JPS5990027A - Measuring device for optical transmission loss of optical fiber - Google Patents

Measuring device for optical transmission loss of optical fiber

Info

Publication number
JPS5990027A
JPS5990027A JP8870783A JP8870783A JPS5990027A JP S5990027 A JPS5990027 A JP S5990027A JP 8870783 A JP8870783 A JP 8870783A JP 8870783 A JP8870783 A JP 8870783A JP S5990027 A JPS5990027 A JP S5990027A
Authority
JP
Japan
Prior art keywords
optical fiber
transmission loss
light
optical
optical transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8870783A
Other languages
Japanese (ja)
Inventor
Yasuteru Tawara
康照 田原
Shunsuke Minami
南 俊輔
Masaharu Oda
雅春 小田
Mikio Sera
勢羅 幹雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP8870783A priority Critical patent/JPS5990027A/en
Publication of JPS5990027A publication Critical patent/JPS5990027A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/35Testing of optical devices, constituted by fibre optics or optical waveguides in which light is transversely coupled into or out of the fibre or waveguide, e.g. using integrating spheres

Abstract

PURPOSE:To enable the measurement of the uneven optical transmission loss of an optical fiber in its longitudinal direction without cutting the optical fiber by detecting the quantity of the light radiated from the side face of the optical fiber and measuring the optical transmission loss. CONSTITUTION:A measurement device is constituted of a light incident device A, a detection device B and an arithmetic device C. An optical fiber 22 drawn from a bobbin 23 passes through the device A and the device B, is taken off by a pair of nip rolls 25 driven at a specified speed and is taken up on a bobbin 24. A lens 30 is disposed in such a way that the image of a lamp is formed near the fiber 22 and a cover 32 is preferably made internal surface thereof of a material having a good reflectivity as it improves the efficiency of light incidence. Integration spheres 34, 35 are preferably of the spherical shape convered internally with a diffusion surface having a high reflectivity. An analog computer 40 calculates an optical transmission loss. It is possible to record continuously the fluctuation in the optical transmission loss of the optical fiber and to determine the distribution in the fiber axis direction by connecting a recorder 41 to the computer 40.

Description

【発明の詳細な説明】 本発明は光学繊維の光伝送損失(吸収係数)を測定、す
る装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an apparatus for measuring optical transmission loss (absorption coefficient) of optical fibers.

従来、光学m維の光伝送損失は第1図に示す如き方法で
行なわれていた。すなわち、先ず光学繊、It(+)の
一方の端面(9)からランプ(2)の光を入射させ、多
端(10)から出射した光を積分球(3)で集めて、光
変換素子(6)により電気量に変換し、増幅器(7)で
増幅し、指示計(8)で指示値を読取る。この読取イf
1をElとする゛。次に端面(10)から光学繊維(1
)の軸に沿って測定した長さLだけ離れた面(11)の
ところで光学mtfnを切断する。次に、新しい端面(
11)をホルダー(5)で端面(1o)のときと回じ位
置に固定して、指示At(8)の指示値を読取る。この
読取値をE2とする。
Conventionally, optical transmission loss in optical m-fibers has been measured by the method shown in FIG. That is, first, the light from the lamp (2) is incident on one end surface (9) of the optical fiber It(+), the light emitted from the other end (10) is collected by the integrating sphere (3), and then the light converting element ( 6) into an electrical quantity, amplified by an amplifier (7), and read the indicated value with an indicator (8). This reading f
Let 1 be El. Next, from the end face (10) to the optical fiber (1
) The optical mtfn is cut at a plane (11) separated by a length L measured along the axis. Next, create a new end face (
11) is fixed with the holder (5) at the end face (1o) and at the rotation position, and the indicated value of the instruction At (8) is read. Let this reading value be E2.

光伝送損失(吸収係数)はランバート・ベールの法則で
ある0式を適用して、ElとE2から求めることができ
る。
Optical transmission loss (absorption coefficient) can be determined from El and E2 by applying Lambert-Beer's law, equation 0.

I + = I 2 exp(−KL)      …
…   ■ここで、11 :端面(lO)に到達した光
の強度工2 :端面(11)に到達した光の強度K :
光伝送損失(吸収係数) L :切断した光学繊維の長さ ■、とI2はEl及びE2と次式の関係がある。
I + = I 2 exp (-KL)...
... ■Here, 11: Intensity of light reaching the end face (lO) 2: Intensity K of light reaching the end face (11):
Optical transmission loss (absorption coefficient) L: Length of the cut optical fiber ■, and I2 have a relationship with El and E2 as shown in the following equation.

