JPS599036A - Method of coating cylindrical metallic shape with thermoplastic synthetic resin - Google Patents

Method of coating cylindrical metallic shape with thermoplastic synthetic resin

Info

Publication number
JPS599036A
JPS599036A JP58114114A JP11411483A JPS599036A JP S599036 A JPS599036 A JP S599036A JP 58114114 A JP58114114 A JP 58114114A JP 11411483 A JP11411483 A JP 11411483A JP S599036 A JPS599036 A JP S599036A
Authority
JP
Japan
Prior art keywords
heated
coated
resin
temperature
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58114114A
Other languages
Japanese (ja)
Inventor
ヴアルタ−・シユトウツケ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Publication of JPS599036A publication Critical patent/JPS599036A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/148Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies using epoxy-polyolefin systems in mono- or multilayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/151Coating hollow articles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、特許請求の範囲第1項の概念に従って、熱可
塑性合成樹脂、特にポリエチレンで、金属成形物、特に
鋼鉄管を被覆する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The invention relates to a method for coating metal moldings, in particular steel tubes, with a thermoplastic synthetic resin, in particular polyethylene, according to the concept of claim 1.

西独特許出願公告第1261431号で次のことが公知
である。すなわち、金属表面上に先ずエボオキシ樹脂/
硬化剤−混合物を塗布し、そして硬化させ、そしてその
上に火炎噴射銃で少量のポリエチレンを噴射し、エポオ
キシ膜が硬化した後にさらにポリエチレンを噴射する。
The following is known from West German Patent Application Publication No. 1261431: That is, first epoxy resin/
The curing agent-mixture is applied and cured, and a small amount of polyethylene is sprayed onto it with a flame jet gun, and more polyethylene is sprayed after the epoxy film is cured.

その際、金属表面の温度は100cを越えてはならない
。この発明の実施例によれば、エボオキシ樹脂膜の硬化
は最高60Cの温度で約24時間行なわれる。大企業に
おける鋼鉄の被覆は、処理量が大きいので、この方法は
エボオキシ樹脂の硬化時間が長いために不経済である。
In this case, the temperature of the metal surface must not exceed 100°C. According to an embodiment of the invention, curing of the epoxy resin film is carried out at a temperature of up to 60C for about 24 hours. Due to the large throughput of coating steel in large companies, this method is uneconomical due to the long curing time of the epoxy resin.

西独特許第1965802号によってポリエチレンで鋼
鉄管を被覆することは公知である。先ず鋼鉄管を作業温
度、好ましくは100C以上に加熱し、そしてこの温度
で網状構造になるエボオキシ樹脂の下塗り膜を形成させ
る。それに続いて直ちに硬化したエボオキシ樹脂膜の周
りにエチレン共重合体の層を押し出し成形で巻き付け、
そしてこの周りにポリエチレンの層を押し出し成形して
巻き付ける。この際、最初の層はポリエチレン層の粘着
剤の役目をする。この場合もまた、処理量は、網目構造
にしたエボオキシ樹脂から生成した反応物を揮発される
のに必要な停止時間のために制限される。この方法は主
に約600m+以下の直径の管に適用される。
It is known from DE 1965802 to coat steel pipes with polyethylene. First, the steel tube is heated to a working temperature, preferably above 100C, and at this temperature an undercoat film of eboxy resin which becomes a network structure is formed. This is followed by extrusion wrapping a layer of ethylene copolymer around the cured epoxy resin membrane.
A layer of polyethylene is then extruded and wrapped around it. In this case, the first layer acts as an adhesive for the polyethylene layer. Again, throughput is limited by the downtime required to volatilize the reactants formed from the networked epoxy resin. This method is mainly applied to pipes with a diameter of about 600 m+ or less.

さらに、70〜90Cの温度の、そして感熱性内側膜を
有する鋼鉄管表面に硬化性エボオキシ樹脂混合物からな
る下塗り膜を形成し、その上に、エチレン共重合体の層
及びポリエチレン層を二重ホースの形状で押し出し成形
されることは公知である(西独特許第2222911号
)。
Furthermore, an undercoat film made of a curable eboxy resin mixture is formed on the surface of the steel tube at a temperature of 70-90C and has a heat-sensitive inner film, and on top of that, a layer of ethylene copolymer and a layer of polyethylene are coated with a double hose. It is known that extrusion molding is performed in the shape of (West German Patent No. 2222911).

