JPS5990121A - Power supply circuit - Google Patents

Power supply circuit

Info

Publication number
JPS5990121A
JPS5990121A JP19936582A JP19936582A JPS5990121A JP S5990121 A JPS5990121 A JP S5990121A JP 19936582 A JP19936582 A JP 19936582A JP 19936582 A JP19936582 A JP 19936582A JP S5990121 A JPS5990121 A JP S5990121A
Authority
JP
Japan
Prior art keywords
circuit
voltage
load
current
abnormal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19936582A
Other languages
Japanese (ja)
Inventor
Soichi Yagi
八木 操一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Priority to JP19936582A priority Critical patent/JPS5990121A/en
Publication of JPS5990121A publication Critical patent/JPS5990121A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/569Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
    • G05F1/573Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overcurrent detector

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

PURPOSE:To prevent the breakdown of an element despite the generation of latch-up by avoiding the supply of voltage to a load for a prescribed period of time in case a current larger than the prescribed value flows to the load. CONSTITUTION:A voltage regulator 31 of a voltage control circuit 3 has the drooping characteristics with which the output voltage is set at O when a load current exceeds a prescribed level. An abnormal current detecting circuit 1 detects the voltage drop corresponding to the load current by a resistance 10. When this voltage drop exceeds a prescribed level, a timer circuit 2 is driven for a prescribed period of time. The supply of voltage to a load circuit is discontinued when transistors 33 and 35 are turned on while the circuit 2 is driven, and reinstated after the voltage stop is continued for a prescribed period.

Description

【発明の詳細な説明】 この発明は自動車に搭載する電子機器、ロボット装置、
工作機械等に用いられている回路に2ツチアツプが発生
した時、自動的にラッチアップを解除するようにした電
源回路に関するものである。
[Detailed Description of the Invention] This invention relates to electronic devices, robot devices, and
This invention relates to a power supply circuit that automatically releases latch-up when a double-up occurs in a circuit used in a machine tool or the like.

一般に、C−MO8素子は低消費電力であるために各方
面で広く使用さ扛ているが、使用条件によってはラッチ
アップが生じ、異常に大きな電流が流れてしまうことが
ある0ごのためラッチアップが発生しないように種々の
予防策が行なわれているが、完全に2ツチアツプを防ぐ
ことは困難である。このため、一度ラッチアップが発生
するとC−MO8素子が正常動作に復帰できないだけで
なく、この時に流扛る大きな電流によって素子の破壊に
至ることが多いので、素子の破壊全防止する方法の開発
が望ま扛でいた。
In general, C-MO8 elements are widely used in various fields due to their low power consumption, but depending on the usage conditions, latch-up may occur, causing an abnormally large current to flow. Although various preventive measures have been taken to prevent double-up from occurring, it is difficult to completely prevent double-up. For this reason, once latch-up occurs, not only is the C-MO8 element unable to return to normal operation, but the large current that flows at this time often leads to element destruction, so we have developed a method to completely prevent element destruction. I was very hopeful.

したがってこの発明の目的はラッチアップが発生しても
素子を破壊から救うと共に、素子を正常動作状態に復帰
させることができるようにし几電源回路を提供すること
にある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a power supply circuit which can save an element from destruction even if latch-up occurs and can restore the element to a normal operating state.

このような目的を達成するためにこの発明は、負荷に所
定値以上の電流が流れた時に、負荷に供給している電圧
の送出全停止し、ラッチアップ解除後負荷への電圧供給
を復帰する工うにしたものである。以下実施例を示す図
面を用いてこの発明の詳細な説明する。
In order to achieve such an object, the present invention completely stops sending the voltage supplied to the load when a current exceeding a predetermined value flows through the load, and restores the voltage supply to the load after releasing the latch-up. This is what I tried to do. The present invention will be described in detail below using drawings showing embodiments.

第1図はこの発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing one embodiment of the present invention.

