumferential wall of the plurality of heat medium pipes to remove the accumulated heat, or (
3) A heat exchanger shell is rotatably suspended in a combustor box in which combustible dilute gas is charged from the - side and discharged from the other side, and a heat exchanger body is rotatably suspended inside the heat exchanger shell from one side. A heat storage wall of a heat exchange barrel of a reactor that can perform heat exchange by discharging the low temperature air from the other side, and at that time, the low temperature air flowing inside is exchanged with high temperature air due to the heat storage in the heat exchanger barrel wall. on the outside of
%fa means that a force medium layer is provided to remove heat accumulated by combustion of the combustible dilute gas, and as an embodiment thereof, the catalyst layer may be formed directly on a part or all of the reactor wall. is fixed, and the vertical shell has its upper and lower openings sealed with side plates, and the upper and lower sides of the upper and lower sealing plates are connected to a discharge chamber with a discharge pipe connected to the upper part and a heat medium introduction pipe connected to the lower part. The heating medium introduction chamber is sealed, or
The catalyst layer is formed either directly on the outer circumferential wall of the heat transfer pipe or by being fixed thereto.

その触媒は層状をなし触媒支持体、触媒担体及び触媒物
質とから成る。
The catalyst is layered and consists of a catalyst support, a catalyst support and a catalyst material.

触媒物質は白金属金属又は同効の金属又は酸化物である
。触媒担体は触媒物質を担持して比表面積を大にするこ
とによ)、触媒の活性を助長すると共に触媒支持体に触
媒物質を物理的に強力に接着する機能のある活性アルミ
ナ又は同効の物質である。触媒支持体は触媒層を形成す
る骨格であって、触媒物質及び触媒担体を支持するもの
であり、反応物質との接触面積を犬にする機能を併せも
つことが望ましい。
The catalytic material is a platinum metal or an equivalent metal or oxide. The catalyst carrier is made of activated alumina or an equivalent material that has the function of supporting the catalyst material and increasing the specific surface area, thereby promoting the activity of the catalyst and strongly physically adhering the catalyst material to the catalyst support. It is a substance. The catalyst support is a skeleton that forms the catalyst layer, supports the catalyst material and the catalyst carrier, and preferably has the function of reducing the contact area with the reactant.

触媒が器壁に直接形成される場合は器壁である金属又は
セラミックスが触媒支持体であシ、器壁に固着して触媒
が取付けられる場合は金属板や多孔質のセラミックス、
発泡金属、不織布等である。
When the catalyst is formed directly on the vessel wall, the metal or ceramic that is the vessel wall is the catalyst support, and when the catalyst is fixed to the vessel wall, a metal plate or porous ceramic,
Foamed metal, nonwoven fabric, etc.

器壁に取付ける触媒としては、先行特願昭57一タ72
号発明において、外壁面冷却型内燃機関においては、3
;oo C程度以下或は断熱型内燃機関においては、約
にooc8度の比■1ψ2的低温度の触媒層温度を整定
状態に保持して内壁面上に形成される消炎層の炭化水素
に接/ヤL低温1)シ化反応を起させ、近傍の燃料混合
気を4N動させながら燃焼させ、その反応熱を燃焼室内
に圧縮されている燃料混合気に伝播させて効率の良い燃
)、(・t1反応に導いて稀薄混合気をも失火させるこ
となく、正常にして効率良く燃焼させるものであって、
一般の炭化水素化合物を低温接触燃焼させるよう々10
0t)7):以上のバ6温度に耐える必要のない触媒か
ら成る触媒層が、主として往復動内燃機関の燃焼室内の
ピストン非J’;:、1mb j”11i分の内壁面に
取付けられる素体の表m1に固着でれている内燃オ幾ル
jの燃焼室内における燃料混合気を効率良く燃焼させる
触媒素体として開発されている。
As a catalyst to be attached to the vessel wall, the prior patent application 1987-172
In the invention of No. 3, in the external wall cooling type internal combustion engine, 3
; In an internal combustion engine below about oo C or in an adiabatic type internal combustion engine, the temperature of the catalyst layer, which is as low as 1ψ2, is maintained at a stable state of approximately 8 degrees ooc, and the catalyst layer is brought into contact with the hydrocarbons in the quenching layer formed on the inner wall surface. /YL Low Temperature 1) Cause the oxidation reaction and burn it while moving the nearby fuel mixture by 4N, and propagate the reaction heat to the fuel mixture compressed in the combustion chamber to achieve efficient combustion). (・It leads to the t1 reaction and burns normally and efficiently without causing even a lean mixture to misfire,
For low-temperature catalytic combustion of general hydrocarbon compounds 10
0t) 7): A catalyst layer consisting of a catalyst that does not need to withstand the temperature above is mainly attached to the inner wall surface of the piston in the combustion chamber of a reciprocating internal combustion engine. It has been developed as a catalyst element that efficiently burns the fuel mixture in the combustion chamber of internal combustion oil j, which is fixed to the surface m1 of the body.

これに対して、この発明は、低温接触燃焼のような触媒
が使用されて行われる反応速度が犬なる化学反応におい
て、比較的反応の進み難い器壁に密接する部分の反応速
度を促進する一方反応熱の過不足を反応器壁を利用して
補うことによシ、その反応を熱的に安定した状態で行わ
せると共に、過不足の熱量を効率良く、反応系外の熱媒
体と交換して熱エネルギーの有効化を図シ、寸た、触媒
層の温度を固有の適温に保ち、更に、反応器壁の材質を
保護させたものであって、この発明によれば、反応器壁
を通しての熱貫流によって、または反応器壁に蓄熱した
熱を間けつ的に取去ることによって、その目的を達成す
ることができて頗る有用である。
In contrast, in chemical reactions such as low-temperature catalytic combustion where a catalyst is used and the reaction rate is low, the present invention accelerates the reaction rate in a portion close to the vessel wall where the reaction is relatively slow. By compensating for excess or deficiency of reaction heat using the reactor wall, the reaction can be carried out in a thermally stable state, and the excess or deficiency of heat can be efficiently exchanged with a heat medium outside the reaction system. In order to make the thermal energy effective, the temperature of the catalyst layer is maintained at an appropriate temperature, and the material of the reactor wall is protected. It is very useful to be able to achieve this purpose by heat flow through the reactor or by intermittent removal of heat stored in the reactor walls.

図面につき、この発明を次に説明する。The invention will now be explained with reference to the drawings.

