JPS5990365A - Manufacture of electrode for fuel cell or air cell - Google Patents

Manufacture of electrode for fuel cell or air cell

Info

Publication number
JPS5990365A
JPS5990365A JP57199987A JP19998782A JPS5990365A JP S5990365 A JPS5990365 A JP S5990365A JP 57199987 A JP57199987 A JP 57199987A JP 19998782 A JP19998782 A JP 19998782A JP S5990365 A JPS5990365 A JP S5990365A
Authority
JP
Japan
Prior art keywords
electrode
air
iron
compound
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57199987A
Other languages
Japanese (ja)
Other versions
JPH04345B2 (en
Inventor
Toshiro Hirai
敏郎 平井
Akihiko Yamaji
昭彦 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57199987A priority Critical patent/JPS5990365A/en
Publication of JPS5990365A publication Critical patent/JPS5990365A/en
Publication of JPH04345B2 publication Critical patent/JPH04345B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To provide an electrode for a fuel cell or an air cell which has a high energy density and in which small polarization develops, almost no voltage reduction is caused within the range of large current density and a large current can be obtained by adding an iron phthalocyanine polymer, which is the macromolecular compound of a transition metal complex, as a catalyst for a positive electrode. CONSTITUTION:An electrode current-collector material such as graphite, acetylene black, active carbon or carbon fiber is mixed with an iron compound, urea and at least one compound selected from among pyromellitic dianhydride, pyromellitoamide and pyromellitonitrile. As the above iron compound, a compound reacting with at least one of pyromellitic dianhydride, pyromellitoamide and pyromellitonitrile to produce an ion phthalocyanine polymer, such as ferrous chloride, ferric chloride or ferrous sulfate, is employed. Thus prepared mixture is subjected to reaction under an atmosphere of a nonreactive gas such as argon gas so as to synthesize an iron phthalocyanine polymer supported on the above electrode current-collector material, thereby obtaining an electrode material. In assembling a cell by use of the air electrode of this invention, it is positioned in such a manner that an electrode material layer 1 contacts electrolyte and a porous hydrophobic layer 3 contacts gas. As a result, a three-phase interface consisting of electrolyte, gas and electrode powder is formed in the electrode material layer 1.

Description

【発明の詳細な説明】 本発明は、分・趣が小さく、犬戒流の収得を可能にする
熱料電池または、空気電池用の正返電嘱、さらに詳細に
は燃料電池または空気電池の空気極または酸素極におい
て、該硫極を作製するのに触媒合成用反応吻實と電祇構
成材料とを混合し、非1− 反応性ガス下で加熱して触媒合成を行い峡フタロシアニ
ンポリマーを合成と同時に直接構成材料に担持させた新
規な上記成極の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is small in size and design, and provides a positive return voltage for a thermal battery or an air battery, which is small in size and makes it possible to obtain an electric current. At the air electrode or oxygen electrode, to prepare the sulfur electrode, the reaction mixture for catalyst synthesis and the electrolyte constituent materials are mixed and heated under a non-reactive gas to synthesize the catalyst and produce the phthalocyanine polymer. The present invention relates to a novel method for manufacturing the above-mentioned polarization, in which the polarization is directly supported on the constituent material at the same time as synthesis.

従来、燃料電池、空気電池用の空気極または酸素極に用
いる触媒については、池々の提案がなされている。
Conventionally, many proposals have been made regarding catalysts for use in air electrodes or oxygen electrodes for fuel cells and air cells.

すなわち、燃料離性用の空気極触媒又は酸素極触媒とし
ては、網、銀、金、白金、パラジウム等の金属類、タン
グステンブロンズ、鉄又は鋼フタロシアニン、活性炭及
びリチウムをドープした酸化ニッケル等が仰られ、又、
空気電池用の空気極触媒としては、白金、パラジウム、
ルテニウム及び銀等の賞金属類、銀と水銀及びルテニウ
ムと金等の合金類、マンガン及びオスミウム等の遷移金
属の酸化物類及びNiF”e204 +  C0Fe2
O4+N1CrzO4及びC0A4044のスピネル酸
化物類が知られている。
That is, as air electrode catalysts or oxygen electrode catalysts for fuel separation, metals such as mesh, silver, gold, platinum, palladium, tungsten bronze, iron or steel phthalocyanine, activated carbon, and nickel oxide doped with lithium are used. Also,
Platinum, palladium,
Prize metals such as ruthenium and silver, alloys of silver and mercury and ruthenium and gold, oxides of transition metals such as manganese and osmium, and NiF”e204 + C0Fe2
The spinel oxides O4+N1CrzO4 and C0A4044 are known.