E、 −(1−ρ1)11     ・・・・・・  
・すE2 = (1−ρ2)I2     ・・・・・
・  ・j)ここで、ρI =端面(10)の反射率ρ
2 :端面(11)の反射率 ・、21式と■式を(刀式に代入すると■式が得られる
E, -(1-ρ1)11...
・SE2 = (1-ρ2)I2...
・ ・j) Here, ρI = reflectance ρ of end face (10)
2: Reflectance of end surface (11)・, Substituting equation 21 and equation (■) into (sword equation) yields equation (■).

plとp2が等しくなるように端面を切断するか、また
は研磨して仕上げると、次式・、5)から光伝送損失を
求めることかできる。
If the end face is cut or polished so that pl and p2 are equal, the optical transmission loss can be calculated from the following equation (5).

かかる公知のカノノ、では切断した光学繊維は製品とし
ては使用できないので製品の全数検在には使えないこと
、及び4111定に長時間を右すること等の小人な欠点
があった。
In this known method, the cut optical fibers cannot be used as products, so they cannot be used to detect all products, and they require a long period of time.

また、光学繊維内の減衰が大きい場合、すなわち、光伝
送損失と長さの積が人yい場合には、従来法では411
1定が困難である。たとえば現在のプラスチ、り光学繊
維の光伝送損失は最もよいもので3−1 1 xto  C1n  + 99通には2−5 X 
10−”cm−’程度である。また、製品の長さはボビ
ンに巻かれた状態で11−1Ok程度である。最も前記
積が小yい組合セノ光伝送損失カ1xlo−3CI11
−1.長すカ1kI11ノ場合でも、光の減衰は約40
桁どなり、通常の「段では411定することは不可能で
ある。また、仮にAl1定できたとしても、光伝送損失
が全長にわたって均一・であるのか、あるいは途中に光
伝送損失が大きい部分があるのかを判定できないことも
従来法の欠点である。
In addition, when the attenuation within the optical fiber is large, that is, when the product of the optical transmission loss and the length is large, the conventional method
It is difficult to obtain a constant value. For example, the optical transmission loss of current plastic optical fibers is the best, 3-1 x to C1n + 2-5 x for 99 letters.
The length of the product is approximately 11-10cm when wound on a bobbin.
-1. Even if the length is 1kI11, the attenuation of light is about 40
It is impossible to obtain a constant value of 411 with a normal stage.Also, even if it were possible to obtain a constant value of 411, it would be difficult to determine if the optical transmission loss is uniform over the entire length, or if there is a part in the middle where the optical transmission loss is large. Another drawback of the conventional method is that it cannot be determined whether the

本発明はかかる従来法の欠点を解消した光学繊M[の光
伝送損失測定装置を提供するものであって、その発明の
要旨とするところは、光学繊維の被411定部以外の部
分の光学繊維の側面部から光をあて、被+1111定部
内を進行する光を人114させる装訪該人!11光が被
A111定部を伝播するときに放射する光II;を被測
定部の両側側面部において検出する装置および、これら
の検出光早の比を演算する装置を備えた光学繊維の光伝
送損失゛4(す定装置にある。
The present invention provides an optical transmission loss measuring device for an optical fiber M[ that eliminates the drawbacks of the conventional method, and the gist of the invention is to A device that shines light from the side of the fiber and causes the light traveling inside the fixed part of the fiber to be directed to the person 114! 11 Optical fiber optical transmission equipped with a device for detecting light II; emitted when the light propagates through a fixed part A111 on both side surfaces of a part to be measured, and a device for calculating the ratio of these detected light velocities. Loss 4 (in the fixed device).

煎に理想的な光学繊維の場合は、−・方の端面からその
開11角Jテりも小さい拡がりの光を人04さぜると、
入射した光は全長114を繰返して他端まで光を外部へ
放n4することなく金星他端まで伝送され、また光学繊
維の両端面以夕1の外部からどのように光を照射しても
光学繊維内を全反射を繰返して進行する光を発生させる
ことはできないといわれている。
In the case of an optical fiber ideal for lighting, if you touch the light with a small spread from the end face on the - side, the opening angle is also small.
The incident light repeats the entire length 114 and is transmitted to the other end of Venus without emitting the light to the outside, and no matter how the light is irradiated from the outside of both end surfaces of the optical fiber, the optical It is said that it is impossible to generate light that travels through fibers by repeating total internal reflection.