の例示である。内燃機関は圧縮された状態で炭化水素と
空気中の酸素とで酸化反応を起させるだめの反応器であ
って、理想的に反応が進行すれは002とH26が反応
生成物と々シ、生成反応熱と生成系の分子数の増加は、
!■ψカエネルギーに変換される。燃焼時の生成ガスの
中心部の温度は2000 Cを超えるが、反応器壁(2
)であるシリンダー壁、ピストン壁は、冷却型において
は約−6oC以下、断熱型においては、約700 C以
下に冷却されて材質が保護されている。
This is an example. An internal combustion engine is a reactor that causes an oxidation reaction between hydrocarbons and oxygen in the air in a compressed state, and ideally, if the reaction proceeds, 002 and H26 will be produced as reaction products. The heat of reaction and the increase in the number of molecules in the product system are
! ■ψ is converted into energy. The temperature at the center of the produced gas during combustion exceeds 2000 C, but the temperature at the reactor wall (2
) The cylinder wall and piston wall are cooled to about -6oC or less in the cooling type, and to about 700C or less in the adiabatic type to protect the material.

そのため、 (温度が低いため)器壁(2)上に消炎層
が生成して(q′fに始動時は)燃焼反応は完全に行わ
れない。
Therefore, a flame-extinguishing layer is formed on the vessel wall (2) (due to the low temperature), and the combustion reaction does not take place completely (at the time of starting at q'f).

の熱貫流を損うことなく材質を保睦し、触媒自体の温度
を適温に保つことができる。
It is possible to preserve the material without impairing the heat flow and maintain the temperature of the catalyst itself at an appropriate temperature.

白金〃11触媒から成る触媒層を使用すれば、/j07
:〜7−0−01阿史呼寸ひ冷畦ヒざナガひ材ゴtが看
−詐−ギ噌しでヤ巳ケアら[700Cで触媒活性が保た
れるので断熱型を採用すれば一層の熱効率の向上が可能
となる。
If a catalyst layer consisting of platinum 11 catalyst is used, /j07
: ~ 7-0-01 Asumi calls the cold ridges and the knee-length timbers are looked after by Yami Care et al. Further improvement in thermal efficiency becomes possible.

オツトーサイクルでは、燃焼期と燃焼期の間に排気、吸
気圧縮工程があるだめ、器壁触媒層に蓄熱された熱は、
間けつ的に冷却されるので、次項で述べる間けつ的蓄熱
型反応器の効果も起っている。
In the Otto cycle, there is an exhaust and intake air compression process between the combustion periods, so the heat stored in the catalyst layer of the vessel wall is
Since the reactor is cooled intermittently, the effect of an intermittent heat storage reactor described in the next section also occurs.

次の例示は第3図に示すような反応容器(4)である。The next example is a reaction vessel (4) as shown in FIG.

図は所謂シェル・アンドチューブ型で熱媒体を通すチュ
ーブ(51の外壁を触媒層(3)とし、竪形シェル(4
)内(111を反応容器(4)としたものであるが、そ
の逆であっても良く、他の形の熱収支を可能にする反応
器でもよい。前記竪形シェル(4)は、上下開口を封板
(61= +61にて密封されていて、その上下封板の
上下側に、上部に排出管(71を連通した排出室(8)
と、下部に熱媒体導人智(9)を連通した熱媒体導入室
部とが封塞して設けられている。従来の一般固定触媒層
(3)は、ハニカム状、粒状、a1片状であって、反応
の原糸、生成系が、その空隙を通過する間に接触反応を
起すが、反応に寄与する触媒N(3)の面は、ハニカム
、粒、細片の表面のみであシ、容積の大部分はデッドボ
リュームであシ、特俯を汁細片の場合は反応器の容積を
徒らに大きくし流体抵抗を増加さす原因となる。また、
反応温度、触媒温度の制御を困難にしている。
The figure shows a so-called shell-and-tube type tube (51) through which the heat medium passes, with the outer wall of the tube (51) serving as the catalyst layer (3), and a vertical shell (4
) (111 is the reaction vessel (4), but the reverse may be used, or a reactor that enables other types of heat balance may be used. The vertical shell (4) has an upper and lower The opening is sealed with a sealing plate (61 = +61), and on the upper and lower sides of the upper and lower sealing plates, there is a discharge chamber (8) that communicates with the discharge pipe (71) at the top.
and a heat medium introduction chamber portion in which a heat medium conductor (9) is communicated with the bottom thereof are sealed. The conventional general fixed catalyst layer (3) has a honeycomb shape, a granule shape, or an A1 piece shape, and a reaction fiber or production system causes a catalytic reaction while passing through the voids, but the catalyst that contributes to the reaction is The surface of N(3) is only the surface of honeycomb, grains, and small pieces, and most of the volume is dead volume.If the special surface is made of liquid pieces, the volume of the reactor may be unnecessarily large. This causes an increase in fluid resistance. Also,
This makes it difficult to control the reaction temperature and catalyst temperature.

図に示す膜状触媒層(3)に触媒反応に必要な有効表面
積があれば、それらの欠点が総て解決される。例えば、
塗装ブースから排出される稀薄濃度の可燃有害ガスをこ
の方法で接触燃焼すれば、排ガスは無害となシ、更に、
反応熱によって加熱されたυ1ガスを熱媒体として水を
用いて冷却すれば、熱水又は蒸気として有効に熱エネル
ギーが回収され、触媒温度が適正に保たれて、過度の温
度によって触媒が失活することを防止できるし、反応壁
の材質も保護出来る。
If the membrane catalyst layer (3) shown in the figure has an effective surface area necessary for catalytic reaction, all of these drawbacks can be solved. for example,
If the dilute concentration of combustible and harmful gas discharged from the paint booth is catalytically burned in this way, the exhaust gas will be harmless;
If the υ1 gas heated by the reaction heat is cooled using water as a heat medium, thermal energy will be effectively recovered as hot water or steam, the catalyst temperature will be maintained at an appropriate level, and the catalyst will not be deactivated by excessive temperature. It is possible to prevent this from occurring, and the material of the reaction wall can also be protected.

6間けつ的蓄熱型反応器”における例示の一つは前項で
往徨動内燃機関の例で述べた処である。
One example of the ``intermittent heat storage type reactor'' is the one described in the previous section for the example of a reciprocating internal combustion engine.