しかしながら、従来技術におけるこれらの触媒のうち、
賞金属類は高1lIiなため経済的でなく、それ以外の
ものは安価であるが、これを触媒として2− 用いた空気極又は酸素極はその分極が貴金属よね大きく
、父、大型流密IK、 li負峨におけるかなりの電位
低下が避けられない等、その藏極特性が十分に良好でな
く、ひいては、このような電極を組み込んだ燃料iii
池及び空気電池において、火′醒流が収得できないとい
う欠点があった。
However, among these catalysts in the prior art,
Prize metals are not economical because they have a high 1lIi value, and other metals are cheap, but air electrodes or oxygen electrodes that use these as catalysts have a higher polarization than precious metals, and large-sized flow-tight IKs. , the electrode characteristics are not sufficiently good, such as a considerable potential drop at the li negative peak, and as a result, fuels incorporating such electrodes cannot be used.
In pond and air batteries, there was a drawback that a fire current could not be obtained.

本発明はこのような現状に始みてなされたものであり、
その目的は、分極が小さく、大電流密度領域においても
電位低下が殆んど起こらず大電流の取得がL=T能であ
る高エネルギー密)Wの燃料′rば池、空気藏池用市i
水を提供することである。
The present invention was first made in response to the current situation, and
The purpose of this is to use high energy density (W) fuel, air and air ponds with low polarization, almost no potential drop even in the high current density region, and L=T ability to obtain large currents. i
It is to provide water.

本発明につき概説すれば、本発明の燃料′電池及び空気
鑞池用電極は、正極が触媒として遷移金属錯体の高分子
化合物である鉄フタロシアニンポリマーを含有し、その
含有方法が、反応物質と成極集電材料とを混合し、これ
を窒素ガス、アルゴンガス等の非反応性ガス雰囲気下で
合成すると同時に担持させることに’l’j徴とするも
のである。
To summarize the present invention, in the fuel cell and air annealing electrode of the present invention, the positive electrode contains an iron phthalocyanine polymer, which is a polymeric compound of a transition metal complex, as a catalyst, and the method of containing the iron phthalocyanine polymer is such that it becomes a reactant. The present invention is characterized in that it is mixed with a polar current collector material, synthesized in an atmosphere of a non-reactive gas such as nitrogen gas or argon gas, and simultaneously supported.

これまで、燃料電池および空気′電池用の空気極または
酸素極に触媒として」二記担持法による鉄フ3− タロシアニンポリマーを用いた例はない。本発明によれ
ば、イ啄に上記の合成同時相持法により鉄フタロシアニ
ンポリマーを含有させる新規な構成によね、後述するよ
うに従来の鉄フタロシアニンモノマーや従来方法による
鉄フタロシアニンポリマー相持の場合に比べて% ii
iへの触媒の相持工程を省略でき、かつ作製きれた市唖
分極を小さくし、大電流の取得を可能にするという優れ
た効果が得られる。
Up to now, there has been no example of using an iron 3-thalocyanine polymer by a two-step loading method as a catalyst in an air electrode or an oxygen electrode for a fuel cell or an air battery. According to the present invention, due to the novel structure in which the iron phthalocyanine polymer is contained in the iron phthalocyanine polymer by the above-described simultaneous synthesis method, compared to the conventional iron phthalocyanine monomer or the case where the iron phthalocyanine polymer is incorporated by the conventional method, as will be described later. %ii
It is possible to omit the process of supporting the catalyst to i, and to reduce the produced market polarization, thereby achieving the excellent effect of making it possible to obtain a large current.

本発明を(に詳しり、j9明する。The present invention will be explained in detail in (j9).

燃料電池は、負極活物質として水素ガス等を使用し、電
解質としてKOH,NaOH等のアルカリ屯解質、Na
C4KCt等の中性電解質、リン酸等の酸性電解質を使
用して構成され、また空気電池は負極活物質として亜鉛
、アルミニウム、マグネシウム、鉄、白金またはそれら
の合金前を閉用し、電解質として上記燃料五池用醒解質
と同じものを使用して構成される。
A fuel cell uses hydrogen gas etc. as a negative electrode active material, and an alkaline solution such as KOH or NaOH, or Na as an electrolyte.
The air battery is constructed using a neutral electrolyte such as C4KCt or an acidic electrolyte such as phosphoric acid, and the air battery uses zinc, aluminum, magnesium, iron, platinum, or an alloy thereof as the negative electrode active material, and the above as the electrolyte. It is constructed using the same material as the fuel used for five ponds.