同図において、1は負荷回路に供給する電流が所定値以
上になった時、出力信号全発生する異常電流検出回路、
2は入力信号が供給さ扛たとき所定時間継続する出力信
号?発生するタイマ回路、3は端子3aに信号が供給さ
nていない時は端子3bに出力電圧を送出しており、端
子3aに信号が供給さnている期間は端子3bに出力電
圧を送出しないようになっている電圧制御回路である。
In the figure, 1 is an abnormal current detection circuit that generates a full output signal when the current supplied to the load circuit exceeds a predetermined value;
2 is an output signal that continues for a predetermined time when the input signal is supplied? The generating timer circuit 3 sends an output voltage to the terminal 3b when no signal is supplied to the terminal 3a, and does not send the output voltage to the terminal 3b during the period when the signal is supplied to the terminal 3a. This is a voltage control circuit that looks like this.

また、4は入力端子、5は出力端子である。Further, 4 is an input terminal, and 5 is an output terminal.

負荷としては出力端子5に一例としてIC回路が接続さ
扛ている。
For example, an IC circuit is connected to the output terminal 5 as a load.

このように構成されたこの発明に係る回路の動作は次の
通りである。正常に動作していた負荷に何等かの原因に
よってラッチアップが生じると、出力端子5から負荷に
供給さ扛る電流は第2図(、)に示すように定常値IO
であったものが異常値工1まで急激に増加する。この結
果、異常電流検出回路1は負荷に供給する電流が所定値
よりも大きくなつfc負荷電流異常を検出し、タイマ回
路2を駆動するので、タイマ回路2は第2図(b)に示
す工うに所定時間Tだけ出力信号を発生し、この出力信
号を電圧制御回路3の入力端子3aに供給する0電圧制
御回路3は入力端子3aに信号が供給さ扛ている期間は
端子3bに出力電圧を送出しないように構成されている
ので、タイマ回路2から信号が供給されると出力電圧は
第2図(C)に示す工うに電圧はV8から零に転する。
The operation of the circuit according to the present invention configured as described above is as follows. If a latch-up occurs for some reason in a normally operating load, the current supplied to the load from the output terminal 5 will drop to the steady-state value IO as shown in Figure 2 (,).
The abnormal value increases rapidly to 1. As a result, the abnormal current detection circuit 1 detects an fc load current abnormality in which the current supplied to the load becomes larger than a predetermined value, and drives the timer circuit 2. The voltage control circuit 3 generates an output signal for a predetermined time T and supplies this output signal to the input terminal 3a of the voltage control circuit 3. During the period when the signal is supplied to the input terminal 3a, the voltage control circuit 3 outputs the output voltage to the terminal 3b. Since the circuit is configured so as not to send out a signal, when a signal is supplied from the timer circuit 2, the output voltage changes from V8 to zero as shown in FIG. 2(C).

この結果、出力端子5から負荷に供給される電流は第2
図(a)に示すように零となる。
As a result, the current supplied from the output terminal 5 to the load is
It becomes zero as shown in Figure (a).

一方、負荷にICを使用している場合、その内部にPN
PN構造の部分が形成さnていることがあり、こf′L
は等価的にサイリスタ回路を構成している。この部分は
通常使用する電圧であ扛ば問題はないが、サージ電圧が
供給さfLるとターンオンとなってしまうことがあり、
こ扛がラッチアップ現象となって異常電流が流扛る原因
になる0しかしこの発明の電源回路は前述したように、
負荷に異常電流が流f′1.た時は負荷に供給さ扛る電
流が零になるので、IC内部の等価的なサイリスクはタ
ーンオンからターンオフに転する0 タイマ回路2は出力信号が発生してから時間Tが経過す
ると、第2図(b)に示す工うに出力信号が停止するの
で、この時、電圧制御回路3は第2図(C)に示すよう
に出力電圧vSを再び送出する工うになる。この結果、
負荷電流の供給が再開さ扛る0しかし、この時はIC内
部の等価的なサイリスクがターンオフとなっているので
、負荷に流扛る電流は第2図(、)に示すように定常値
工0に復旧している。従って負荷に2ツチアツプが生じ
て大きな電流が流、扛ても、所定時間だけ負荷電流の供
給全停止してラッチアップを解除するので、素子破壊に
至ることがない。
On the other hand, if an IC is used as a load, there is a PN inside it.
A part of the PN structure may be formed, and this f'L
equivalently constitutes a thyristor circuit. There is no problem if this part is applied with the normally used voltage, but if a surge voltage is supplied fL, it may turn on.
However, as mentioned above, the power supply circuit of the present invention has the following problems:
Abnormal current flows through the load f'1. When the output signal is generated, the current supplied to the load becomes zero, so the equivalent silicon risk inside the IC changes from turn on to turn off. Since the output signal stops as shown in FIG. 2(b), at this time the voltage control circuit 3 starts sending out the output voltage vS again as shown in FIG. 2(c). As a result,
However, at this time, the equivalent circuit inside the IC is turned off, so the current flowing to the load has a steady-state value, as shown in Figure 2 (,). It has been restored to 0. Therefore, even if a double-up occurs in the load and a large current flows, the latch-up is canceled by completely stopping the supply of load current for a predetermined period of time, so that the device will not be destroyed.