しかしながら現実の光学繊維の場合には、多かれ少なか
れ異物、気泡等のnk乱外性因子含有しているので、端
面から入射した光は、光学繊維の外側へ光をわずかでも
放射しながら伝送される。このとき、外側へ放射される
光1iは入射光埴に比例し実用的に測定口f能な大きさ
があり、また、光学繊維を外側から強力な光源で照射す
ることにより光゛γ゛繊維内部へ全反射を繰返して伝播
する光を入用することができる。
However, in the case of actual optical fibers, they contain more or less NK disturbance factors such as foreign objects and bubbles, so the light incident from the end face is transmitted while emitting even a small amount of light to the outside of the optical fiber. . At this time, the light 1i emitted to the outside is proportional to the incident light beam and has a size that allows practical measurement. Light that propagates internally through repeated total reflection can be used.

かかる特性を有する光学繊維を例にとって本発明の原理
を第2図に〕、(づいて説明するど、第2図において、
(12)は光学繊維、(13)はランプ、(14)は積
分球(左) 、 (15)は積分球(右)、 (1B)
、(17)は光電変換素子、(1B) 、(19)は増
幅器、(2o)は指示、11 (左)、(21)は指示
ル1(右)である。■ (免)はランプ(13)をON
にて入射された断面aを右方向に進む光の強度である。
The principle of the present invention is shown in FIG. 2 by taking an example of an optical fiber having such characteristics.
(12) is an optical fiber, (13) is a lamp, (14) is an integrating sphere (left), (15) is an integrating sphere (right), (1B)
, (17) are photoelectric conversion elements, (1B) and (19) are amplifiers, (2o) is an indicator, and 11 (left) and (21) are indicator 1 (right). ■ Turn on the lamp (13) for (exempt)
This is the intensity of light that is incident on cross section a and travels to the right.

I (112,)とI  (Q、r)はそれぞれI(Q
、)が積分球(14)および(+5)に伝播したときの
品々の積分球に囲まれた部分の光学繊維内部の\IL均
光強光強度る。Lは積分球(14)の中心線すおよび積
分球(15)の中心線Cの間の光学繊維の軸に沿って′
A11定した長さである。
I (112,) and I (Q, r) are respectively I(Q
, ) propagates to the integrating spheres (14) and (+5), the intensity of \IL uniform light inside the optical fiber in the part surrounded by the integrating spheres of the item. L is along the axis of the optical fiber between the center line S of the integrating sphere (14) and the center line C of the integrating sphere (15).
A11 is a fixed length.

かかる装置においてランプ(13)をONにして光I 
 (1)をした場合にも前記のランバー 1・−ベール
の91則が成立し、次式が11られる。
In such a device, the lamp (13) is turned on and the light I
Even when (1) is done, the above-mentioned Lamber 1-Beer's 91 law holds true, and the following equation 11 is obtained.

I (L r) = (Q、R) exp(−KL) 
−旧=(mここで、K:断面すと断面Cの間の光学繊維
の光伝送損失(吸収係数) I(Q4)とI (lr)は光学繊維内部の光の強度で
あるから直接測定することはできないが、光”7’ T
AX維内部に含有される散乱性因子のために、I(ul
)およびI(Q、r)に比例した光学繊維の夕1側へ放
114される散乱光をそれぞれの積分球によって集める
ことができる。これをそれぞれ光電変換素子(If()
、(+7)により電気量に変換し、増幅器(+8) 、
 (+9)により光L1に比例した早、E (見見)お
よびE(lr)として読取ることができる。式で示すと
次のようになる。
I (L r) = (Q, R) exp(-KL)
-old = (m where, K: Optical transmission loss (absorption coefficient) of the optical fiber between the cross section and the cross section C. I (Q4) and I (lr) are the intensity of light inside the optical fiber, so they can be directly measured. Although it is not possible to do so, the light "7' T
Due to the scattering factor contained inside the AX fibers, I(ul
) and I(Q,r), the scattered light emitted 114 to the side of the optical fiber can be collected by each integrating sphere. These are each converted into a photoelectric conversion element (If()
, (+7) to convert it into electrical quantity, and amplifier (+8),
(+9), it can be read as E (view) and E (lr) which are proportional to the light L1. Expressed as a formula, it is as follows.