次の例示は、第参図に示すような回転型熱交換機と類似
な形状をもつ蓄熱型反応器allである。
The next example is a regenerative reactor all having a shape similar to a rotary heat exchanger as shown in Figure 1.

回転器側Q3の中に充填される例えば、ハニカム型、蓄
熱壁0の表面層状触媒層(3)とし、それに前記例示の
稀薄濃mlの可燃有害ガスを通過させて接触燃焼を行わ
せる例である。ノ・二カムにはその反応熱が蓄熱が蓄熱
して例えば約3307::に昇温する。回転器側a2は
連続的に図の冷却=llに移行して冷風で冷却され、次
の接触反応を起すのに必要な温度例えば/j07:に下
げられ、冷風は熱交換して330 Cに加熱され、その
顕熱は、ボイラーや工業炉の燃焼用や乾燥用等に有効に
利用される。かくして、触媒層(3)及び蓄熱壁(Iv
は適温に保たれて損傷なく有効に機能するし、触媒なく
しては燃焼不可能な稀薄可燃有害ガスは、燃焼し、て無
害となると共に有効に熱エネルギーが回収されることに
なる。
For example, the surface layered catalyst layer (3) of a honeycomb type and heat storage wall 0 is filled in the rotor side Q3, and catalytic combustion is performed by passing the above-mentioned dilute and concentrated ml of combustible harmful gas through it. be. The heat of reaction is stored in the No. 2 cam, and the temperature rises to, for example, about 3307 cm. The rotor side a2 is continuously shifted to cooling =ll in the figure and is cooled by cold air, and the temperature is lowered to the temperature required to cause the next contact reaction, for example /j07:, and the cold air is heated to 330 C. The sensible heat is effectively used for combustion and drying in boilers and industrial furnaces. Thus, the catalyst layer (3) and the heat storage wall (Iv
is maintained at an appropriate temperature and functions effectively without damage, and dilute combustible harmful gases that cannot be combusted without a catalyst are combusted and rendered harmless, and thermal energy is effectively recovered.

また、未燃すすの様な可燃性異物を含有する高温排ガス
から回転型熱交換器を用いて熱回収せんとする場合、異
物が交換体を閉塞し、適用が限定されることがある。水
分の多い時は更に障害となる。その時上記の方法を適用
すれば、器壁において接触燃焼が起シ、異物の付着によ
る閉塞は解決され、回収されるし、熱量は増加する。
Furthermore, when a rotary heat exchanger is used to recover heat from high-temperature exhaust gas containing combustible foreign matter such as unburned soot, the foreign matter may clog the exchanger, limiting its applicability. It becomes even more of a problem when there is a lot of moisture. If the above-mentioned method is applied at that time, catalytic combustion will occur on the vessel wall, the blockage caused by the adhesion of foreign matter will be resolved, the heat will be recovered, and the amount of heat will increase.

而してこの発明の目的に使用する比較的稀薄な炭化水素
化合物を燃焼させるような気体反応においては、触媒層
が反応物質と接触する有効表面積を大にすることによグ
て反応器の反応容量は大となる。その有効表面積は触媒
の細孔構造が同一であれば、触媒層の見掛け、表面積が
大きくなる程大きい。見掛は表面積を大にするためには
触媒支持体に凹凸形状をもたせるか、触媒支持体を多孔
体にする等の方法が構しられる。そしてそれらの方法は
何れも巨視的にみて触媒層の厚さを厚くする結果となる
Therefore, in gaseous reactions in which relatively dilute hydrocarbon compounds are combusted, which is used for the purpose of this invention, the reaction in the reactor is improved by increasing the effective surface area of the catalyst layer that comes into contact with the reactants. The capacity will be large. If the pore structure of the catalyst is the same, the effective surface area increases as the apparent surface area of the catalyst layer increases. In order to increase the apparent surface area, the catalyst support may be provided with an uneven shape or the catalyst support may be made porous. All of these methods result in an increase in the thickness of the catalyst layer from a macroscopic perspective.

一方、熱貫流型反応器の単位面積当)の熱貫流量を大き
くするためには、触媒層の熱伝導率は大きく、厚さは小
さくなければならない。
On the other hand, in order to increase the amount of heat passing through (per unit area) of a heat once-through reactor, the catalyst layer must have a high thermal conductivity and a small thickness.

また、間けつ的蓄熱型反応器の場合は、適当な熱¥f邦
を持つことが必要であシ、また、反応物質の空間速度の
制限があるため、触媒層の表面積を大きくする必要があ
る。
In addition, in the case of an intermittent heat storage type reactor, it is necessary to have an appropriate amount of heat, and since there is a limit to the space velocity of the reactants, it is necessary to increase the surface area of the catalyst layer. be.

このように取シ扱う反応と反応器の型式、使用条件に適
応する触媒(触媒層を支持する支持体を含む)の型式及
び仕様は、化学工学的設計と相持って多様となる。
The types and specifications of catalysts (including the support that supports the catalyst layer) that are compatible with the reactions handled in this manner, the types of reactors, and the conditions of use are diverse, as are the chemical engineering designs.

以下に本発明に係わる触媒の型式とその調整方法を述べ
る。
The type of catalyst and its preparation method according to the present invention will be described below.

板状金Zi4型触媒 この発明の中で、この触媒は20−100μ程度の厚さ
制限があシ機械的に相当高い強度を持ち、熱伝導率の置
いことを必要とするような場合の応用に供されるもので
ある。
Plate metal Zi4 type catalyst In this invention, this catalyst has a thickness limitation of about 20-100μ, has a considerably high mechanical strength, and is suitable for applications where a high thermal conductivity is required. It is served to

古くから、ラネーニッケルとして知られる水素添加等の
反応に使用される触媒調整法の応用である。
This is an application of a catalyst preparation method that has long been used in reactions such as hydrogenation, known as Raney nickel.

ラネーニッケルは元来粉末状で使用されるが塊状にして
固定触媒として使用される例も紹介されている。
Raney nickel is originally used in powder form, but examples have also been introduced where it is made into lumps and used as a fixed catalyst.

この発明は、触媒物質(例えば白金属金属)の板の後h
lの大部分をアルカリで溶出して触媒物質を活性化する
ル面触媒である。
The invention provides a method for applying h
It is a surface catalyst that activates the catalyst material by eluting most of the l with alkali.