被覆の完了後、管は3分間存続された後で室温に冷却さ
れる。その際、エポオキシ樹脂膜はまだ硬化が完了して
いない。硬化の完了は65%の湿度で、約24時間室温
で放置された彼達せられる。従って、多量の処理は多く
の場合障害となる。この方法の前述の性能事項から逸脱
したときは、硬化が著しく遅れるが、あるいは妨害され
る。
After completion of the coating, the tube is allowed to remain for 3 minutes before being cooled to room temperature. At this time, the epoxy resin film has not yet completed curing. Completion of curing is achieved by standing at room temperature for approximately 24 hours at 65% humidity. Therefore, large amounts of processing often become a hindrance. Deviations from the above-described performance parameters of the process significantly slow or otherwise impede curing.

さらに、西独特許第2257135号によって次のこと
は公知である。すなわち、被覆する鋼鉄管の表面を80
Cに加熱し、そして溶媒を含有するエポオキシ樹脂/硬
化剤−混合物を約100μmの厚さに静電塗装する。次
いで、この下塗り膜の上に、内側のエチレン共重合体層
及び外側のポリエチレン層からなる熱可塑性合成樹脂被
覆を形成させる。
Furthermore, the following is known from DE 2257135: In other words, the surface of the steel pipe to be coated is
C. and the epoxy resin/curing agent mixture containing the solvent is applied electrostatically to a thickness of approximately 100 μm. Next, a thermoplastic synthetic resin coating consisting of an inner ethylene copolymer layer and an outer polyethylene layer is formed on this undercoat film.

次いで、被覆した管を、水で40Cの平均管温度に冷却
する。続いて、管の心を電気誘導的に平均温度100C
に加熱する。その時に、管の表面温度は約240Cに達
する。この温度でエポオキシ樹脂下塗り膜は数秒間で硬
化する。続(・て、被覆した管を室温で冷却する。しか
じなカニら、押し出し成形されたホース状二重層を6〜
12mの長さの管に形成きせることは、この発明の実施
例に挙げられたホース状の層を形成する前の管の速度(
20m/miy+ ) 、膜厚及び管の温度の資料では
、エポオキシ樹脂/硬化剤−混合物から溶媒を揮発させ
るのに十分でな(・と云う点で困難性があることは多く
の場合証明されている。しかし、細片状の二重層で60
0 ms以上の直径を有する管を巻きつけて被覆するに
はこの方法は非常に適している。
The coated tube is then cooled with water to an average tube temperature of 40C. Next, the core of the tube was heated to an average temperature of 100C by electrical induction.
Heat to. At that time, the surface temperature of the tube reaches about 240C. At this temperature, the epoxy resin undercoat film will harden in a few seconds. Next, cool the coated tube at room temperature.
The formation of a 12 m long tube was determined by the speed of the tube before forming the hose-like layer mentioned in the embodiment of this invention (
20 m/miy+), film thickness and tube temperature documentation are often not sufficient to volatilize the solvent from the epoxy resin/curing agent mixture. However, the strip-shaped double layer
This method is very suitable for wrapping and coating tubes with a diameter of 0 ms or more.

本発明の問題点は、ホース状の二重層を管に被覆する公
知の方法を改良し、そして多量の処理を達成するために
、管、特に公称直径50〜500咽の管の被覆速度をよ
り早くする可能性を追求するにある。
The problem of the present invention is to improve the known method of coating tubes with hose-like double layers and to increase the coating speed of tubes, especially tubes with nominal diameters from 50 to 500 mm, in order to achieve high throughput. We are pursuing the possibility of speeding up the process.

本発明の問題点は、特許請求の範囲第1項記載の特徴に
よって解決される。有利な補足事項は実施態様項に記載
されている。
The problem of the invention is solved by the features of patent claim 1. Advantageous additions are described in the implementation section.

本発明の方法のパラメーター、特にエボオキン樹脂−下
塗りと熱可塑性合成樹脂被覆との間の層容量関係のパラ
メーターを厳守することによって、特殊のエボオキシ樹
脂の硬化に必要な熱量は、合成樹脂被覆の実質的な厚さ
と少くとも165CK加熱した温度から推測される。被
覆した管の追加の熱処理はもはや必要としない。
By strictly adhering to the parameters of the process of the invention, in particular those of the layer volume relationship between the evoxy resin-basecoat and the thermoplastic synthetic resin coating, the amount of heat required for the curing of the specific eboxy resin can be reduced to a substantial fraction of the synthetic resin coating. It is estimated from the thickness and the heating temperature of at least 165CK. Additional heat treatment of the coated tube is no longer required.