本発明における電極は、上述の燃料電池、空気゛電池用
の正1函として用いられる。
The electrode in the present invention is used as a regular box for the above-mentioned fuel cells and air cells.

4− 前記電極の本体となる電極集電体材料は従来この種の電
極の材料として用いられるものであればいかなるもので
もよい。たとえば炭素粉末、グラファイト、アセチレン
ブラック、ケッチェンブラックEC,活性炭、炭素礒維
等の一種以上の炭素物質、および多孔質ニッケル′F!
極板等であることができる。
4- The electrode current collector material serving as the main body of the electrode may be any material conventionally used for this type of electrode. For example, one or more carbon substances such as carbon powder, graphite, acetylene black, Ketjenblack EC, activated carbon, carbon fiber, and porous nickel'F!
It can be an electrode plate or the like.

このような′11を極東電体材料に対し、ピロメリット
酸二無水物、ピロメリットアミド、ピロメリットニトリ
ルの一種以上の鉄化合・吻及び尿素を添加する。
Such '11 is added to Kyokuto Denshi material with one or more iron compounds of pyromellitic dianhydride, pyromellitamide, pyromellinitrile, and urea.

前述の鉄化合′吻としてはビロメリツ)d二無水物、ピ
ロメリットアミド、ピロメリットニトリルの一種以上と
反応し鉄フタロシアニンポリマーを生成するものであれ
ばいかなるものでもよい。たとえば塩化第−鉄、塩化第
二鉄、硫酸第一鉄であることができる。
The above-mentioned iron compound may be any compound as long as it reacts with one or more of biromellitic dianhydride, pyromellitamide, and pyromellinitrile to produce an iron phthalocyanine polymer. For example, it can be ferrous chloride, ferric chloride, ferrous sulfate.

前述の鉄化合物の混合叶は電極材料全体を基準として(
以下同じ)好ましくは0.35重tS以上である。0.
35重t%未満であると、本発明によ5− る効果、すなわち、従来に比し良好な性能の電池を得る
のが内錐となる。
The above-mentioned mixture of iron compounds is based on the entire electrode material (
(same below) preferably 0.35 fold tS or more. 0.
If it is less than 35 wt %, the inner cone will have the fifth effect of the present invention, that is, obtain a battery with better performance than the conventional one.

一方、ピロメリット酸二無水物、ピロメリットアミド、
ピロメリットニトリルの一種以上の添加量は好ましくは
10重敏係以上である。10重量係未満であると良好な
注αトの電池が得にくくなるからである。
On the other hand, pyromellitic dianhydride, pyromellitamide,
The amount of one or more pyromellinitrile added is preferably 10% by weight or more. This is because if it is less than 10% by weight, it becomes difficult to obtain a good battery.

まだ反応物質の一つである尿素は好ましくは0.06重
量φ以上添7Inする0、06重量係未満であると、@
N己鉄化合物、ピロメリット系化合物の場合と同様に、
本発明の効果を享受するのが1.N難となる。
Urea, which is still one of the reactants, is preferably 0.06 weight φ or more and less than 0.06 weight φ.
As in the case of N-iron compounds and pyromellitic compounds,
1. Enjoy the effects of the present invention. It will be difficult.

このような混合物に、任童にモリブデン酸アンモニウム
等の合成触媒を添刈1してもよい。
A synthetic catalyst such as ammonium molybdate may be added to such a mixture.

このような混合体を窒素、アルゴンガス等の非反応性ガ
スイ囲愈下において、反応させ、鉄フタロシアニンポリ
マーにけ成すると共に、前記屯他楽一本材料に相持せし
め、電極材料を形成せしめる。
Such a mixture is reacted under an atmosphere of a non-reactive gas such as nitrogen or argon gas to form an iron phthalocyanine polymer, which is then combined with the above-mentioned phthalocyanine material to form an electrode material.

このような構成及び担持の粂件としては、好ま6− しくけ300℃以上の温度で、40時間以内υ■熱して
行なわれる。300℃未満のン晶度では、鉄フタロシア
ニンポリマーが生成しに<<、合成に時間がかかりすぎ
、一方、40時間を超えると、経済的に不利であるから
である。
The structure and support are preferably carried out by heating at a temperature of 300° C. or higher for up to 40 hours. This is because if the crystallinity is less than 300°C, it takes too much time to synthesize the iron phthalocyanine polymer, while if it exceeds 40 hours, it is economically disadvantageous.