一例として、厚さ100μのパラジウム(Pd)薄板を
用い薄板の片面にPdAl5なる金属間化合物を固溶し
て、Pdが重量比で弘O%を超えない合金層がSOμ程
度の厚さとなるのに相当する量のアルミニウム(j)を
箔としてPd fll板に接着し、加圧状態でfoo 
i:’以下の温度で、A1層が極僅かに残る程度に短時
間加熱して後、水中で急冷する。制御可能な条件で、片
側に合金層を形成することが出来、X線回折法によpp
dAlsの生成していることを確認出来だ。この合金層
からldの大部分を溶出して、13ET法で測定する比
表面積の大きいPd層を得るために多量のj % Na
OH水溶液を使用し、AhOsが析出しないようにして
弘に時間かけて緩和な条件で処理した。
As an example, a palladium (Pd) thin plate with a thickness of 100 μm is used, and an intermetallic compound called PdAl5 is dissolved in solid solution on one side of the thin plate, so that an alloy layer with a Pd content of not more than 0% by weight has a thickness of about SOμ. An amount of aluminum (j) corresponding to
i:' After heating for a short time to such a degree that only a very small amount of the A1 layer remains, the sample is rapidly cooled in water. An alloy layer can be formed on one side under controllable conditions, and pp
I can confirm that dAls is being generated. In order to elute most of the ld from this alloy layer and obtain a Pd layer with a large specific surface area measured by the 13ET method, a large amount of j% Na
Using an OH aqueous solution, the treatment was performed under mild conditions over a long period of time to prevent AhOs from precipitating.

11ノ 触媒層がイ(Jられた。11 no The catalyst layer was removed.

また、pd薄板にPd−h1合金層を生成させる方法と
して、イオンプレーテング法が適用出来る。
Further, as a method for forming a Pd-h1 alloy layer on a PD thin plate, an ion plating method can be applied.

イオンプレーテングは、真空蒸着法において、蒸着せん
とする物質(この場合Aj)を陽極とし、被蒸着物質(
p、Bl板)を陰極とし、その間に電圧をかけ(蒸It
物イオンを加速するため)亦、両極間を高周波111.
場とし、lOトール程度のアルゴン圧下にお、くことに
よって蒸着物質(Aj)をイオン化し、陰極上における
両物質の反応を促進し、密着を強固にする方法である。
Ion plating is a vacuum evaporation method in which the substance to be evaporated (Aj in this case) is used as an anode, and the substance to be evaporated (Aj in this case) is used as an anode.
P, Bl plates) are used as cathodes, and a voltage is applied between them (evaporation It
In order to accelerate the substance ions), a high frequency wave 111. is applied between the two poles.
In this method, the vapor deposition substance (Aj) is ionized by placing it under an argon pressure of about 10 Torr, promoting the reaction of both substances on the cathode, and strengthening the adhesion.

この発明においては、Pd薄板の片側にldを蒸着させ
Pdとhlの合金層を形成し、且つPdAlxなる化合
物を固溶させるために、この方法をオU用して、その目
的を達成した。条件を選定することによシ、任意の厚さ
の合金層が得られるしPdAl5が生成することもX線
回折で確認出来た。陰極面積100cnlにおける条件
は両極間の加速電圧(too 、 tooo v 、ア
ルゴン圧3〜7X/117)、−ル、高周波電力l−コ
W、陰極板加熱温度、2oo Cであった。
In the present invention, this method was used to achieve the objective by vapor depositing ld on one side of a Pd thin plate to form an alloy layer of Pd and hl, and in order to form a solid solution of a compound called PdAlx. By selecting the conditions, an alloy layer of any thickness can be obtained, and it was confirmed by X-ray diffraction that PdAl5 was produced. The conditions for a cathode area of 100 cnl were an acceleration voltage between the two electrodes (too, tooov, argon pressure of 3 to 7X/117), a high frequency power of l-cow, and a cathode plate heating temperature of 2oooC.

生成合金層の量(厚さ)、結晶粒の大きさ、粒界現象の
制御が容易に適確に出来ることは大きな長所である。h
lの溶出は前記と同様にして行われた。
A great advantage is that the amount (thickness) of the produced alloy layer, the size of crystal grains, and grain boundary phenomena can be easily and accurately controlled. h
Elution of 1 was performed in the same manner as above.

前記λ法の他Pd薄板をhlの溶体に浸漬しだシ、Pd
薄板にhlの溶体をスプレーする方法もあるが、酸化反
応が起ったシ所望の条件に制御することが困1i[な欠
点が考えられる。
In addition to the above-mentioned λ method, a Pd thin plate is immersed in a solution of hl, Pd
There is also a method of spraying a solution of hl onto a thin plate, but this method has the disadvantage that it is difficult to control the desired conditions when an oxidation reaction occurs.

また、Pdは更にPtとなれば尚更のこと高価でおるた
め薄板の厚さを極力薄くして機械的強度を保つためニッ
ケル、f1司、鉄及びそれらの合金とのクラッドを使用
することが出来る。
In addition, since Pd is even more expensive than Pt, cladding with nickel, F1, iron, and their alloys can be used to keep the thickness of the thin plate as thin as possible and maintain mechanical strength. .

尚、この型の触踪層は、反応器壁に直接形成されるよシ
も別個に触媒として臥1整しておき、二次的に器壁に取
り付けて使用されるケースが多い。
In addition, although this type of catalytic layer is formed directly on the reactor wall, it is often used by preparing it separately as a catalyst and secondarily attaching it to the reactor wall.

多孔性の触媒支掲体を持つ触媒 この触媒は白金又はパラジウム等の白金鳥金属を活性ア
ルミナに担持したような所謂白金属触媒のもつ活性の高
い特性を生かしながら、反応物質と接触する有効表面積
を大きくして、反応器の反応容量を大きくするために、
薄層状の多孔性か媒支持体を用いたものである。
Catalysts with porous catalyst supports This catalyst takes advantage of the highly active properties of so-called platinum metal catalysts, in which platinum metals such as platinum or palladium are supported on activated alumina, while also increasing the effective surface area in contact with reactants. In order to increase the reaction capacity of the reactor by increasing
It uses a thin layered porous media support.

熱の伝導値、熱容量の大きさは触媒支持体の材質、厚さ
、多孔度の選択によって脚部される。
The heat conduction value and the heat capacity are determined by the selection of the material, thickness, and porosity of the catalyst support.