第3図は他の実施例を示すブロック図であム第1図と同
一部分は同記号を用いている。この実施例では出力端子
ヲ5aと5b の2つに分け、2種類の負荷を接続でき
る工うにしている0この場合、出力端子5&にはラッチ
アップの発生し易いC−MOS 素子で構成さ扛る負荷
を接続し、出力端子5bKはラッチアップの発生しない
負荷を接続する。このようにすると、C−MO8素子で
構成さ扛る負荷に流fl−7)N流の定常値は極めて小
さなものであるから、異常時と定常時の電流の変化は極
めて大きなものとなり、異常電流の検出が容易となる。
FIG. 3 is a block diagram showing another embodiment. The same parts as in FIG. 1 are designated by the same symbols. In this embodiment, the output terminals are divided into two, 5a and 5b, so that two types of loads can be connected to them.In this case, the output terminals 5& are constructed with C-MOS elements that are prone to latch-up. The output terminal 5bK is connected to a load that does not cause latch-up. In this way, since the steady-state value of the current fl-7)N flowing through the load composed of 8 C-MO elements is extremely small, the change in current during abnormal and steady states will be extremely large, causing abnormalities. Current detection becomes easier.

第4図は第3図に示す各回路の詳細を示す回路図である
。同図において異常電流検出回路1は抵抗10,13、
トランジスタ11、ダイオード12で構成さnl タイ
マ回路2はコンデンサ20 、24、抵抗21,22、
)ランリスク23で構成さ扛ており、電圧制御回路3は
ボルテージレギュレータ31、抵抗32,34、トラン
ジスタ33.35で構成さ扛ている。この場合1.ボル
テージレギュレータは負荷電流が所定値を越えると出力
電圧が零になる垂下特性を有するようになっている。
FIG. 4 is a circuit diagram showing details of each circuit shown in FIG. 3. In the figure, the abnormal current detection circuit 1 includes resistors 10, 13,
The timer circuit 2 consists of a transistor 11, a diode 12, capacitors 20, 24, resistors 21, 22,
) The voltage control circuit 3 is composed of a voltage regulator 31, resistors 32, 34, and transistors 33, 35. In this case 1. The voltage regulator has a drooping characteristic in which the output voltage becomes zero when the load current exceeds a predetermined value.

このように構成さ!1−た回路において、負荷電流が定
常値であnば抵抗10に生じる電圧降下は小さく、この
電圧降下がトランジスタ11全オンさせる電圧に達しな
いように抵抗10の抵抗値を設定しておけば、タイマ回
路2は動作しない。しかし、負荷電流が異常に大きくな
ると1抵抗10に発生する電圧が大きくなってトランジ
スタ11がオンとなり1.コンデンサ20を瞬時に充電
するのでトランジスタ23がオンとな名。この結果、ト
ランジスタ33.35もオンとなるので、ボルテージレ
ギュレータ31の出力はトランジスタ35でアースさn
て大きな電流が流れる。ボルテージレギュレータ31は
垂下特性を有するため、出力電圧は零となるが、コyデ
ン?20と抵抗21で決まる時間だけトランジスタ23
はオンを継続する。この結果、ボルテージレギュレータ
31もこの時間だけ出力電圧が零になっている状態全継
続する。なお、コンデンサ24は、コンデンサ24の瞬
時充電をより確実に行わせる為のものである。
Configured like this! 1-, if the load current is at a steady value, the voltage drop across resistor 10 will be small, and if the resistance value of resistor 10 is set so that this voltage drop does not reach the voltage that turns on all transistors 11, then , timer circuit 2 does not operate. However, when the load current becomes abnormally large, the voltage generated across the resistor 10 becomes large and the transistor 11 is turned on. Since the capacitor 20 is charged instantly, the transistor 23 is turned on. As a result, transistors 33 and 35 are also turned on, so the output of voltage regulator 31 is connected to ground by transistor 35.
A large current flows. Since the voltage regulator 31 has a drooping characteristic, the output voltage becomes zero, but the output voltage is zero? Transistor 23 for the time determined by 20 and resistor 21
remains on. As a result, the voltage regulator 31 also remains in a state where the output voltage is zero for this period of time. Note that the capacitor 24 is provided to ensure instantaneous charging of the capacitor 24.