正J+(l 電極(d 、上記秩フタロシアニンポリマ
ーを含有した炭素・物質等の五極材料および撥水剤から
成る混合粉本をニッケル、鏝等の金属網とともに成形圧
清し、これを加熱−LiL成17て作製することができ
る。
Positive J + (l electrode (d), a mixed powder consisting of a pentode material such as carbon and substances containing the above-mentioned phthalocyanine polymer and a water repellent is molded and pressed together with nickel and a metal mesh such as a trowel, and this is heated - It can be fabricated using LiL.

本発明における一ト記鉄フタロシアニンポリマーが触媒
として有効である理由は、fE極の電極反応のうち最も
効率の巨い4電子反応(例えばアルカリ電解質中ではO
x +  2H2Q+ 4e−→411H−)を選択し
、また、2電子反応(例えばアルカLtm′直中では0
2 +  N20 +2e−−+ OH−+ HO□−
のように中間体が生成する)が優勢となる場合でも生成
する中間体(fl性醒解質1吏用の場合; H2O2、
アルカリ電解質使用の場合; F(02−)の分解速鵬
を大きくすることにより、どのような反応プロセ7− スにおいてもルー反応を十分円滑にすすめるに埴る重子
のI′ll:袷が6易であるためと考オーられる。さら
に、本発明にち・ける合成と同時に相持するH法をとる
ことにより、秩フタロシアニンポリマーと炭素、物質等
の′市1愼東電体@料との間の接触が良好となり(一部
化学結合しているOT能性がちる。)、導電率が向−ヒ
し、重子の供、恰がさらにスムーズになる。
The reason why the iron phthalocyanine polymer in the present invention is effective as a catalyst is because it is the most efficient four-electron reaction among the electrode reactions of the fE electrode (for example, in an alkaline electrolyte, O
x + 2H2Q+ 4e-→411H-), and also a two-electron reaction (for example, 0 in the alkali Ltm'
2 + N20 +2e--+ OH-+ HO□-
Even when intermediates (like intermediates are produced) are predominant, the intermediates produced (in the case of fl.
When using an alkaline electrolyte; by increasing the decomposition rate of F(02-), the reaction proceeds smoothly in any reaction process. This is considered to be because it is easy. Furthermore, by using the compatible H method at the same time as the synthesis in accordance with the present invention, good contact between the Chichi phthalocyanine polymer and carbon, materials, etc. (The OT performance is reduced), the conductivity is improved, and the flow becomes smoother.

次に本発明に訃ける正僚の構造を図面により説明する。Next, the structure of the official according to the present invention will be explained with reference to the drawings.

すなわち第1図は、本発明における上傾(空気、りまた
は酸素極)の構I@の一具体にすを示した断面概略図を
示し、■は屯極材利1−12はニッケル製網、3は疎水
性多孔!面層である。
That is, FIG. 1 is a schematic cross-sectional view showing one example of the upwardly tilted (air, oxygen or oxygen electrode) structure I@ in the present invention, where ■ is a tunic material and 1-12 is a nickel mesh. , 3 is hydrophobic porosity! It is a surface layer.

この空気極を電池に岨込むに当っては、[イ他材料層1
が市4質に、疎水性多孔質層3がカスに接するように向
きを定める。この結藪、重体材料1−1中に電解質、ガ
ス及び市極粉体の三相界面が形成される。なお、ニッケ
ル製網2は電′鷹材料嗜1および疎水性多孔質)噌3の
支持体および東醒体として設けられる。疎水性多孔′ぼ
嗜3は、′直11y1値g108− に設けられた電極材料層1と同様の材料を使用するが、
電極材料層1に比べて撥水剤の割合を高め(または撥水
剤のみで構成してもよいが、この場合は溌水効果のみで
、反応には寄与しない。)かつ多孔度を犬にする。
When inserting this air electrode into the battery, [a. Other material layer 1]
The substrate is oriented so that the hydrophobic porous layer 3 is in contact with the waste material and the hydrophobic porous layer 3 is in contact with the waste material. This formation forms a three-phase interface of electrolyte, gas, and polar powder in the heavy material 1-1. In addition, the nickel mesh 2 is provided as a support and a support for the electrically conductive material 1 and the hydrophobic porous material 3. The hydrophobic porous pores 3 are made of the same material as the electrode material layer 1 provided on the straight line 11y1 value g108-.
The ratio of the water repellent agent is increased compared to the electrode material layer 1 (or it may be composed of only the water repellent agent, but in this case, it only has a water repellent effect and does not contribute to the reaction) and has a porosity that is similar to that of the electrode material layer 1. do.