反応物質の流束は触媒の層を貫流するものでなく、層の
面に併行して流れるものであυ、触媒支持体の連通ずる
(独立気孔ではない)孔内に分散する。
The flux of reactants does not flow through the bed of catalyst, but rather runs parallel to the plane of the bed, υ, and is dispersed within the communicating (not closed) pores of the catalyst support.

この発明の中で、この触媒は厚さ制限、熱伝導性の高い
こと等の条件が余り厳しくなく、活性がきわめて高いこ
とが要求されるような場合の応用に供されるものである
In this invention, this catalyst is used in cases where conditions such as limited thickness and high thermal conductivity are not too strict, and where extremely high activity is required.

以下、その例を示す。An example is shown below.

質ホーロー用の調合釉薬のスラリーをボールミルで磨鉱
したものを塗布し乾燥後760 Cで焼成し厚さ/30
μ、平均空隙径30μ、空隙率30〜弘θ%の連通した
空隙孔をもつ多孔質ホーロー板を造った。調合釉薬の粉
砕(磨鉱)度によ多空隙の径及び空隙率はル4節可能で
ある。このホーロー板を平均−次粒径O0μμの−とじ
たものに浸漬し乾燥後、jrOcで焼成して触媒相体付
き支持体を作った。触媒層の平均空隙径約2θμ、空隙
率2j〜30%であった。
A slurry of a mixed glaze for quality enamel was ground using a ball mill, then dried and fired at 760 C to a thickness of 30.
A porous enamel plate having interconnected pores with an average pore diameter of 30 μ and a porosity of 30 to θ% was produced. Depending on the degree of pulverization (polishing) of the mixed glaze, the diameter and porosity of the pores can be adjusted in four ways. This enamel plate was immersed in a closed material having an average primary particle size of 0 μμ, dried, and then fired in jrOc to produce a support with a catalyst phase. The catalyst layer had an average pore diameter of about 2θμ and a porosity of 2j to 30%.

また、上記の特殊な多孔質ホーロー用調合釉薬に上記同
様の活性アクミナを30− jO%混合してスラ成し、
厚さ/30μの担体付き支持体を得た。顕微鏡歓察の結
果活性アルミナは、よく分散して釉薬の焼結点によって
支持されて固定し結晶の肥大化は見られなかった。又X
線回折の結果活性アルミナは転移せずγ−アルミナのま
\であった。
In addition, 30-jO% of the same activated acumina as above was mixed into the above-mentioned special porous enamel glaze to form a slurry.
A support with a carrier having a thickness of 30μ was obtained. As a result of microscopic inspection, it was found that the activated alumina was well dispersed, supported and fixed by the sintering points of the glaze, and no enlargement of crystals was observed. Also X
Linear diffraction revealed that active alumina did not undergo any transition and remained γ-alumina.

この場合の特徴は、触媒担体が支持体に強固に固着出来
ること、コージェライト等のセラミック板を支持体とす
るのに比べ、連通した空隙孔を持っているので触媒の見
掛けの表面積が大きいこと等である。
The characteristics of this case are that the catalyst carrier can be firmly fixed to the support, and compared to using a ceramic plate such as cordierite as the support, the apparent surface area of the catalyst is larger because it has continuous pores. etc.

、2)発泡金属薄板を触媒支持体とする場合発泡金属板
の一例は、ウレタンフオームのようなして造られるもの
で、網目をなす金属はガス放出時の細孔を持つ中空状の
ものである。ウレタン7オームの海綿状態(センイ度、
空隙度)を選ぶことによって、発泡金属板の見掛けの比
表面積、単位体積当シの孔数、孔径、多孔率延いては密
度はある範囲内で任意に制御出来る。この発明の例では
市販の孔径、ioo〜200μ、見掛けの比表面積” 
/eit S多孔率り6チのニッケル発泡金属を使用し
た。
, 2) When a foamed metal sheet is used as a catalyst support An example of a foamed metal sheet is one made of urethane foam, and the metal forming the network is hollow with pores for gas release. . Urethane 7 ohm spongy condition (high degree,
By selecting the porosity, the apparent specific surface area, number of pores per unit volume, pore diameter, porosity, and density can be arbitrarily controlled within a certain range. In the example of this invention, the commercially available pore size, ioo ~ 200μ, and the apparent specific surface area.
/eit A nickel foam metal with a porosity of 6 cm was used.

前記l)と同様な方法で、活性アルミナを担持した。Activated alumina was supported in the same manner as in 1) above.

アルミナは、発泡金属の平滑でない相な網目をなす金)
t−jSに強固に接〃ンしていて、目的を満足する担体
板であった。見掛りの比表面積  網目をなす金属は、
した孔の径はSO〜100μであシ、充分反応物質が流
動し得る大きさであった。見掛は比表面積の大きさが反
応容器の大きさに貢献出来る大きさであることがこの場
合の49+−徴である。
Alumina is gold that forms an uneven phase network of foam metal)
The carrier plate was in strong contact with the t-jS and satisfied the purpose. Apparent specific surface area The metal that forms the network is
The diameter of the pores was SO~100μ, which was large enough to allow the reactant to flow sufficiently. In this case, the apparent specific surface area is large enough to contribute to the size of the reaction vessel.

3)金ハネ織布を触媒支持体とする場合高い空隙率(t
o〜り0Ll))を得るために、loμの近頃径でio
〜56 ?72...長さの金属繊維を開繊機にがけて
錦秋にしたものを所要の厚さに圧縮し、焼結した不織布
を用いる場合である。
3) High porosity (t
In order to obtain o~ri0Ll)), io
~56? 72. .. .. In this case, a nonwoven fabric is used, which is made by passing a length of metal fiber through a spreader to make a brocade, compressing it to the required thickness, and sintering it.

例えは、ステンレスの線径≠〜にμの繊維を用いて、空
隙率10係、空隙径約l乃至ioμ、最低厚さSOμ程
度の不織布が市販で得られるが、この発明の目的に使用
するだめには金属繊維のM「面は平滑でなく、比表面の
大きいことが望甘しく、IJiを酸化した繊維を還元し
たものを不織布とした多孔性金属繊維マットをこの発明
の実験では使用した。
For example, a nonwoven fabric with a porosity of 10, a pore diameter of about 1 to ioμ, and a minimum thickness of about SOμ can be obtained commercially by using stainless steel fibers with a wire diameter of ≠ μ. To avoid this, it is desirable that the surface of the metal fiber M is not smooth and has a large specific surface, so in the experiment of this invention, a porous metal fiber mat made of a non-woven fabric made of reduced IJi oxidized fiber was used. .