E(f2.免)−α(i) XI (1,免)    
     ・・・・7)E (Q、r) =cx (r
) XI (Q、r)          −・−・g
+ここで、α(Q、):積分球(14)によって囲まれ
た部分の光学繊維の総合光電変 換効率 α(r )  : 、f/1分球(15)によって囲ま
れた部分の光学繊維の総合光電変 換効率 総合光電変換効率α(免)、α(r)はさらに次式%式
% ) ここで、β(Q、):積分球(14)によって囲まれた
部分の光学繊維の内部から外 部への散乱光放射効率 β (r):JA分球(15)によって囲まれた部分の
光学繊維の内部から外 部へのll&乱光乱光効用 効率IL):積分球(14)の集光効率y(r):積分
g(15)ノt#光効率δ(!Q、):光電変換素子(
16)の変換効率δ(r):光゛電変換素子(17)の
変換効率ε(Q、):増幅器(18)の増幅率 ε(r):増幅器(19)の増幅率 β (免)、β (r)は11に荒性因子によって決ま
る定数で、光学繊維の場所によって変動があるのがバ通
であり、y(N)、γ(r)、δ(免)、δ(r)。
E (f2. Exemption) - α (i) XI (1, Exemption)
...7) E (Q, r) = cx (r
) XI (Q, r) −・−・g
+where, α(Q,): Total photoelectric conversion efficiency of the optical fiber in the part surrounded by the integrating sphere (14) α(r): , f/1 Optical fiber in the part surrounded by the integrating sphere (15) The total photoelectric conversion efficiency α (ex), α (r) is further calculated by the following formula (%), where β (Q, ): inside of the optical fiber in the area surrounded by the integrating sphere (14). Scattered light radiation efficiency β (r) from inside to outside of the optical fiber surrounded by JA sphere (15) ll & scattered light scattering light efficiency IL): Collection of integrating sphere (14) Light efficiency y(r): Integral g(15) not t# Light efficiency δ(!Q,): Photoelectric conversion element (
16) Conversion efficiency δ(r): Conversion efficiency ε(Q,) of photoelectric conversion element (17): Amplification factor ε(r) of amplifier (18): Amplification factor β of amplifier (19) , β (r) is a constant determined by the roughness factor in 11, and it is a constant that it varies depending on the location of the optical fiber. .

ε(免)、ε (r)は装置の構造によって決まる定数
でほとんど時間的に変動しない定数である。
ε (min) and ε (r) are constants determined by the structure of the device, and are constants that hardly vary over time.

従ってα(Q、)及びα(r)は光学繊維の場所によっ
て変動する定数ということになるが、高精度に光伝送損
失をJull定する必要がない場合は、α(Q、)−α
(r)と仮定しても差支えがなく、())式ど・1li
)式を(Φ式に代入して(」1られる(1り式はi多式
より光伝送損失Kを容易にイ1することかできる。
Therefore, α(Q,) and α(r) are constants that vary depending on the location of the optical fiber, but if it is not necessary to determine Jull optical transmission loss with high precision, α(Q,) - α
There is no problem in assuming that (r), and ()) equation 1li
) can be substituted into the (Φ equation) and the optical transmission loss K can be reduced more easily than the i-multiple equation.

また旬式において、α(Q−)とα(r)が等しく置け
ない場合には、積分球間の光学繊維の長さI、を大きく
とり、E(見見)/E(JLr)の値を人きくして、α
(r)/α(9,)を相対的に小さくすることが1−i
(能である。
In addition, in the Jun method, if α(Q-) and α(r) cannot be placed equally, the length I of the optical fiber between the integrating spheres is increased, and the value of E(Kimi)/E(JLr) is Please listen carefully to α
Making (r)/α(9,) relatively small is 1-i
(It is Noh.

光学繊M#の光伝送損失を検査あるいは監視する目的で
使用する場合などでは光伝送損失の相対的変化を測定す
ればよいことがある。このような場合には、4多式は次
のように変形側ることができる。
When used for the purpose of inspecting or monitoring optical transmission loss of optical fiber M#, it may be sufficient to measure relative changes in optical transmission loss. In such a case, the four polymorphisms can be modified as follows.

ここで、Cは任、aの定数である。Here, C is a constant of a.