第4図の回路においてトランジスタ11は高い検出精度
、安定な温度特性が要求さ牡る時は差動増幅器で構成す
扛ば良い。ダイオード12はコンデンサ20に充電さl
t′Lfc電荷がトランジスタ11を介して放電さ扛る
ことを防止するダイオードである。
In the circuit shown in FIG. 4, the transistor 11 may be constructed from a differential amplifier when high detection accuracy and stable temperature characteristics are required. Diode 12 charges capacitor 20
t'Lfc is a diode that prevents charge from being discharged through transistor 11.

第5図は他の実施例を示す回路図であり、ボルテージレ
ギュレータ30は入力端子3mがアースさtl、た時、
出力電圧を発生しなくなる特性を有す第5図の回路の動
作は第4図の回路の動作と同様である。
FIG. 5 is a circuit diagram showing another embodiment, in which the voltage regulator 30 is configured such that when the input terminal 3m is grounded tl,
The operation of the circuit of FIG. 5, which has the characteristic of not generating an output voltage, is similar to the operation of the circuit of FIG. 4.

第6図は他の実施例を示す回路図であり、電圧制御回路
40がトランジスタ41、抵抗42、出力電圧を決定す
るツェナーダイオード43で構成さ扛ている。このよう
に構成さt′L−fC回路において、負荷電流が所定値
よりも大きくなってトランジスタ11がオンになるとト
ランジスタ23がオンとなり、ツェナーダイオード43
が短絡さ扛てトランジスタ41がオフとなる○そして、
コンデンサ20と抵抗21で決まる時間の後、トランジ
スタ23がオフになり、トランジスタ41がオンになる
ものである。
FIG. 6 is a circuit diagram showing another embodiment, in which a voltage control circuit 40 is composed of a transistor 41, a resistor 42, and a Zener diode 43 that determines the output voltage. In the t'L-fC circuit configured in this way, when the load current becomes larger than a predetermined value and the transistor 11 is turned on, the transistor 23 is turned on and the Zener diode 43 is turned on.
is short-circuited and the transistor 41 is turned off ○ And,
After a time determined by capacitor 20 and resistor 21, transistor 23 is turned off and transistor 41 is turned on.

第7図は他の実施例を示す回路図であり、電圧制御回路
50がトランジスタ51,54,57、抵抗52,55
,56,58、ツェナーダイオード53で構成されてい
る0この回路はツェナーダイオード53による基準電圧
と出力電圧?もとに作る電圧をトランジスタ54.57
による差動増幅器によって増幅して、トランジスタ51
を制御するものであり、回路の動作は第6図と同様であ
る。
FIG. 7 is a circuit diagram showing another embodiment, in which the voltage control circuit 50 includes transistors 51, 54, 57 and resistors 52, 55.
, 56, 58, and a Zener diode 53. This circuit consists of a reference voltage and an output voltage by the Zener diode 53? Transistor 54.57
Amplified by a differential amplifier according to the transistor 51
The operation of the circuit is the same as that shown in FIG.