硬化は環境温度と相対湿度には無関係である。Curing is independent of environmental temperature and relative humidity.

本発明を次の実施例によってさらに詳細に説明する。The invention will be explained in more detail by the following examples.

感熱性内側膜の無い、長さ6m、直径150鰭の鋼鉄管
を電気誘導的に17(I?に加熱する。そのために、鋼
鉄管は20 m/minの速度で銹導コイルを通って移
動される。それに次いで、照射する赤外線を通って管は
20m/朋の速度で運ばれ、管の表面はさらに約200
Cに加熱される。続いて直ちK、粉末状のあらかじめ縮
合したエポキシ樹脂/硬化剤−混合物を使用し、30〜
50μmの膜厚になる量で静電塗装して膜を形成する。
A steel tube with a length of 6 m and a diameter of 150 fins, without a heat-sensitive inner membrane, is heated electrically inductively to 17 (I?). For this purpose, the steel tube is moved through a forging coil at a speed of 20 m/min. The tube is then transported at a speed of 20 m/h through the irradiating infrared light, and the surface of the tube is further exposed to about 200 m/h.
heated to C. Subsequently, using a powdered precondensed epoxy resin/curing agent mixture, 30~
A film is formed by electrostatic coating in an amount that gives a film thickness of 50 μm.

この際、エボオギシ樹脂/硬化剤−粉末混合物は、管表
面に溶融する。感熱性内側膜力;存在するために、管表
面を約110rKL力)カロ熱できないならば、溶融さ
せるエボオキシ樹脂/硬イヒ斉j−粉末混合物は、先ず
溶は合わずそして粘着しない膜が形成される。静電塗装
によってま&工らなエポキシ樹脂/硬化剤−膜が形成さ
れるので、管は第2のリング状の赤外線照射を通って2
0m/mixの速度で運ばれ、赤外線によって約20o
CK加熱される。これによって、感熱性内側膜が存在す
る場合にも密着した下塗り膜力;形成される。
At this time, the Eboogishi resin/curing agent-powder mixture is melted onto the tube surface. Heat-sensitive inner film force (approximately 110 rKL force on the tube surface) If it is not possible to heat the tube surface, the melting of the epoxy resin/hard heat-powder mixture will first occur, and a non-adhesive film will form. Ru. As the electrostatic coating forms a delicate epoxy resin/hardener film, the tube passes through a second ring of infrared radiation.
It is carried at a speed of 0m/mix and is heated by infrared light at about 20o.
CK is heated. This results in the formation of a cohesive undercoat film even when a heat-sensitive inner film is present.

赤外線照射によって、エポオキシ樹脂−下塗り膜から1
0秒以内に遊離の反応生成物75二揮発し、その時まで
下塗り膜の硬化は起らな〜・。赤外線照射の代りに、例
えば短波投射によってもエボオキシ樹脂−下塗り膜の加
熱をすることカニできる。第2の赤外線照射装置から出
た後に、エチレン共重合体及びポリエチレンの熱可塑性
二重ホースが管表面上に押し出し成形され、その際、1
65C〜190Cの温度で、エポオキシ下塗り膜より4
0倍多い層容量で行なわれる。次に、熱可塑性被捷物は
、1時間以内に無蓋の水浴及びその後の空気中放置でそ
の外側表面が50〜60Cまで冷却される。その際、鋼
鉄管の温度は約70〜90Cになる。この冷却によって
、下塗り膜の硬化が完了する。
1 from the epoxy resin-priming film by infrared irradiation.
The free reaction product 752 volatilizes within 0 seconds, and no curing of the undercoat film occurs until then. Instead of infrared irradiation, it is also possible to heat the epoxy resin-priming film by, for example, short-wave radiation. After exiting the second infrared radiation device, a thermoplastic double hose of ethylene copolymer and polyethylene is extruded onto the tube surface, with 1
4 from the epoxy base coat at a temperature of 65C to 190C.
This is done with 0 times more layer capacity. The thermoplastic article is then cooled to 50-60C on its outer surface within one hour in an open water bath and then left in the air. At that time, the temperature of the steel tube will be about 70-90C. This cooling completes the curing of the undercoat film.

本発明の方法によって得られる改良は、次の表によって
明らかである。
The improvements obtained by the method of the invention are evident from the following table.