次に本発明の実施に使用する装置の−・共体例を第3図
に基づいて説明すると、本J11定装置は先入Q1装置
、(A)、検出装置(B)、および演算装置(C)から
構成されており、光学繊維(22)はボビン(23)か
ら出て、先入用装置(A)、検出装置(B)、を通り、
−・定速度で駆動されている一対のニンブローラー(2
5)により引取られ、ボビン(24)に巻取られる。先
入用装置(^)にはランプ(28)、集光レンズ(30
)、光人躬部カバー(32)が組み込まれている。検出
装置(B)番5は積分球(左)(34)、積分球(右)
(35)、光゛電変換素子(3fl)、(37)が組み
込まれ、測定部カバー(42)内に納められている。光
電変換素子(3B)。
Next, an example of a combination of devices used in carrying out the present invention will be explained based on FIG. The optical fiber (22) comes out of the bobbin (23), passes through a pre-loading device (A), a detection device (B),
- A pair of nin rollers (2
5) and wound onto a bobbin (24). The pre-loading device (^) includes a lamp (28) and a condensing lens (30).
), a light passenger seat cover (32) is incorporated. Detector (B) number 5 is integrating sphere (left) (34), integrating sphere (right)
(35), a photoelectric conversion element (3fl), and (37) are incorporated and housed within the measurement section cover (42). Photoelectric conversion element (3B).

(37)には演算装置(G)が接続されている。A computing device (G) is connected to (37).

レンズ(30)はランプの像が光学繊維(22)の伺近
に生じるように配置し、カバー(32)は内部を反射率
のよい相貫を用いると光入射効率が高くなるので好まし
い。積分球(34) 、 (35)は内面を反射率の高
い拡散面で覆った球形のものが好ましい。光電変換素子
(36)、(37)は通常は光電子増倍管を用いるが、
感I隻が充分あればどのようなものでもよい。
It is preferable that the lens (30) be arranged so that the image of the lamp appears close to the optical fiber (22), and that the cover (32) should have a mutually penetrating interior with good reflectivity, since this will increase the light incidence efficiency. It is preferable that the integrating spheres (34) and (35) have a spherical shape whose inner surface is covered with a diffusing surface having a high reflectance. The photoelectric conversion elements (36) and (37) usually use photomultiplier tubes,
Any type will do as long as there are enough ships.

増幅器(38)、(39)は必要であれば設置する。ア
ナログコンピューター(40)は仲人で光伝送損失を工
1算する。該アナログコンピューター(40)には記録
2t(41)を接続することにより、光学繊維の光伝送
損失の変動を連続的に記録し、繊維軸方向の分布を求め
ることができるようになっている。
Amplifiers (38) and (39) are installed if necessary. The analog computer (40) acts as a matchmaker and calculates the optical transmission loss. By connecting a recording 2t (41) to the analog computer (40), it is possible to continuously record fluctuations in the optical transmission loss of the optical fiber and determine the distribution in the fiber axis direction.

なお、本発明は光学繊維に限らず、糸、棒、薄11ジ、
板等の光学材料にも適用することができる。
Note that the present invention is not limited to optical fibers, but can also be applied to threads, rods, thin 11-wire fibers,
It can also be applied to optical materials such as plates.