次に本発明を実施例によって説明するが、本発明はこれ
により何ら限定されるものではない。なお、実施例にお
ける電極電位の電流依存性の測定では、いずれも飽和カ
ロメル(4□□□(SCE)’e参照電極としてこれを
基準に電位を計則した。測定は20〜25℃の室温中で
行なった。
Next, the present invention will be explained with reference to Examples, but the present invention is not limited thereto in any way. In the measurements of the current dependence of the electrode potential in the Examples, the potential was measured using a saturated calomel (4□□□ (SCE)'e reference electrode as a reference electrode. Measurements were carried out at room temperature of 20 to 25°C I did it inside.

実施例1 ピロメリットニトリル(PN)4 g、FeC4nH2
O1,4g、尿素0.25gの各出発物質に触媒として
モリブデン酸アンモニウム(N H) 4 MO?02
4・4Hz 00.1 g、さらに炭素粉末(200メ
ツシユJl禍) 1 g % アセチレンブラック(A
B)3gs ケッチェンブラックEC4gの電iyt成
材料を乳鉢でよく混合し、セパラブルフラスコ中、N2
  雰囲気500 ℃に70時間加熱した。その後、9
− 550℃に温度をあげさらに2時間加熱した。得られた
粉体は、メタノールとピリジンでソックスレー抽出によ
り洗浄した。乾燥の後、得られた粉体4.5gとテフロ
ンエマルジョン(テフロン60チ含有)2.5gとをよ
く混会し、ロールでシート状にする。シートを30分間
程度空気中で乾燥させた後、片側にニッケル製網(50
メツシユ)を置き、さらにその上に多孔質テフロンシー
トを置いて250℃の温If、  100 kg/cm
2の圧で30分間ホットプレスする。空気中で冷却し、
直径30mmの円形に切り出して空気極を作製した。電
解質としてINKOHを1更用し、能鉛を負極として空
気電池を構成j〜、空気中で空気極の電極電位 (E1
対5CEE)の直流密度依存性を調べた。
Example 1 Pyromellinitrile (PN) 4 g, FeC4nH2
Ammonium molybdate (NH) 4 MO? 02
4.4Hz 00.1 g, and carbon powder (200 mesh Jl misfortune) 1 g% Acetylene black (A
B) 3gs Ketjenblack EC 4g of electric iyt ingredients were mixed well in a mortar and placed in a separable flask with N2
The mixture was heated to an atmosphere of 500° C. for 70 hours. After that, 9
- The temperature was raised to 550°C and further heated for 2 hours. The obtained powder was washed by Soxhlet extraction with methanol and pyridine. After drying, 4.5 g of the obtained powder and 2.5 g of Teflon emulsion (containing 60% Teflon) are thoroughly mixed and formed into a sheet using a roll. After drying the sheet in the air for about 30 minutes, place a nickel mesh (50 mm) on one side.
A porous Teflon sheet was placed on top of the mesh and heated at 250°C, 100 kg/cm.
Hot press at pressure 2 for 30 minutes. cooled in air,
An air electrode was prepared by cutting out a circle with a diameter of 30 mm. An air battery is constructed using INKOH as an electrolyte and lead as a negative electrode, and the electrode potential of the air electrode in air (E1
The DC density dependence of 5CEE) was investigated.

また、比較のため、−F記方法によりfg持されたと思
われる鉄フタロシアニンポリマーの酸と同じ計の鉄フタ
ロシアニンモノマーまたは鉄フタロシアニンポリマー(
2,s g )を炭素粉末1gアセチレンブラック3g
s ケッチェンブラックIDC4gの混合粉体に相持さ
せ、この混合粉体4.5gとテ10− フロンエマルジョン2.5gとから上記方法と同様にし
て作製した空気価の寅倹電位の電流密度依存性も同時に
調べた。
For comparison, the same amount of iron phthalocyanine monomer or iron phthalocyanine polymer (
2, s g ) to 1 g of carbon powder and 3 g of acetylene black.
s) Current density dependence of the potential of the air value prepared in the same manner as above from 4.5 g of Ketjenblack IDC mixed powder and 2.5 g of Te10-fluorocarbon emulsion. was also investigated at the same time.