前記l)、2)と同様な方法で活性アルミナを担描出来
た。この場合、熱伝導率がl)、2)に比べ、比較的高
いこと、支持骨格の厚さく膜厚)が薄く出来自由に選べ
ること、1m//rrL厚さ当υ数700段配列された
深層構造であるため担体粒子の保持力が勝れていること
、柔軟性かあって、触媒の異型器壁への形状対応に勝れ
ていること等が特徴である。
Activated alumina could be coated in the same manner as in 1) and 2) above. In this case, the thermal conductivity is relatively high compared to 1) and 2), the thickness of the support framework (film thickness) is thin and can be freely selected, and 700 stages of 1 m//rrL thickness equivalent υ are arranged. Its deep structure allows it to hold the carrier particles better, and its flexibility allows it to better adapt to the shape of the catalyst on irregularly shaped vessel walls.

以上特徴ある触媒支持体の応用について述べたが、触媒
物質の担持については/)1.2)及び3)に例示した
活性アルミナから成る触媒担体層に触媒全組例えば、白
金(pt)を担持する方法は、一般には塩化白金酸(H
,Ptc16−4HzO)の水溶液浸漬法が用いられる
が、シリカアルミナ担体層に例えばPdを担持する場合
は、先づ担体のプロトン酸点をNH4+型にするため+ に、0.INのアンモニア水溶液に浸漬し、余剰N H
4を洗滌除去乾燥後、担持せんとする量に相当する〔P
t1(NHs)4〕C1*をo、 o t IAQ 陣
程度の濃度にした水溶液中に浸漬し数日間放置する。c
l−を洗滌除去後乾燥後、水素気流中で300 Cにお
いて≠〜j時間還元する方法もある。
The application of the characteristic catalyst support has been described above, but regarding the support of the catalyst material, the entire catalyst set, for example, platinum (PT), is supported on the catalyst support layer made of activated alumina as exemplified in /) 1.2) and 3). The method generally uses chloroplatinic acid (H
, Ptc16-4HzO) is used, but when supporting, for example, Pd on a silica-alumina carrier layer, first add 0. Immerse in aqueous ammonia solution of IN to remove excess N H
After washing, removing and drying 4, the amount corresponding to the amount to be supported [P
t1(NHs)4]C1* is immersed in an aqueous solution with a concentration of o, o t IAQ and left for several days. c.
There is also a method of washing and removing l-, drying, and then reducing in a hydrogen stream at 300 C for ≠ to j hours.

また、乾式による方法として前述のイオンプレーテング
方法がl)1.2)、3)に例示した触媒支持体に固着
した担体への触媒物質の相持法として適用出来る。
Further, as a dry method, the above-mentioned ion plating method can be applied as a method for supporting a catalyst substance onto a carrier fixed to a catalyst support as exemplified in 1), 1.2), and 3).

触媒物質として白金属金軌を例として述べだが、200
−.260 C以下の活性をさ程必要としない場合は、
ニッケル、鉄、マンガン等のベースメタル系のものも使
用出来る。
As an example of platinum metal gold as a catalyst material, 200
−. If activity below 260 C is not required,
Base metals such as nickel, iron, and manganese can also be used.

触媒活性を助長し、触媒支持体に触媒物質を強固に接着
するだめの触媒担体として、活性アルミナを例とし、固
着する方法として、支持体を活性アルミナのスラリーに
浸漬又は混練して支持体に付着した後、乾燥、焼成する
方法について述べたが、浸漬時の支持体表面の空気の残
溜による影響はさけられない。そのため、との発明では
支持体上で活性アルミナを合成する方法を開発l〜だ。
Activated alumina is used as an example of a catalyst carrier that promotes catalytic activity and firmly adheres the catalyst substance to the catalyst support.As a method of adhesion, the support is immersed or kneaded in a slurry of activated alumina to form the support. Although the method of drying and baking after adhesion has been described, the influence of air remaining on the surface of the support during dipping cannot be avoided. Therefore, in his invention, he developed a method for synthesizing activated alumina on a support.

支持体を硫酸アルミニウム水溶液中に浸漬しておき、脱
気した後、アルミナ酸す) IJウム水溶液を遂次添加
して、加水分解反応により丈長体上で水酸化アルミニウ
ムを合成し、これを弘soC〜700 ’Cで焼成して
活性アルミナに?p成する方法である。力f」水分解と
焼成の条件を選定することによシある範囲内で任意の性
状の活性アルミナを得ることが出来た。
The support was immersed in an aqueous solution of aluminum sulfate, and after degassing, an aqueous solution of alumina was successively added to synthesize aluminum hydroxide on the long body through a hydrolysis reaction. HirosoC ~ 700'C firing to activated alumina? This is a method of forming p. By selecting the water decomposition and firing conditions, it was possible to obtain activated alumina with arbitrary properties within a certain range.

触媒担体としてアルミナの他、シリカアルミナ、シリカ
等が用いられてもよい。
In addition to alumina, silica alumina, silica, etc. may be used as the catalyst carrier.

また、さ程高い活性を必要としない場合は触媒担体を省
略してもよい。
Further, if very high activity is not required, the catalyst carrier may be omitted.

反応器壁を支持体とする触媒 活性r−アルミナに5%のPtを担持したよりな担体付
白金属触媒にシリコン樹脂、アルミナセメントのような
、その触媒が使用される反応温度で熱に耐え触媒粒子間
及び粒子と器壁間の結合効果を保ちながら、且つ、触媒
粒子との間で通気性を保ち得る性状の接着剤(結合剤)
を混練し、塗着可能力状態にした剤を造り、これを反応
器壁に塗着、装着した後、熱処理あるいはキユアリング
等の固着処理を施して触媒層を形成するものである。
Catalytically active r-alumina with 5% Pt supported on the reactor wall, platinum metal catalyst with silicone resin, alumina cement, etc., which can withstand heat at the reaction temperature at which the catalyst is used. Adhesive (binder) with properties that can maintain the bonding effect between catalyst particles and between particles and vessel walls, as well as maintain air permeability between catalyst particles.
The catalyst layer is formed by kneading the ingredients to make a coating-enabled agent, which is applied and attached to the reactor wall, and then subjected to a fixing treatment such as heat treatment or curing to form a catalyst layer.