以上説明したようにこの発明に係る電源回路は、負荷に
所定値、Cυも大きな電流が流扛た時、所定時間だけ負
荷に電圧を供給しない↓うにしたものであるから、負荷
にラッテアップが生じて異常に大きな電流が流扛ると、
直ちに負荷に電圧が供給さjLなくなり、負荷のラッチ
アップが解除さ7”Lるので、ラッチアップが発生して
も負荷が破壊さ扛ることがないという効果を有する。
As explained above, the power supply circuit according to the present invention does not supply voltage to the load for a predetermined period of time when a current of a predetermined value and large Cυ flows through the load, so that the load does not suffer from latte-up. When an abnormally large current occurs and an abnormally large current flows,
Immediately, the voltage is no longer supplied to the load, and the latch-up of the load is released, so that even if latch-up occurs, the load will not be destroyed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すブロック図、第2図
は各部波形図、第3図から第7図は他の実施例を示すブ
ロック図および回路図である。 1・・・・異常電流検出回路、2・・・・タイマ回路、
3,30,40.50φ・・・電圧制御回路。 −12′ 第1図 第3図 第4図 第5図
FIG. 1 is a block diagram showing one embodiment of the present invention, FIG. 2 is a waveform diagram of various parts, and FIGS. 3 to 7 are block diagrams and circuit diagrams showing other embodiments. 1... Abnormal current detection circuit, 2... Timer circuit,
3, 30, 40.50φ...Voltage control circuit. -12' Figure 1 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 負荷回路に供給する電流が所定値エフ大きくなった負荷
電流異常を検出する異常電流検出回路と、この異常電流
検出回路が負荷電流異常を検出した時に所定時間継続す
る出力信号を発生するタイマ回路と、このタイマ回路か
ら出力信号が発生している期間は負荷回路に対する出力
電圧の送出を停止する電圧制御回路とから構成さする電
源回路0
An abnormal current detection circuit that detects an abnormal load current when the current supplied to the load circuit increases by a predetermined value, and a timer circuit that generates an output signal that continues for a predetermined time when the abnormal current detection circuit detects an abnormal load current. , and a voltage control circuit that stops sending out the output voltage to the load circuit during the period when the output signal is generated from this timer circuit.
JP19936582A 1982-11-13 1982-11-13 Power supply circuit Pending JPS5990121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19936582A JPS5990121A (en) 1982-11-13 1982-11-13 Power supply circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19936582A JPS5990121A (en) 1982-11-13 1982-11-13 Power supply circuit

Publications (1)

Publication Number Publication Date
JPS5990121A true JPS5990121A (en) 1984-05-24

Family

ID=16406540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19936582A Pending JPS5990121A (en) 1982-11-13 1982-11-13 Power supply circuit

Country Status (1)

Country Link
JP (1) JPS5990121A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289013U (en) * 1985-11-25 1987-06-06
WO2005050341A1 (en) * 2003-11-19 2005-06-02 Jaroslav Foglar Voltage regulator including controllable transformer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367849A (en) * 1976-11-29 1978-06-16 Hitachi Ltd Overcurrent protecting device for power source apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367849A (en) * 1976-11-29 1978-06-16 Hitachi Ltd Overcurrent protecting device for power source apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289013U (en) * 1985-11-25 1987-06-06
WO2005050341A1 (en) * 2003-11-19 2005-06-02 Jaroslav Foglar Voltage regulator including controllable transformer

Similar Documents

Publication Publication Date Title
US4685020A (en) Shutdown circuit for blocking oscillator power supply
US4013925A (en) Overload protection circuit for voltage regulator
US2948843A (en) Voltage limiter
US4546302A (en) Protective sensing means for battery charging circuit
US11251600B2 (en) Overvoltage protection combined with overcurrent protection
JPS5990121A (en) Power supply circuit
CN216052961U (en) Power-down time sequence control circuit
JPH09149631A (en) Power supply apparatus
JPS63274363A (en) Switching power circuit
AU634632B2 (en) System for protecting a dc power distribution bus during hot servicing
US20040228054A1 (en) Fault detecting circuit
JP2505058B2 (en) Abnormality detection method in battery charging circuit
KR19990072223A (en) Reset Circuit Ensures Proper Reset on Dropping Supplies
EP0687067A2 (en) Short circuit protector for an isolated power MOSFET output stage
KR910005463B1 (en) Switching mode power supply
JPH0624900Y2 (en) Memory backup power supply
JP3285660B2 (en) Resistance meter constant current device
US3398324A (en) D-c load switching and protective circuits without mechanical contacts
KR0112449Y1 (en) Apparatus for terminal error
US3506855A (en) Power control circuit
US4540932A (en) Talk filtered power supply
JPH0312023Y2 (en)
JPS595734A (en) Input circuit with protecting circuit
JPS63109515A (en) Power supply system
JPS609857Y2 (en) power supply