結果を第2図に示す。すなわち、第21¥1は、本実施
例における空気極の電流密度と電極醒位との関係を示し
たグラフであり、Aは、本実施しlJに示した新規担持
法により担持した鉄フタロシアニンポリマーの場合、B
、、Cはそれぞれ従来既知の方法により相持した鉄フタ
ロシアニンモノマー扮よびポリマーの場合、さらにDは
従来既知゛の銀を触媒に用いた場合である。
The results are shown in Figure 2. That is, No. 21¥1 is a graph showing the relationship between the current density of the air electrode and the electrode wake level in this example, and A is a graph showing the iron phthalocyanine polymer supported by the new supporting method carried out in this example and shown in 1J. In the case of B
, , C are the cases in which iron phthalocyanine monomer and polymer were combined by conventionally known methods, respectively, and D is the case in which conventionally known silver was used as a catalyst.

第2図によると、本実施例で示した合成と同時に担持す
る方法によって鉄フタロ/アニンポリマーの担持された
場合、平衡電位が一〇、060V、  50mA/am
2通心のとき一〇、 270V、  100 mA/c
m”通電のとき−0,378Vとなっている。
According to FIG. 2, when the iron phthalo/anine polymer is supported by the method of simultaneously supporting the synthesis shown in this example, the equilibrium potential is 10,060 V, and 50 mA/am.
10, 270V, 100 mA/c when 2 wires are connected
m'' is energized -0,378V.

第2図から明らかなように、従来方法により相持された
鉄フタロシアニンモノマーおよびポリマーの場合や触媒
として銀を用いた場合に比し、合成と同時に担持する方
法によって銑フタロシアニンポリマーを相持した本発明
の場合には、平衡電位が高く、かつ分極が小さく、大電
流密度領域でも電位の大幅な低下が見られず安定してい
る。
As is clear from FIG. 2, compared to the case where iron phthalocyanine monomer and polymer were supported by the conventional method or the case where silver was used as a catalyst, the method of the present invention in which iron phthalocyanine polymer was supported by the method of supporting at the same time as synthesis. In this case, the equilibrium potential is high, the polarization is small, and the potential is stable without a significant drop even in the high current density region.

実施例2 実施1+!I 1と同じ出発(物質と′ff1t陣構成
hH素椙料とをよく混合し、第1表に示すような、温度
、反応時間の条件で窒g雰囲気で合成、担持した。得ら
れた粉体は、−寿施例1と同様にして洗浄、乾燥の工程
を経た後、空気極を作製して電極−位の電流密度依存性
を調べた。
Example 2 Implementation 1+! I Starting from the same method as in 1, the material and the 'ff1t group-forming hH raw material were thoroughly mixed, and synthesized and supported in a nitrogen atmosphere under the temperature and reaction time conditions shown in Table 1.The resulting powder After the body was washed and dried in the same manner as in Example 1, an air electrode was prepared and the dependence of the electrode position on current density was investigated.

第1表 合成条件 結果を第3図に示す。すなわち、第3図は本実施例にお
ける空気極の電極准位と電流密度の関係を示したグラフ
であり、図中のl]−Jは、第1表に示した条件で合成
した場合の空気極の特性を示す。
Table 1 The results of the synthesis conditions are shown in Figure 3. That is, FIG. 3 is a graph showing the relationship between the electrode level of the air electrode and the current density in this example, and l]-J in the figure represents the air when synthesized under the conditions shown in Table 1. Indicates the characteristics of the poles.

第2図の測定結束によれば、それぞれE −、Jの場合
の′電極の平衡電位、50mA/cm2 通電、100
mA/cm2 通電時の各電位は第2表のようになって
いることがわかる。
According to the measurement bundle shown in Fig. 2, the equilibrium potential of the 'electrode is 50 mA/cm2 current, 100
mA/cm2 It can be seen that the respective potentials when energized are as shown in Table 2.