この方法のl特徴は、器壁が即触媒層となるため熱伝導
性がよく、また触媒層の形成がきわめて簡便々ることに
ある。
The feature of this method is that the vessel wall immediately becomes a catalyst layer, so it has good thermal conductivity, and the catalyst layer is extremely easy to form.

この方法の例示を次に述べる。An example of this method is given below.

にしたものに市販の白金(j %)アルミナ触媒を30
70%(重量比)の比で混練し、チクソトロビック状態
にして粗面加工後清滌処理したガソリンエンジンのピス
トン・ヘッド及びシリンダー・ヘッドに約200μの厚
さに塗着、加圧圧縮し3〜7日間大気中で養成し、組合
を充分に行った後330−44!OCに表面を加熱処理
した。縮合物は多孔質である上に熱処理でCaS基の一
部が分解するため一層多孔状態となシ、通気性があった
A commercially available platinum (j%) alumina catalyst was added to the
The mixture was kneaded at a ratio of 70% (by weight), brought to a thixotropic state, roughened and cleaned, then applied to a thickness of approximately 200μ on the piston head and cylinder head of a gasoline engine, and compressed under pressure. 330-44 after being trained in the atmosphere for 3 to 7 days and fully formed! The surface of the OC was heat treated. In addition to being porous, the condensate became even more porous and breathable because some of the CaS groups decomposed during heat treatment.

この触媒層を取シつけた1100 ccエンヂンを搭載
した自動車を運転した結果、良効果があった。
When driving a car equipped with a 1100 cc engine equipped with this catalyst layer, good results were found.

走行試駆をtooo時間行った後触媒層を点検したが全
く変化はしなかった。
After testing for too long, I checked the catalyst layer, but there was no change at all.

コ)アルミナセメントに対して骨材として30%の10
0メツシユ以下の硼砂を混合した結合剤に参〇−の水を
加えて混練したものにl)と同様の触媒を加えて更に混
練し固練シコンクリートの状態にしたものを採用して良
効果をq4+た。
j) 30% 10 as aggregate for alumina cement
A good effect was achieved by using a binder mixed with borax of less than 0 mesh, mixed with 300 water, and then added with the same catalyst as in l) and further kneaded to form solid concrete. q4+.

触媒層の表面は多孔性が保たれ、層は健全であった。捷
た、耐久性も充分にあった。
The surface of the catalyst layer remained porous and the layer was sound. It was sturdy and durable enough.

、触媒の反応器壁への取シ付は法 前記の例で示しだ「板状金属型触媒」は所謂触媒素体と
してML’l 整しておき、反応器壁に取シ付けて使用
される。
The mounting of the catalyst on the reactor wall is shown in the example above.The "plate metal type catalyst" is used by preparing the ML'l as a so-called catalyst element and mounting it on the reactor wall. Ru.

また、「多孔性の触媒支持体をもつ触媒」も同様である
The same also applies to "a catalyst having a porous catalyst support."

【図面の簡単な説明】[Brief explanation of drawings]

第7図は内燃機関としてガソリンエンジンを用いた場合
の一実施例の縦断面図、第2図は内燃機関としてディー
ゼルエンヂンを用いた場合の縦断面図、第3図工はこの
発明を施した反応容器の縦断面図、第3図■は第3図工
の拡大横断面図、第μ図はこの発明を施した回転型熱交
換機の説明斜視図を示す。 図中同一符号は同一部分または均等部分を示し、(1)
は内燃機関、(2)は反応器壁、+31 ii触媒層、
(4)は竪上下封板、(7)は排出管、(8)は排出室
、(9]は導入管、α1は導入室、(111は蓄熱型反
応器、aυは器用、aっは回転胴、Q3は蓄熱壁、Iは
仕切部、α9は放熱部を示す。 特許出願人(発明者)    萩   野   茂  
 雄第1図 第2図 第3図I 第3図■ 第q図
Fig. 7 is a longitudinal sectional view of an embodiment in which a gasoline engine is used as the internal combustion engine, Fig. 2 is a longitudinal sectional view in the case where a diesel engine is used as the internal combustion engine, and Fig. 3 is a longitudinal sectional view of an embodiment in which a gasoline engine is used as the internal combustion engine. FIG. 3 is an enlarged cross-sectional view of FIG. 3, and FIG. 3 is an explanatory perspective view of a rotary heat exchanger according to the present invention. The same reference numerals in the figures indicate the same or equivalent parts, (1)
is the internal combustion engine, (2) is the reactor wall, +31 ii catalyst layer,
(4) is a vertical sealing plate, (7) is a discharge pipe, (8) is a discharge chamber, (9] is an introduction pipe, α1 is an introduction chamber, (111 is a heat storage type reactor, aυ is dexterous, and a In the rotating body, Q3 indicates the heat storage wall, I indicates the partition, and α9 indicates the heat dissipation section. Patent applicant (inventor) Shigeru Hagino
Male Figure 1 Figure 2 Figure 3 Figure I Figure 3 ■ Figure q

Claims (1)