以−1の如く構成された未発1!1によれば、光学繊#
J1の側面から放射される光量を検出して光伝送損失を
Al11定するので、光学繊維を切断−穆る必要がない
。従って長尺の、又lオ連続的に製造される光学繊維の
場合には光の入nJを側面から行なうことによって光学
m #iFを走行させながら光伝送損失を連続的に被測
定部分の長さを・定に保ったまま、つまり、光学繊維の
光伝送Its失の長さ方向の斑を測定することができる
。さらに入用光の波長を変えることにより光伝送損失の
分光特性も知ることができる等の多大の王業的効果を奏
するものである。
According to unreleased 1!1 configured as below-1, optical fiber #
Since the optical transmission loss is determined by detecting the amount of light radiated from the side surface of J1, there is no need to cut or comb the optical fiber. Therefore, in the case of long optical fibers or continuously manufactured optical fibers, by entering the light from the side, the optical transmission loss can be measured continuously over the length of the part to be measured while running the optical fiber. In other words, it is possible to measure the unevenness in the optical fiber's optical fiber loss in the length direction while keeping the optical fiber constant. Furthermore, by changing the wavelength of the incoming light, the spectral characteristics of optical transmission loss can also be determined, which brings about many powerful effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光伝送損失の測定法を示す装置の一部縦
断側面図、第2図は本発明の原理を示す装置の−・部縦
断側面図、ff13図は本発明の実施に使用する装置の
−・具体例を示す一部縦断側面図であり、第1図〜第3
図において、(1)は光学la維、(2)はランプ、(
3)は積分球、(4)、(5)は光学繊M[のホルタ−
1(6)は光電変換素子、(7)は増幅器、(8)は指
示ルl、(9)、(10)、(1,1)は光学繊維の端
面、(12)は光学繊維、(13)はランプ、(14)
、(15)は積分球、(1θ)、(17)は光電変換素
子、(1B) 、 (1!II)は増幅器、(20)、
(21)は指示工]、(22)は光学繊維。 (23)は未測定光学1aM#、の巻取ボビン、(24
)は測定法の光学繊維を巻取ったボビン、(25)は一
対の二、ブローラー、(28)はランプ、(30)は集
光レンズ、(32)は光入射部カバー、 (34)、(
35)は積分球、(3B)、(37)は光電変換素子、
(39)は増幅器、(40)は記録計、(42)は測定
部カバーである。 −「−系売ネ1響3、−i、F、−4(方式)1.・1
〜件の表示 #+r願昭58−88707号・ 2、発1!11の名称 光学繊維の光伝送損失測定装置 3、補11:をする者 !IX件との関係    特許出願人 東京都中央区京橋二丁IJ3ff19吋(603)三菱
レイヨン株式会社 取締役社長  河 崎 晃 夫 4、代理人   〒104東京都中央区京橋二丁目3番
19号発送11  昭和58年10月2511181−
Fig. 1 is a partial longitudinal sectional side view of a device showing a conventional method for measuring optical transmission loss, Fig. 2 is a partial vertical sectional side view of a device illustrating the principle of the present invention, and Fig. ff13 is used to implement the present invention. 1 is a partially vertical side view showing a specific example of a device for
In the figure, (1) is an optical fiber, (2) is a lamp, (
3) is the integrating sphere, (4) and (5) are the Holter of the optical fiber M [
1 (6) is a photoelectric conversion element, (7) is an amplifier, (8) is an indicator L, (9), (10), (1, 1) is an end face of an optical fiber, (12) is an optical fiber, ( 13) is a lamp, (14)
, (15) is an integrating sphere, (1θ), (17) is a photoelectric conversion element, (1B), (1!II) is an amplifier, (20),
(21) is an indicator material] and (22) is an optical fiber. (23) is the winding bobbin of unmeasured optical 1aM#, (24
) is a bobbin wound with the optical fiber of the measurement method, (25) is a pair of rollers, (28) is a lamp, (30) is a condenser lens, (32) is a light entrance cover, (34), (
35) is an integrating sphere, (3B) and (37) are photoelectric conversion elements,
(39) is an amplifier, (40) is a recorder, and (42) is a measuring section cover. -“-Kei Salesne 1 Symphony 3, -i, F, -4 (Method) 1.・1
~Indication #+r Application No. 58-88707/2, Issue 1! Name of 11: Optical fiber optical transmission loss measuring device 3, Supplement 11: Person who performs! Relationship with case IX Patent applicant 19-inch IJ3ff, 2-chome, Kyobashi, Chuo-ku, Tokyo (603) Mitsubishi Rayon Co., Ltd. President and CEO Akio Kawasaki 4, Agent Address: 11-19, Kyobashi 2-3-chome, Chuo-ku, Tokyo 104 Showa October 1958 2511181-

Claims (1)

【特許請求の範囲】[Claims] 光学繊維の被+1+1定部以外の部分の光学繊維の側面
部から光をあて、被測定部内を進行する光を入射させる
装置、該入用光が被測定部を伝播するときに放射する光
量を被測定部の両側側面部において検出する装置および
、これらの検出光F蒔の比を演算する装置を備えた光学
繊維の光伝送損失Wlll定装置。
A device that shines light from the side surface of the optical fiber in a portion other than the +1+1 constant part of the optical fiber and allows the light traveling inside the part to be measured to enter, and calculates the amount of light emitted when the input light propagates through the part to be measured. A device for determining optical transmission loss Wllll of an optical fiber, comprising a device for detecting on both side surfaces of a part to be measured, and a device for calculating the ratio of the detected light beams F.
JP8870783A 1983-05-20 1983-05-20 Measuring device for optical transmission loss of optical fiber Pending JPS5990027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8870783A JPS5990027A (en) 1983-05-20 1983-05-20 Measuring device for optical transmission loss of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8870783A JPS5990027A (en) 1983-05-20 1983-05-20 Measuring device for optical transmission loss of optical fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50127704A Division JPS5918647B2 (en) 1975-10-23 1975-10-23 How do you know how to use light and light?