表2 各空気極の特性 13− 以上説明したように出発物質と電極を構成する炭素材料
とを混合し、鉄フタロシアニンポリマーを合成すると同
時に担持する方法を経て作製された正価(空気極または
酸素極)は、触媒を外部から添加する工程を省略するこ
とで作製工程の簡略化が可能であるとともに、有効にし
て充分な量の触媒を効率よく構成材料中に担持すること
が可能であり、かつその・特性は分極が小さく大電流密
度領域においても電位低下が殆んど起こさないなど従来
のものに比し、優れた効果を発揮するものである。従っ
て、との電極を正極として組込んだ燃あり、従来品に比
し、極めて賜い実用価値を期待することができる。
Table 2 Characteristics of each air electrode 13 - As explained above, the starting material and the carbon material constituting the electrode are mixed, and the net electrode (air electrode or ) can simplify the manufacturing process by omitting the step of adding the catalyst externally, and can efficiently support a sufficient amount of catalyst in the constituent materials, and Its characteristics are that polarization is small and there is almost no potential drop even in the high current density region, which provides superior effects compared to conventional ones. Therefore, compared to conventional products, a fuel that incorporates the electrode as a positive electrode can be expected to have much greater practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法によって製造された正極(空気
極)の構造の一具体例を示しだ断面概略図、第2図、4
3図はそれぞれ本発明の実施例の14− 空気極の電流密度と電極電位の関係を示したグラフであ
る。 1・・・電極材料層 2・・・ニッケル製網 3・・・疎水性多孔質1−0 出願人代理人  山  宮  正  季節1図 手続補正書 1.事件の表示 057年特許願第199987号 2、発明の名称 鮪電池・空気電池用電極の製造方法 3、補正をする者 事件との関係  特許出願人 フリガナ 住 所  東京都千代田区内幸町1丁目1番6号フリガ
ナ 氏  名(名称)  (422)  日本電信電話公社
4、代理人 〒102躯03−264−3566 5、゛補正命令の日付   昭和 年 月  日6、補
正により増加する発明の数 7、補正の対象 明細書中、  「発明の詳細な説明」の濶8、補正の内
容     MIJlF、のとおり+11  明細書第
3頁第11行及び第13行の1電池用電極を」をそれぞ
れ[電池用電極の製造方法を」と訂正する。 (2)同書第5頁第10行、「一種以上の」を「一種以
上と」と訂正する。 (3)同書第5頁第19行、第20行のIO,35」を
それぞれr3.5Jと訂正する。 (4)同書第6頁第9行のro、06JをそれぞれrO
,6Jに訂正する。 (5)同書第7頁第1行〜第5行、「300℃以上の温
度で、・・・・・不利であるからである。」を「300
℃以上の温度で、20時間以上加熱するのがよい。30
0℃未満、20時間未満では、鉄フタロシアニンポリマ
ーが生成しにくいからである。」と訂正する。
FIG. 1 shows a specific example of the structure of a positive electrode (air electrode) manufactured by the method of the present invention.
Figure 3 is a graph showing the relationship between the current density and electrode potential of the 14-air electrode in Examples of the present invention. 1...Electrode material layer 2...Nickel mesh 3...Hydrophobic porous 1-0 Applicant's agent Tadashi Yamamiya Season 1 figure procedural amendment 1. Description of the case 057 Patent Application No. 199987 2 Name of the invention Method for manufacturing electrodes for tuna batteries/air batteries 3 Person making the amendment Relationship to the case Patent applicant Furigana Address 1-1 Uchisaiwai-cho, Chiyoda-ku, Tokyo No. 6 Furigana Name (422) Nippon Telegraph and Telephone Public Corporation 4, Agent 〒102 03-264-3566 5, ゛Date of amendment order Showa 1999 Month, Day 6, Number of inventions increased by amendment 7, Amendment In the subject specification of ``Detailed Description of the Invention,'' page 8, content of amendment MIJIF, as per +11 1 battery electrode on page 3, line 11 and line 13 of the specification, respectively. The manufacturing method is corrected. (2) On page 5, line 10 of the same book, "one or more" is corrected to "one or more". (3) "IO, 35" on page 5, lines 19 and 20 of the same book are corrected to r3.5J, respectively. (4) ro and 06J on page 6, line 9 of the same book are rO
,6J. (5) In the same book, page 7, lines 1 to 5, "The reason is that temperatures of 300°C or higher are disadvantageous."
It is preferable to heat at a temperature of ℃ or higher for 20 hours or more. 30
This is because iron phthalocyanine polymer is difficult to form at a temperature of less than 0°C and less than 20 hours. ” he corrected.