エボオキシ樹脂ラッカー、歴青、セメント・モルタルあ
るいはその類似物のような感熱性防食剤の内側膜を有し
ている管に本発明は特に有利に使用することができる。
The invention can be used with particular advantage in tubes having an inner coating of heat-sensitive corrosion inhibitors such as eboxy resin lacquers, bitumen, cement mortars or the like.

このような管は、内側膜の損傷を避けるために、100
C以下の平均管温度に前もって加熱しなければならない
Such tubes should be rated at 100% to avoid damage to the inner membrane.
It must be preheated to an average tube temperature of less than C.

このことは、実施例で述べたよ5に2段階で有利に行な
われる。すなわち、先ず管は誘導コイルに導かれて約8
0Cに加熱され、続いて下塗りの直前に赤外線照射で表
面部分だけが約110GK加熱される。2段階加熱の趣
旨は、許容される平均管温度を越えプ、cいようにする
こと及び管の冷却の際運び去られる熱量をできるだけ少
なくするにある。
This is advantageously done in two steps as described in the example. That is, first the tube is guided through an induction coil and
It is heated to 0C, and then only the surface area is heated to about 110GK by infrared irradiation just before undercoating. The purpose of the two-stage heating is to exceed the permissible average tube temperature and to minimize the amount of heat carried away during tube cooling.

Claims (1)

【特許請求の範囲】 1、 下塗りするために、145C〜155Cの温度で
、50〜7゛0分以内で硬化する粉末状の前もって縮合
したエボオキシ樹脂/硬化剤−混合物を、30μm〜5
0μmの膜厚を生じる量で少くとも80Cに加熱した棒
状の金属成形物上に塗布し、続いて、下塗り膜を融解す
るため及び/又は遊離の反応生成物を揮発させるために
、外部から作用する熱源を前記成形物が通過して約20
0Cに加熱され、次いで、こ9加熱した下塗り膜上にホ
ース状の二重層を、そのエチレン共重合部分は前もって
乾燥されているが、165c〜190Cの温度で、そし
て前記下塗り膜より少くとも36倍多い層容量で押出し
成形し、そして、前記下塗り膜を硬化させるために、前
記熱可塑性被覆物は、その外側表面の温度が50C〜6
0Cまでで約1時間以内の加熱に制限され、そして、室
温まで冷却されることを特徴とする加熱した棒状の金属
成形物に先ず下塗りとしてエボオキシ樹脂/硬化剤−混
合物を塗布し、次いで直ちK、エチレン共重合体からな
る粘着物の役目をする層及びその上に設けられる熱可塑
性合成樹脂の層を同時に二重ホースの形で押し出し成形
して熱可塑性合成樹脂被覆をする熱可塑性樹脂、特にポ
リエチレンで棒状の金属成形物、特に鋼鉄管を被覆する
方法。 2、 人工物質、歴青、セメント−モルタルあるいはそ
れらに類似の感熱性内側層を有する被覆される前記成形
物が、下塗りされる前に100C以下に加熱されること
を特徴とする特許請求の範囲第1項記載の方法。 3 被覆される前記成形物が、先ず約80Cに加熱され
、そして下塗りされる直前に表面の部分が赤外線照射で
それよりさらに約20〜30C高く加熱されることを特
徴とする特許請求の範囲第2項記載の方法。 4 感熱性内側層が無い被覆される前記成形物が、下塗
りされる前に少くとも150cに加熱されることを特徴
とする特許請求の範囲第1項記載の方法。 5、 被覆される前記成形物が、先ず約170tl’に
加熱され、そして下塗りの直前に表面部分が赤外線照射
でそれよりさらに約20〜30c高く加熱されることを
特徴とする特許請求の範囲第4項記載の方法。 6、下塗りされたエボオキシ樹脂/硬化剤−混合物が赤
外線照射で外部から加熱されることを特徴とする特許請
求の範囲第1項ないし第5項のいずれかに記載の方法。 7、 エチレン共重合体が前記成形物に被覆される前に
、約70cで約1.5時間乾燥されることを特徴とする
特許請求の範囲第1項記載の方法。
Claims: 1. For basecoating, a powdered precondensed epoxy resin/curing agent mixture, which cures within 50 to 70 minutes at a temperature of 145 to 155 C, is applied to a coating of 30 μm to 5 μm.
applied on a bar-shaped metal molding heated to at least 80 C in an amount resulting in a film thickness of 0 μm, followed by external action to melt the primer film and/or to volatilize free reaction products. The molded article passes through a heat source of about 20
0C and then apply a hose-like double layer onto the heated basecoat, the ethylene copolymerized part of which has been previously dried, at a temperature of 165C to 190C and at least 36C above the basecoat. In order to extrude with double the layer volume and cure the basecoat, the thermoplastic coating is heated at a temperature of 50C to 6C on its outer surface.
A heated rod-shaped metal molding, characterized in that it is limited to heating up to 0 C for about 1 hour and then cooled to room temperature, is first coated with the eboxy resin/curing agent mixture as a primer and then immediately coated with the eboxy resin/curing agent mixture. K, a thermoplastic resin coated with a thermoplastic synthetic resin by simultaneously extruding a layer made of an ethylene copolymer that acts as an adhesive and a thermoplastic synthetic resin layer provided thereon in the form of a double hose; A method of coating rod-shaped metal moldings, especially steel tubes, with polyethylene. 2. Claim characterized in that the molding to be coated with a heat-sensitive inner layer of artificial material, bitumen, cement-mortar or similar is heated to below 100C before being primed. The method described in paragraph 1. 3. The molded article to be coated is first heated to about 80C, and immediately before being primed, the surface area is further heated to about 20-30C using infrared irradiation. The method described in Section 2. 4. Process according to claim 1, characterized in that the moldings to be coated without a heat-sensitive inner layer are heated to at least 150C before being primed. 5. The molded article to be coated is first heated to about 170 tl', and just before priming the surface area is further heated to about 20-30 cm above that with infrared radiation. The method described in Section 4. 6. Process according to any one of claims 1 to 5, characterized in that the primed eboxy resin/curing agent mixture is heated externally with infrared radiation. 7. The method of claim 1, wherein the ethylene copolymer is dried at about 70°C for about 1.5 hours before being coated on the molding.
JP58114114A 1982-07-06 1983-06-24 Method of coating cylindrical metallic shape with thermoplastic synthetic resin Pending JPS599036A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE3225646 1982-07-06
DE32256469 1982-07-06
DE32475101 1982-12-20