【特許請求の範囲】 (1)0反応器壁を通して熱貫流が行われる往復動内燃
1121&関の反応器壁内面に、蓄熱した熱を取去る触
媒層を設けていることを特徴とする熱交換が可能な反応
器における器壁型触媒体。 (21,前記融媒層は反応器壁の一部または全部に直接
形成するか或(t」、固着して形成している特許請求の
範囲第1項記載の熱交換が可能な反応器における器壁型
触媒体。 (3)、下(IID壁の導入溝を通して被反応物質が導
入され、上側壁の排出孔を経てプロダクトが導出される
ように(1゛を成L7た竪形シェルの内側に、熱媒体を
下側から導入させて上部に排出させる複数の熱媒体管を
樹立させてフェルアンドチューブ型の反応容器が構成さ
れているものであって、その複数の熱媒体管の外周壁に
蓄熱した熱を取去る触媒が設けられているととを%徴と
する熱交換が可能な反応器における器壁型か媒体。 (4)、前記竪形シェルは、上下開口を封板にて封塞さ
せていて、その上下封板の上下側に、上部に排出管を連
通した排出室と、下部に熱媒体導入管を連通させた熱媒
体導入室とが封塞して設けられている特許請求の範囲第
3項記載の熱ダ換が可能な反応器における器壁型触媒体
。 (5)、前記触媒層は熱媒体管の外周壁に直接形成する
か、または固着するかして形成している特許請求の範囲
第3項記載の熱交換が可能な反応器における器壁型触媒
体。 (6)、−側から可燃稀薄ガスを装入し、他側から排出
させる式の燃焼器匣内に、熱交換器胴が回転自在に1静
架され、その熱交換器胴内に一側から導入した低温空気
を他側から排出し、その際に熱交換器胴壁の蓄熱によっ
て内部を流れる低温空気を高温空気に熱交換させるよう
にして熱交換が可能な反応器の熱交換胴の幕熱壁の外面
に、その可燃稀薄ガスの燃焼によって蓄熱した熱を取去
る触媒層を設けていることを特徴とする熱交換が可能な
反応器における器壁型触媒体。
[Claims] (1) A heat exchanger characterized in that a catalyst layer for removing accumulated heat is provided on the inner surface of the reciprocating internal combustion reactor wall in which heat is passed through the reactor wall. A wall-type catalyst body in a reactor capable of (21. In the reactor capable of heat exchange according to claim 1, wherein the melting medium layer is formed directly or fixedly formed on a part or all of the reactor wall. Vessel wall type catalyst body. (3) A vertical shell of L7 forming 1゛ so that the reactant is introduced through the introduction groove of the lower (IID wall) and the product is taken out through the discharge hole of the upper side wall. A Fell-and-Tube type reaction vessel is constructed by establishing a plurality of heat medium pipes inside the heat medium pipes for introducing the heat medium from the bottom and discharging the heat medium to the top, and the outer periphery of the heat medium pipes is A vessel wall type or medium in a reactor capable of heat exchange with a catalyst that removes heat stored in the wall. (4) The vertical shell has upper and lower openings sealed with plates. The upper and lower sides of the upper and lower sealing plates are sealed with a discharge chamber with a discharge pipe in communication with the upper part and a heat medium introduction chamber with a heat medium introduction pipe in communication with the lower part. A vessel wall type catalyst body in a reactor capable of heat exchange according to claim 3. (5) Is the catalyst layer formed directly on the outer circumferential wall of the heat transfer pipe or is it fixed? A vessel wall-type catalyst body in a reactor capable of heat exchange according to claim 3, which is formed by: (6) A system in which combustible dilute gas is charged from the - side and discharged from the other side. A heat exchanger shell is rotatably mounted in the combustor box of the combustor, and the low-temperature air introduced into the heat exchanger shell from one side is discharged from the other side. A catalyst is installed on the outer surface of the curtain heat wall of the heat exchange cylinder of the reactor, which is capable of heat exchange by exchanging low temperature air flowing inside with high temperature air due to heat storage, and removes heat stored by combustion of the flammable dilute gas. A wall-type catalyst body for a reactor capable of heat exchange, characterized by having layers.
JP57199757A 1982-11-16 1982-11-16 Wall type catalyst in heat exchangeable reaction device Pending JPS5990714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57199757A JPS5990714A (en) 1982-11-16 1982-11-16 Wall type catalyst in heat exchangeable reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57199757A JPS5990714A (en) 1982-11-16 1982-11-16 Wall type catalyst in heat exchangeable reaction device

Publications (1)

Publication Number Publication Date
JPS5990714A true JPS5990714A (en) 1984-05-25

Family

ID=16413114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57199757A Pending JPS5990714A (en) 1982-11-16 1982-11-16 Wall type catalyst in heat exchangeable reaction device

Country Status (1)

Country Link
JP (1) JPS5990714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007006784A1 (en) * 2005-07-11 2007-01-18 Siemens Aktiengesellschaft Catalytic converter system for an internal combustion engine and method for producing said system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507910A (en) * 1973-05-29 1975-01-27
JPS5115515A (en) * 1974-07-29 1976-02-07 Komatsu Mfg Co Ltd KANMAISETSUSOCHI
JPS5755317A (en) * 1980-09-20 1982-04-02 Daikin Ind Ltd Combustor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507910A (en) * 1973-05-29 1975-01-27
JPS5115515A (en) * 1974-07-29 1976-02-07 Komatsu Mfg Co Ltd KANMAISETSUSOCHI
JPS5755317A (en) * 1980-09-20 1982-04-02 Daikin Ind Ltd Combustor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007006784A1 (en) * 2005-07-11 2007-01-18 Siemens Aktiengesellschaft Catalytic converter system for an internal combustion engine and method for producing said system

Similar Documents

Publication Publication Date Title
EP2293002A2 (en) Heat Accumulation Element
EP1371406B1 (en) Honeycomb structural body
US3920583A (en) Supports for catalyst materials
JP2008200675A (en) Thermal spray process for adhering catalyst material to metallic substrate
KR20020070363A (en) Catalytic devices
WO2008035652A1 (en) Catalyst for burning carbon-containing substance, process for production of the catalyst, material having catalyst carried thereon, and process for production of the material
JPH04280087A (en) Honeycomb heater
JPH04241715A (en) Resistance adjusting type heater
WO1998042963A1 (en) Exhaust emission control catalyst, exhaust emission control catalyst manufacturing method, exhaust emission control filter, exhaust emission control filter manufacturing method, and exhaust emission control apparatus
KR100719484B1 (en) Compact Steam Reformer Utilizing Metal-Monolith-Washcoated Catalyst and Preparation Method of Hydrogen Gas Using The Catalyst
EP0193701B1 (en) Method of carrying gamma-alumina by porous ceramic structure
CN102658138A (en) Aluminum-plated metal carrier dehydrogenation catalyst and preparation method thereof
JPS5990714A (en) Wall type catalyst in heat exchangeable reaction device
CN210366978U (en) Methanol reforming hydrogen production reactor
CN102658168A (en) Dehydrogenation catalyst taking Fe-Cr-Al alloy as metal carrier and preparation method thereof
JPS62121616A (en) Separating membrane of hydrogen gas
JP2023017750A (en) Ceramic honeycomb structure for methanation reaction catalyst carrier and method for manufacturing the same
RU2546115C2 (en) Catalytic active coating of ceramic cellular bodies, metal surfaces and other catalyst-carriers for systems for purification of spent air and combustion systems
JPH01142208A (en) Filter for collecting diesel particulate
JPS6012136A (en) Coating and supporting method of monolithic carrier
JP2005308385A (en) Gas heater
RU2745741C1 (en) Method for producing catalyst and ammonia oxidation catalyst itself
RU2256861C2 (en) Method of creating of working medium flow and rotor-type power-transforming device for realization of the method
JPH10280950A (en) Diesel exhaust emission controlling catalyst
JPH02169007A (en) Particulate collecting filter