Claims (1)

【特許請求の範囲】[Claims] 電極集電体材料と共に、ピロメリット酸二無水物、ピロ
メリットアミド、ピロメリットニトリルの一種以上、鉄
化合物の一種以上及び尿素を混合し、非反応1生ガス雰
囲気下で、鉄フタロシアニンポリマーを合成すると同時
に前記舅陰妻電体材料に担持させることを考1淑とする
燃I!l+離性・生気電池用屹極の製造方法。
Synthesize an iron phthalocyanine polymer by mixing one or more of pyromellitic dianhydride, pyromellitamide, pyromellinitrile, one or more iron compounds, and urea with the electrode current collector material in a non-reactive raw gas atmosphere. At the same time, it is a good idea to support it on the electric material. A method for producing l+ releasable and vital electrodes for use in batteries.
JP57199987A 1982-11-15 1982-11-15 Manufacture of electrode for fuel cell or air cell Granted JPS5990365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57199987A JPS5990365A (en) 1982-11-15 1982-11-15 Manufacture of electrode for fuel cell or air cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57199987A JPS5990365A (en) 1982-11-15 1982-11-15 Manufacture of electrode for fuel cell or air cell

Publications (2)

Publication Number Publication Date
JPS5990365A true JPS5990365A (en) 1984-05-24
JPH04345B2 JPH04345B2 (en) 1992-01-07

Family

ID=16416901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57199987A Granted JPS5990365A (en) 1982-11-15 1982-11-15 Manufacture of electrode for fuel cell or air cell

Country Status (1)

Country Link
JP (1) JPS5990365A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2109170A1 (en) * 2008-04-07 2009-10-14 Acta S.p.A. High performance orr (oxygen reduction reaction) pgm (pt group metal) free catalyst
US10648554B2 (en) 2014-09-02 2020-05-12 Polaris Industries Inc. Continuously variable transmission

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2109170A1 (en) * 2008-04-07 2009-10-14 Acta S.p.A. High performance orr (oxygen reduction reaction) pgm (pt group metal) free catalyst
WO2009124905A1 (en) * 2008-04-07 2009-10-15 Acta S.P.A. High performance orr (oxygen reduction reaction) pgm (pt group metal) free catalyst
JP2011516254A (en) * 2008-04-07 2011-05-26 アクタ ソシエタ ペル アチオニ High performance ORR (oxidation-reduction reaction) PGM (Pt group metal) free catalyst
US10648554B2 (en) 2014-09-02 2020-05-12 Polaris Industries Inc. Continuously variable transmission

Also Published As

Publication number Publication date
JPH04345B2 (en) 1992-01-07

Similar Documents

Publication Publication Date Title
Zhu et al. Heteroatom-doped carbon catalysts for zinc–air batteries: progress, mechanism, and opportunities
JPH0763627B2 (en) Improved catalytic material
JP4568124B2 (en) Air electrode and air secondary battery using the air electrode
JP2010507220A (en) Catalyst carrier for fuel cells
US3585079A (en) Fuel cell electrodes having a polymeric metal-containing or metal-free phthalocyanine catalyst
JP2015207515A (en) Electrode and air secondary battery using the same
US3753782A (en) Electrode for electrochemical reduction of oxygen and process for its production
US6428931B1 (en) Methods for making oxygen reduction catalyst using micelle encapsulation and metal-air electrode including said catalyst
KR20050103648A (en) Catalist for fuel cell, preparation method thereof, and fuel cell system comprising the same
JPS5990365A (en) Manufacture of electrode for fuel cell or air cell
CN106532195A (en) Ferrous ion/air battery and preparation method thereof
US3306780A (en) Sintered nickel-carbon gas diffusion electrode for fuel cells
JPH04348B2 (en)
US5514497A (en) Paste nickel electrode plate and a storage battery including an electroconductive material
Mosdale et al. New electrodes for hydrogen/oxygen solid polymer electrolyte fuel cell
JPH0587950B2 (en)
JPH0677460B2 (en) Method for producing positive electrode for fuel cell / air cell
CN108808026B (en) Metal-air battery oxygen electrode catalyst material and preparation method and application thereof
JPH0351058B2 (en)
JPS58100363A (en) Electrode for fuel cell or air cell
JP2003217598A (en) Electrode material for fuel cell
CN115810767B (en) Cathode catalyst, preparation method and membrane-free oxygen direct methanol fuel cell
JP2847983B2 (en) Method for producing positive electrode active material for thermal battery and thermal battery using the same
JPH0261095B2 (en)
JP2847982B2 (en) Method for producing positive electrode active material for thermal battery and thermal battery using the same