Publications (1)

Publication Number Publication Date
JPS599036A true JPS599036A (en) 1984-01-18

Family

ID=6167987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58114114A Pending JPS599036A (en) 1982-07-06 1983-06-24 Method of coating cylindrical metallic shape with thermoplastic synthetic resin

Country Status (3)

Country Link
JP (1) JPS599036A (en)
BE (1) BE897218A (en)
DD (1) DD231313A5 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630840A (en) * 1979-08-22 1981-03-28 Dainippon Toryo Co Ltd Coating method of plastic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630840A (en) * 1979-08-22 1981-03-28 Dainippon Toryo Co Ltd Coating method of plastic

Also Published As

Publication number Publication date
BE897218A (en) 1983-11-03
DD231313A5 (en) 1985-12-24

Similar Documents

Publication Publication Date Title
US3503823A (en) Method for coating metal substrates with thermoplastic resins
NL8302411A (en) METHOD FOR COATING BAR-METAL FORM BODIES WITH THERMOPLASTIC PLASTIC
US4244985A (en) Method of curing thermosetting plastic powder coatings on elongated metallic members
US4685985A (en) Method of enveloping metal hollows with polyethylene
US4273798A (en) Process for coating metal tubes with plastic materials
JPH0139904B2 (en)
EP3287211B1 (en) Method for producing heat sink
JPS599036A (en) Method of coating cylindrical metallic shape with thermoplastic synthetic resin
JPS5874336A (en) Manufacture of coated steel pipe
JPS58191724A (en) Coating of synthetic resin molded article
DE2257135A1 (en) Covering metal tubes with thermoplastic - using inductive heating on the tube and a thermoset adhesive layer
JPS5915370B2 (en) Exterior hardening method
JPS6146295B2 (en)
JP2004105949A (en) Method for applying no chromate coating on tubular article by fluidized bed dipping and applied tubular article
JPS57115938A (en) Method for manufacturing molding sand coated with unsaturated polyester resin
JPS6030547B2 (en) Manufacturing method of synthetic resin lined metal pipe
JPH06254481A (en) Production of release sheet
JP2712276B2 (en) Manufacturing method of lining tube
UA151993U (en) A way to increase the efficiency of polymer coating application
JPS6056536A (en) Preventing method of deformation
JP2989047B2 (en) Method and apparatus for roughening resin surface
JPS58160133A (en) Manufacture of steel pipe coated with plastic
US2897099A (en) Methyl cellulose coated polyester tape
JPS606769B2 (en) How to coat metal pipes
JPS599225B2 (en) Protective coating formation method