Publications (1)

Publication Number Publication Date
JPS5990027A true JPS5990027A (en) 1984-05-24

Family

ID=13950358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8870783A Pending JPS5990027A (en) 1983-05-20 1983-05-20 Measuring device for optical transmission loss of optical fiber

Country Status (1)

Country Link
JP (1) JPS5990027A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0186960A2 (en) * 1984-12-24 1986-07-09 Sumitomo Electric Industries Limited Method for inspecting an optical fiber
US4996420A (en) * 1989-10-05 1991-02-26 Hughes Aircraft Company Measurement of optical attenuation along the length of bent optical fibers
WO2001011331A1 (en) * 1999-08-06 2001-02-15 Coherent, Inc. Power monitoring arrangement for broken fiber detector
US7009692B2 (en) 1999-08-06 2006-03-07 Lumenis Inc. Arrangement for monitoring the power delivery of a photon channeling element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251957A (en) * 1975-10-23 1977-04-26 Mitsubishi Rayon Co Ltd Measuring light transmission loss of optical material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251957A (en) * 1975-10-23 1977-04-26 Mitsubishi Rayon Co Ltd Measuring light transmission loss of optical material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0186960A2 (en) * 1984-12-24 1986-07-09 Sumitomo Electric Industries Limited Method for inspecting an optical fiber
US4996420A (en) * 1989-10-05 1991-02-26 Hughes Aircraft Company Measurement of optical attenuation along the length of bent optical fibers
EP0421657A2 (en) * 1989-10-05 1991-04-10 Hughes Aircraft Company Measurement of optical attenuation along the length of bent optical fibers
EP0421657A3 (en) * 1989-10-05 1992-10-14 Hughes Aircraft Company Measurement of optical attenuation along the length of bent optical fibers
WO2001011331A1 (en) * 1999-08-06 2001-02-15 Coherent, Inc. Power monitoring arrangement for broken fiber detector
US7009692B2 (en) 1999-08-06 2006-03-07 Lumenis Inc. Arrangement for monitoring the power delivery of a photon channeling element

Similar Documents

Publication Publication Date Title
US5517987A (en) Method for measuring internal information in scattering medium and apparatus for the same
US3793524A (en) Apparatus for measuring a characteristic of sheet materials
US8467067B2 (en) Dynamic light-scattering measuring apparatus using low-coherence light source and light-scattering measuring method of using the apparatus
US6016195A (en) Fiber optic device for detecting the scattered light or fluorescent light from a suspension
JPH06214035A (en) Scintillation detecting device
US4183666A (en) Method of measuring light transmission losses of optical materials
US4682897A (en) Light scattering measuring apparatus
JPS5990027A (en) Measuring device for optical transmission loss of optical fiber
EP0074976A1 (en) Application of optical fibre probes
US4229653A (en) Method and apparatus for monitoring particulate mass concentration of emissions from stationary sources
JPH08178825A (en) Apparatus for measuring distribution of particle sizes
DE50001263D1 (en) Optical measuring arrangement for determining the transmission and scattered radiation
US4715718A (en) Method and apparatus for on-line monitoring of laminate bond strength
JPS5918647B2 (en) How do you know how to use light and light?
EP0066434B1 (en) Determination of heat transfer from a surface
JPH0850007A (en) Method and apparatus for evaluating film thickness
JPS59154340A (en) Wetness measuring device
JPH0266429A (en) Measuring instrument for horizontal light transmission
JPS55149023A (en) Infrared ray spectroscopic method
JP3025051B2 (en) Scattered light measurement cell
JPH0264435A (en) Measuring apparatus for particle size
RU2071056C1 (en) Device for assaying milk and dairy products for content of fat and protein
JPS63243840A (en) Scattered light detector
JP2707724B2 (en) Humidity sensor
JP2906613B2 (en) Moisture content measuring device